2012-03-21 17:25:23 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "mpdecimal.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include "bits.h"
|
|
|
|
#include "difradix2.h"
|
|
|
|
#include "numbertheory.h"
|
|
|
|
#include "transpose.h"
|
|
|
|
#include "umodarith.h"
|
|
|
|
#include "sixstep.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
|
|
|
|
form 2**n (See literature/six-step.txt). */
|
|
|
|
|
|
|
|
|
|
|
|
/* forward transform with sign = -1 */
|
|
|
|
int
|
|
|
|
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
|
|
|
{
|
|
|
|
struct fnt_params *tparams;
|
|
|
|
mpd_size_t log2n, C, R;
|
|
|
|
mpd_uint_t kernel;
|
|
|
|
mpd_uint_t umod;
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_uint_t *x, w0, w1, wstep;
|
|
|
|
mpd_size_t i, k;
|
|
|
|
|
|
|
|
|
|
|
|
assert(ispower2(n));
|
|
|
|
assert(n >= 16);
|
|
|
|
assert(n <= MPD_MAXTRANSFORM_2N);
|
|
|
|
|
|
|
|
log2n = mpd_bsr(n);
|
|
|
|
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
|
|
|
|
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
|
|
|
|
|
|
|
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
if (!transpose_pow2(a, R, C)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Length R transform on the rows. */
|
|
|
|
if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (x = a; x < a+n; x += R) {
|
|
|
|
fnt_dif2(x, R, tparams);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
if (!transpose_pow2(a, C, R)) {
|
|
|
|
mpd_free(tparams);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
kernel = _mpd_getkernel(n, -1, modnum);
|
|
|
|
for (i = 1; i < R; i++) {
|
|
|
|
w0 = 1; /* r**(i*0): initial value for k=0 */
|
|
|
|
w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
|
|
|
|
wstep = MULMOD(w1, w1); /* r**(2*i) */
|
|
|
|
for (k = 0; k < C; k += 2) {
|
|
|
|
mpd_uint_t x0 = a[i*C+k];
|
|
|
|
mpd_uint_t x1 = a[i*C+k+1];
|
|
|
|
MULMOD2(&x0, w0, &x1, w1);
|
|
|
|
MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
|
|
|
|
a[i*C+k] = x0;
|
|
|
|
a[i*C+k+1] = x1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Length C transform on the rows. */
|
|
|
|
if (C != R) {
|
|
|
|
mpd_free(tparams);
|
|
|
|
if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (x = a; x < a+n; x += C) {
|
|
|
|
fnt_dif2(x, C, tparams);
|
|
|
|
}
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
2012-03-23 15:34:41 +00:00
|
|
|
#if 0
|
|
|
|
/* An unordered transform is sufficient for convolution. */
|
2012-03-21 17:25:23 +00:00
|
|
|
/* Transpose the matrix. */
|
|
|
|
if (!transpose_pow2(a, R, C)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* reverse transform, sign = 1 */
|
|
|
|
int
|
|
|
|
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
|
|
|
|
{
|
|
|
|
struct fnt_params *tparams;
|
|
|
|
mpd_size_t log2n, C, R;
|
|
|
|
mpd_uint_t kernel;
|
|
|
|
mpd_uint_t umod;
|
|
|
|
#ifdef PPRO
|
|
|
|
double dmod;
|
|
|
|
uint32_t dinvmod[3];
|
|
|
|
#endif
|
|
|
|
mpd_uint_t *x, w0, w1, wstep;
|
|
|
|
mpd_size_t i, k;
|
|
|
|
|
|
|
|
|
|
|
|
assert(ispower2(n));
|
|
|
|
assert(n >= 16);
|
|
|
|
assert(n <= MPD_MAXTRANSFORM_2N);
|
|
|
|
|
|
|
|
log2n = mpd_bsr(n);
|
|
|
|
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
|
|
|
|
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
|
|
|
|
|
|
|
|
|
2012-03-23 15:34:41 +00:00
|
|
|
#if 0
|
|
|
|
/* An unordered transform is sufficient for convolution. */
|
2012-03-21 17:25:23 +00:00
|
|
|
/* Transpose the matrix, producing an R*C matrix. */
|
|
|
|
if (!transpose_pow2(a, C, R)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Length C transform on the rows. */
|
|
|
|
if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
for (x = a; x < a+n; x += C) {
|
|
|
|
fnt_dif2(x, C, tparams);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
|
|
|
|
SETMODULUS(modnum);
|
|
|
|
kernel = _mpd_getkernel(n, 1, modnum);
|
|
|
|
for (i = 1; i < R; i++) {
|
|
|
|
w0 = 1;
|
|
|
|
w1 = POWMOD(kernel, i);
|
|
|
|
wstep = MULMOD(w1, w1);
|
|
|
|
for (k = 0; k < C; k += 2) {
|
|
|
|
mpd_uint_t x0 = a[i*C+k];
|
|
|
|
mpd_uint_t x1 = a[i*C+k+1];
|
|
|
|
MULMOD2(&x0, w0, &x1, w1);
|
|
|
|
MULMOD2C(&w0, &w1, wstep);
|
|
|
|
a[i*C+k] = x0;
|
|
|
|
a[i*C+k+1] = x1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
if (!transpose_pow2(a, R, C)) {
|
|
|
|
mpd_free(tparams);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Length R transform on the rows. */
|
|
|
|
if (R != C) {
|
|
|
|
mpd_free(tparams);
|
|
|
|
if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (x = a; x < a+n; x += R) {
|
|
|
|
fnt_dif2(x, R, tparams);
|
|
|
|
}
|
|
|
|
mpd_free(tparams);
|
|
|
|
|
|
|
|
/* Transpose the matrix. */
|
|
|
|
if (!transpose_pow2(a, C, R)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|