cpython/Python/thread_nt.h

346 lines
9.4 KiB
C
Raw Normal View History

1995-01-17 16:29:31 +00:00
/***********************************************************
2000-06-30 23:50:40 +00:00
Copyright (c) 2000, BeOpen.com.
Copyright (c) 1995-2000, Corporation for National Research Initiatives.
Copyright (c) 1990-1995, Stichting Mathematisch Centrum.
All rights reserved.
1995-01-17 16:29:31 +00:00
2000-06-30 23:50:40 +00:00
See the file "Misc/COPYRIGHT" for information on usage and
redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.
1995-01-17 16:29:31 +00:00
******************************************************************/
/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
1995-01-17 16:29:31 +00:00
#include <windows.h>
#include <limits.h>
#include <process.h>
1995-01-17 16:29:31 +00:00
typedef struct NRMUTEX {
LONG owned ;
DWORD thread_id ;
HANDLE hevent ;
} NRMUTEX, *PNRMUTEX ;
typedef PVOID WINAPI interlocked_cmp_xchg_t(PVOID *dest, PVOID exc, PVOID comperand) ;
/* Sorry mate, but we haven't got InterlockedCompareExchange in Win95! */
static PVOID WINAPI interlocked_cmp_xchg(PVOID *dest, PVOID exc, PVOID comperand)
{
static LONG spinlock = 0 ;
PVOID result ;
DWORD dwSleep = 0;
/* Acqire spinlock (yielding control to other threads if cant aquire for the moment) */
while(InterlockedExchange(&spinlock, 1))
{
// Using Sleep(0) can cause a priority inversion.
// Sleep(0) only yields the processor if there's
// another thread of the same priority that's
// ready to run. If a high-priority thread is
// trying to acquire the lock, which is held by
// a low-priority thread, then the low-priority
// thread may never get scheduled and hence never
// free the lock. NT attempts to avoid priority
// inversions by temporarily boosting the priority
// of low-priority runnable threads, but the problem
// can still occur if there's a medium-priority
// thread that's always runnable. If Sleep(1) is used,
// then the thread unconditionally yields the CPU. We
// only do this for the second and subsequent even
// iterations, since a millisecond is a long time to wait
// if the thread can be scheduled in again sooner
// (~100,000 instructions).
// Avoid priority inversion: 0, 1, 0, 1,...
Sleep(dwSleep);
dwSleep = !dwSleep;
}
result = *dest ;
if (result == comperand)
*dest = exc ;
/* Release spinlock */
spinlock = 0 ;
return result ;
} ;
static interlocked_cmp_xchg_t *ixchg ;
BOOL InitializeNonRecursiveMutex(PNRMUTEX mutex)
{
if (!ixchg)
{
/* Sorely, Win95 has no InterlockedCompareExchange API (Win98 has), so we have to use emulation */
HANDLE kernel = GetModuleHandle("kernel32.dll") ;
if (!kernel || (ixchg = (interlocked_cmp_xchg_t *)GetProcAddress(kernel, "InterlockedCompareExchange")) == NULL)
ixchg = interlocked_cmp_xchg ;
}
mutex->owned = -1 ; /* No threads have entered NonRecursiveMutex */
mutex->thread_id = 0 ;
mutex->hevent = CreateEvent(NULL, FALSE, FALSE, NULL) ;
return mutex->hevent != NULL ; /* TRUE if the mutex is created */
}
#ifdef InterlockedCompareExchange
#undef InterlockedCompareExchange
#endif
#define InterlockedCompareExchange(dest,exchange,comperand) (ixchg((dest), (exchange), (comperand)))
VOID DeleteNonRecursiveMutex(PNRMUTEX mutex)
{
/* No in-use check */
CloseHandle(mutex->hevent) ;
mutex->hevent = NULL ; /* Just in case */
}
DWORD EnterNonRecursiveMutex(PNRMUTEX mutex, BOOL wait)
{
/* Assume that the thread waits successfully */
DWORD ret ;
/* InterlockedIncrement(&mutex->owned) == 0 means that no thread currently owns the mutex */
if (!wait)
{
if (InterlockedCompareExchange((PVOID *)&mutex->owned, (PVOID)0, (PVOID)-1) != (PVOID)-1)
return WAIT_TIMEOUT ;
ret = WAIT_OBJECT_0 ;
}
else
ret = InterlockedIncrement(&mutex->owned) ?
/* Some thread owns the mutex, let's wait... */
WaitForSingleObject(mutex->hevent, INFINITE) : WAIT_OBJECT_0 ;
mutex->thread_id = GetCurrentThreadId() ; /* We own it */
return ret ;
}
BOOL LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
/* We don't own the mutex */
mutex->thread_id = 0 ;
return
InterlockedDecrement(&mutex->owned) < 0 ||
SetEvent(mutex->hevent) ; /* Other threads are waiting, wake one on them up */
}
PNRMUTEX AllocNonRecursiveMutex(void)
{
PNRMUTEX mutex = (PNRMUTEX)malloc(sizeof(NRMUTEX)) ;
if (mutex && !InitializeNonRecursiveMutex(mutex))
{
free(mutex) ;
mutex = NULL ;
}
return mutex ;
}
void FreeNonRecursiveMutex(PNRMUTEX mutex)
{
if (mutex)
{
DeleteNonRecursiveMutex(mutex) ;
free(mutex) ;
}
}
long PyThread_get_thread_ident(void);
1995-01-17 16:29:31 +00:00
/*
* Change all headers to pure ANSI as no one will use K&R style on an
* NT
*/
/*
* Initialization of the C package, should not be needed.
*/
static void PyThread__init_thread(void)
1995-01-17 16:29:31 +00:00
{
}
/*
* Thread support.
*/
int PyThread_start_new_thread(void (*func)(void *), void *arg)
1995-01-17 16:29:31 +00:00
{
#if _MSC_VER >= 1200
INT_PTR rv;
#else
unsigned long rv;
#endif
int success = 0;
1995-01-17 16:29:31 +00:00
dprintf(("%ld: PyThread_start_new_thread called\n", PyThread_get_thread_ident()));
1995-01-17 16:29:31 +00:00
if (!initialized)
PyThread_init_thread();
1995-01-17 16:29:31 +00:00
rv = _beginthread(func, 0, arg); /* use default stack size */
1995-01-17 16:29:31 +00:00
if (rv != -1) {
1995-01-17 16:29:31 +00:00
success = 1;
dprintf(("%ld: PyThread_start_new_thread succeeded: %p\n", PyThread_get_thread_ident(), rv));
1995-01-17 16:29:31 +00:00
}
return success;
}
/*
* Return the thread Id instead of an handle. The Id is said to uniquely identify the
* thread in the system
*/
long PyThread_get_thread_ident(void)
1995-01-17 16:29:31 +00:00
{
if (!initialized)
PyThread_init_thread();
1995-01-17 16:29:31 +00:00
return GetCurrentThreadId();
}
static void do_PyThread_exit_thread(int no_cleanup)
1995-01-17 16:29:31 +00:00
{
dprintf(("%ld: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
1995-01-17 16:29:31 +00:00
if (!initialized)
if (no_cleanup)
_exit(0);
else
exit(0);
_endthread();
1995-01-17 16:29:31 +00:00
}
void PyThread_exit_thread(void)
1995-01-17 16:29:31 +00:00
{
do_PyThread_exit_thread(0);
1995-01-17 16:29:31 +00:00
}
void PyThread__exit_thread(void)
1995-01-17 16:29:31 +00:00
{
do_PyThread_exit_thread(1);
1995-01-17 16:29:31 +00:00
}
#ifndef NO_EXIT_PROG
static void do_PyThread_exit_prog(int status, int no_cleanup)
1995-01-17 16:29:31 +00:00
{
dprintf(("PyThread_exit_prog(%d) called\n", status));
1995-01-17 16:29:31 +00:00
if (!initialized)
if (no_cleanup)
_exit(status);
else
exit(status);
}
void PyThread_exit_prog(int status)
1995-01-17 16:29:31 +00:00
{
do_PyThread_exit_prog(status, 0);
1995-01-17 16:29:31 +00:00
}
void PyThread__exit_prog(int status)
1995-01-17 16:29:31 +00:00
{
do_PyThread_exit_prog(status, 1);
1995-01-17 16:29:31 +00:00
}
#endif /* NO_EXIT_PROG */
/*
* Lock support. It has too be implemented as semaphores.
* I [Dag] tried to implement it with mutex but I could find a way to
* tell whether a thread already own the lock or not.
*/
PyThread_type_lock PyThread_allocate_lock(void)
1995-01-17 16:29:31 +00:00
{
PNRMUTEX aLock;
1995-01-17 16:29:31 +00:00
dprintf(("PyThread_allocate_lock called\n"));
1995-01-17 16:29:31 +00:00
if (!initialized)
PyThread_init_thread();
1995-01-17 16:29:31 +00:00
aLock = AllocNonRecursiveMutex() ;
1995-01-17 16:29:31 +00:00
dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));
1995-01-17 16:29:31 +00:00
return (PyThread_type_lock) aLock;
1995-01-17 16:29:31 +00:00
}
void PyThread_free_lock(PyThread_type_lock aLock)
1995-01-17 16:29:31 +00:00
{
dprintf(("%ld: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
1995-01-17 16:29:31 +00:00
FreeNonRecursiveMutex(aLock) ;
1995-01-17 16:29:31 +00:00
}
/*
* Return 1 on success if the lock was acquired
*
* and 0 if the lock was not acquired. This means a 0 is returned
* if the lock has already been acquired by this thread!
*/
int PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
1995-01-17 16:29:31 +00:00
{
int success ;
1995-01-17 16:29:31 +00:00
dprintf(("%ld: PyThread_acquire_lock(%p, %d) called\n", PyThread_get_thread_ident(),aLock, waitflag));
1995-01-17 16:29:31 +00:00
success = aLock && EnterNonRecursiveMutex((PNRMUTEX) aLock, (waitflag == 1 ? INFINITE : 0)) == WAIT_OBJECT_0 ;
1995-01-17 16:29:31 +00:00
dprintf(("%ld: PyThread_acquire_lock(%p, %d) -> %d\n", PyThread_get_thread_ident(),aLock, waitflag, success));
1995-01-17 16:29:31 +00:00
return success;
}
void PyThread_release_lock(PyThread_type_lock aLock)
1995-01-17 16:29:31 +00:00
{
dprintf(("%ld: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
1995-01-17 16:29:31 +00:00
if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
dprintf(("%ld: Could not PyThread_release_lock(%p) error: %l\n", PyThread_get_thread_ident(), aLock, GetLastError()));
1995-01-17 16:29:31 +00:00
}
/*
* Semaphore support.
*/
PyThread_type_sema PyThread_allocate_sema(int value)
1995-01-17 16:29:31 +00:00
{
HANDLE aSemaphore;
dprintf(("%ld: PyThread_allocate_sema called\n", PyThread_get_thread_ident()));
1995-01-17 16:29:31 +00:00
if (!initialized)
PyThread_init_thread();
1995-01-17 16:29:31 +00:00
aSemaphore = CreateSemaphore( NULL, /* Security attributes */
value, /* Initial value */
INT_MAX, /* Maximum value */
NULL); /* Name of semaphore */
1995-01-17 16:29:31 +00:00
dprintf(("%ld: PyThread_allocate_sema() -> %p\n", PyThread_get_thread_ident(), aSemaphore));
1995-01-17 16:29:31 +00:00
return (PyThread_type_sema) aSemaphore;
1995-01-17 16:29:31 +00:00
}
void PyThread_free_sema(PyThread_type_sema aSemaphore)
1995-01-17 16:29:31 +00:00
{
dprintf(("%ld: PyThread_free_sema(%p) called\n", PyThread_get_thread_ident(), aSemaphore));
1995-01-17 16:29:31 +00:00
CloseHandle((HANDLE) aSemaphore);
}
/*
XXX must do something about waitflag
*/
int PyThread_down_sema(PyThread_type_sema aSemaphore, int waitflag)
1995-01-17 16:29:31 +00:00
{
DWORD waitResult;
dprintf(("%ld: PyThread_down_sema(%p) called\n", PyThread_get_thread_ident(), aSemaphore));
1995-01-17 16:29:31 +00:00
waitResult = WaitForSingleObject( (HANDLE) aSemaphore, INFINITE);
dprintf(("%ld: PyThread_down_sema(%p) return: %l\n", PyThread_get_thread_ident(), aSemaphore, waitResult));
return 0;
1995-01-17 16:29:31 +00:00
}
void PyThread_up_sema(PyThread_type_sema aSemaphore)
1995-01-17 16:29:31 +00:00
{
ReleaseSemaphore(
(HANDLE) aSemaphore, /* Handle of semaphore */
1, /* increment count by one */
NULL); /* not interested in previous count */
dprintf(("%ld: PyThread_up_sema(%p)\n", PyThread_get_thread_ident(), aSemaphore));
1995-01-17 16:29:31 +00:00
}