2006-02-08 12:53:56 +00:00
|
|
|
#include "rotatingtree.h"
|
|
|
|
|
|
|
|
#define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2))
|
|
|
|
|
|
|
|
/* The randombits() function below is a fast-and-dirty generator that
|
|
|
|
* is probably irregular enough for our purposes. Note that it's biased:
|
|
|
|
* I think that ones are slightly more probable than zeroes. It's not
|
|
|
|
* important here, though.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static unsigned int random_value = 1;
|
|
|
|
static unsigned int random_stream = 0;
|
|
|
|
|
|
|
|
static int
|
|
|
|
randombits(int bits)
|
|
|
|
{
|
|
|
|
int result;
|
2006-02-15 03:01:30 +00:00
|
|
|
if (random_stream < (1U << bits)) {
|
2006-02-08 12:53:56 +00:00
|
|
|
random_value *= 1082527;
|
|
|
|
random_stream = random_value;
|
|
|
|
}
|
|
|
|
result = random_stream & ((1<<bits)-1);
|
|
|
|
random_stream >>= bits;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Insert a new node into the tree.
|
|
|
|
(*root) is modified to point to the new root. */
|
|
|
|
void
|
|
|
|
RotatingTree_Add(rotating_node_t **root, rotating_node_t *node)
|
|
|
|
{
|
|
|
|
while (*root != NULL) {
|
|
|
|
if (KEY_LOWER_THAN(node->key, (*root)->key))
|
|
|
|
root = &((*root)->left);
|
|
|
|
else
|
|
|
|
root = &((*root)->right);
|
|
|
|
}
|
|
|
|
node->left = NULL;
|
|
|
|
node->right = NULL;
|
|
|
|
*root = node;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Locate the node with the given key. This is the most complicated
|
|
|
|
function because it occasionally rebalances the tree to move the
|
|
|
|
resulting node closer to the root. */
|
|
|
|
rotating_node_t *
|
|
|
|
RotatingTree_Get(rotating_node_t **root, void *key)
|
|
|
|
{
|
|
|
|
if (randombits(3) != 4) {
|
|
|
|
/* Fast path, no rebalancing */
|
|
|
|
rotating_node_t *node = *root;
|
|
|
|
while (node != NULL) {
|
|
|
|
if (node->key == key)
|
|
|
|
return node;
|
|
|
|
if (KEY_LOWER_THAN(key, node->key))
|
|
|
|
node = node->left;
|
|
|
|
else
|
|
|
|
node = node->right;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
rotating_node_t **pnode = root;
|
|
|
|
rotating_node_t *node = *pnode;
|
|
|
|
rotating_node_t *next;
|
|
|
|
int rotate;
|
|
|
|
if (node == NULL)
|
|
|
|
return NULL;
|
|
|
|
while (1) {
|
|
|
|
if (node->key == key)
|
|
|
|
return node;
|
|
|
|
rotate = !randombits(1);
|
|
|
|
if (KEY_LOWER_THAN(key, node->key)) {
|
|
|
|
next = node->left;
|
|
|
|
if (next == NULL)
|
|
|
|
return NULL;
|
|
|
|
if (rotate) {
|
|
|
|
node->left = next->right;
|
|
|
|
next->right = node;
|
|
|
|
*pnode = next;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
pnode = &(node->left);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
next = node->right;
|
|
|
|
if (next == NULL)
|
|
|
|
return NULL;
|
|
|
|
if (rotate) {
|
|
|
|
node->right = next->left;
|
|
|
|
next->left = node;
|
|
|
|
*pnode = next;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
pnode = &(node->right);
|
|
|
|
}
|
|
|
|
node = next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Enumerate all nodes in the tree. The callback enumfn() should return
|
|
|
|
zero to continue the enumeration, or non-zero to interrupt it.
|
|
|
|
A non-zero value is directly returned by RotatingTree_Enum(). */
|
|
|
|
int
|
|
|
|
RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
rotating_node_t *node;
|
|
|
|
while (root != NULL) {
|
|
|
|
result = RotatingTree_Enum(root->left, enumfn, arg);
|
|
|
|
if (result != 0) return result;
|
|
|
|
node = root->right;
|
|
|
|
result = enumfn(root, arg);
|
|
|
|
if (result != 0) return result;
|
|
|
|
root = node;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|