cpython/Doc/ref.tex

1021 lines
33 KiB
TeX
Raw Normal View History

1991-11-21 13:53:03 +00:00
% Format this file with latex.
\documentstyle[myformat]{report}
\title{\bf
Python Reference Manual \\
{\em Incomplete Draft}
}
\author{
Guido van Rossum \\
Dept. CST, CWI, Kruislaan 413 \\
1098 SJ Amsterdam, The Netherlands \\
E-mail: {\tt guido@cwi.nl}
}
\begin{document}
\pagenumbering{roman}
\maketitle
\begin{abstract}
\noindent
Python is a simple, yet powerful programming language that bridges the
gap between C and shell programming, and is thus ideally suited for
``throw-away programming''
and rapid prototyping. Its syntax is put
together from constructs borrowed from a variety of other languages;
most prominent are influences from ABC, C, Modula-3 and Icon.
The Python interpreter is easily extended with new functions and data
types implemented in C. Python is also suitable as an extension
language for highly customizable C applications such as editors or
window managers.
Python is available for various operating systems, amongst which
several flavors of {\UNIX}, Amoeba, the Apple Macintosh O.S.,
and MS-DOS.
This reference manual describes the syntax and ``core semantics'' of
the language. It is terse, but exact and complete. The semantics of
non-essential built-in object types and of the built-in functions and
modules are described in the {\em Library Reference} document. For an
informal introduction to the language, see the {\em Tutorial}
document.
\end{abstract}
\pagebreak
\tableofcontents
\pagebreak
\pagenumbering{arabic}
\chapter{Introduction}
This reference manual describes the Python programming language.
It is not intended as a tutorial.
\chapter{Lexical analysis}
A Python program is read by a {\em parser}.
Input to the parser is a stream of {\em tokens}, generated
by the {\em lexical analyzer}.
\section{Line structure}
A Python program is divided in a number of logical lines.
Statements may not straddle logical line boundaries except where
explicitly allowed by the syntax.
To this purpose, the end of a logical line
is represented by the token NEWLINE.
\subsection{Comments}
A comment starts with a hash character (\verb/#/) and ends at the end
of the physical line. Comments are ignored by the syntax.
A hash character in a string literal does not start a comment.
\subsection{Line joining}
Physical lines may be joined into logical lines using backslash
characters (\verb/\/), as follows.
If a physical line ends in a backslash that is not part of a string
literal or comment, it is joined with
the following forming a single logical line, deleting the backslash
and the following end-of-line character. More than two physical
lines may be joined together in this way.
\subsection{Blank lines}
A physical line that is not the continuation of the previous line
and contains only spaces, tabs and possibly a comment, is ignored
(i.e., no NEWLINE token is generated),
except that during interactive input of statements, an empty
physical line terminates a multi-line statement.
\subsection{Indentation}
Spaces and tabs at the beginning of a line are used to compute
the indentation level of the line, which in turn is used to determine
the grouping of statements.
First, each tab is replaced by one to eight spaces such that the column number
of the next character is a multiple of eight (counting from zero).
The column number of the first non-space character then defines the
line's indentation.
Indentation cannot be split over multiple physical lines using
backslashes.
The indentation levels of consecutive lines are used to generate
INDENT and DEDENT tokens, using a stack, as follows.
Before the first line of the file is read, a single zero is pushed on
the stack; this will never be popped off again. The numbers pushed
on the stack will always be strictly increasing from bottom to top.
At the beginning of each logical line, the line's indentation level
is compared to the top of the stack.
If it is equal, nothing happens.
If it larger, it is pushed on the stack, and one INDENT token is generated.
If it is smaller, it {\em must} be one of the numbers occurring on the
stack; all numbers on the stack that are larger are popped off,
and for each number popped off a DEDENT token is generated.
At the end of the file, a DEDENT token is generated for each number
remaining on the stack that is larger than zero.
\section{Other tokens}
Besides NEWLINE, INDENT and DEDENT, the following categories of tokens
exist: identifiers, keywords, literals, operators, and delimiters.
Spaces and tabs are not tokens, but serve to delimit tokens.
Where ambiguity exists, a token comprises the longest possible
string that forms a legal token, when reading from left to right.
Tokens are described using an extended regular expression notation.
This is similar to the extended BNF notation used later, except that
the notation <...> is used to give an informal description of a character,
and that spaces and tabs are not to be ignored.
\section{Identifiers}
Identifiers are described by the following regular expressions:
\begin{verbatim}
identifier: (letter|'_') (letter|digit|'_')*
letter: lowercase | uppercase
lowercase: 'a'|'b'|...|'z'
uppercase: 'A'|'B'|...|'Z'
digit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
\end{verbatim}
Identifiers are unlimited in length.
Upper and lower case letters are different.
\section{Keywords}
The following tokens are used as reserved words,
or keywords of the language,
and may not be used as ordinary identifiers.
They must be spelled exactly as written here:
{\tt
and
break
class
continue
def
del
elif
else
except
finally
for
from
if
import
in
is
not
or
pass
print
raise
return
try
while
}
\section{Literals}
\subsection{String literals}
String literals are described by the following regular expressions:
\begin{verbatim}
stringliteral: '\'' stringitem* '\''
stringitem: stringchar | escapeseq
stringchar: <any character except newline or '\\' or '\''>
escapeseq: '\\' <any character except newline>
\end{verbatim}
String literals cannot span physical line boundaries.
Escape sequences in strings are actually interpreted according to almost the
same rules as used by Standard C
(XXX which should be made explicit here),
except that \verb/\E/ is equivalent to \verb/\033/,
\verb/\"/ is not recognized,
newline characters cannot be escaped, and
{\em all unrecognized escape sequences are left in the string unchanged}.
(The latter rule is useful when debugging: if an escape sequence is
mistyped, the resulting output is more easily recognized as broken.
It also helps somewhat for string literals used as regular expressions
or otherwise passed to other modules that do their own escape handling.)
\subsection{Numeric literals}
There are three types of numeric literals: integers, long integers,
and floating point numbers.
Integers and long integers are described by the following regular expressions:
\begin{verbatim}
longinteger: integer ('l'|'L')
integer: decimalinteger | octinteger | hexinteger
decimalinteger: nonzerodigit digit* | '0'
octinteger: '0' octdigit+
hexinteger: '0' ('x'|'X') hexdigit+
nonzerodigit: '1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
octdigit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'
hexdigit: digit|'a'|'b'|'c'|'d'|'e'|'f'|'A'|'B'|'C'|'D'|'E'|'F'
\end{verbatim}
Floating point numbers are described by the following regular expressions:
\begin{verbatim}
floatnumber: [intpart] fraction [exponent] | intpart ['.'] exponent
intpart: digit+
fraction: '.' digit+
exponent: ('e'|'E') ['+'|'-'] digit+
\end{verbatim}
\section{Operators}
The following tokens are operators:
\begin{verbatim}
+ - * / %
<< >> & | ^ ~
< = == > <= <> != >=
\end{verbatim}
\section{Delimiters}
The following tokens are delimiters:
\begin{verbatim}
( ) [ ] { }
; , : . `
\end{verbatim}
The following printing ASCII characters are currently not used;
their occurrence is an unconditional error:
\begin{verbatim}
! @ $ " ?
\end{verbatim}
\chapter{Execution model}
(XXX This chapter should explain the general model
of the execution of Python code and
the evaluation of expressions.
It should introduce objects, values, code blocks, scopes, name spaces,
name binding,
types, sequences, numbers, mappings,
exceptions, and other technical terms needed to make the following
chapters concise and exact.)
\chapter{Expressions and conditions}
(From now on, extended BNF notation will be used to describe
syntax, not lexical analysis.)
(XXX Explain the notation.)
This chapter explains the meaning of the elements of expressions and
conditions. Conditions are a superset of expressions, and a condition
may be used where an expression is required by enclosing it in
parentheses. The only place where an unparenthesized condition
is not allowed is on the right-hand side of the assignment operator,
because this operator is the same token (\verb/'='/) as used for
compasisons.
The comma plays a somewhat special role in Python's syntax.
It is an operator with a lower precedence than all others, but
occasionally serves other purposes as well (e.g., it has special
semantics in print statements). When a comma is accepted by the
syntax, one of the syntactic categories \verb/expression_list/
or \verb/condition_list/ is always used.
When (one alternative of) a syntax rule has the form
\begin{verbatim}
name: othername
\end{verbatim}
and no semantics are given, the semantics of this form of \verb/name/
are the same as for \verb/othername/.
\section{Arithmetic conversions}
When a description of an arithmetic operator below uses the phrase
``the numeric arguments are converted to a common type'',
this both means that if either argument is not a number, a
{\tt TypeError} exception is raised, and that otherwise
the following conversions are applied:
\begin{itemize}
\item First, if either argument is a floating point number,
the other is converted to floating point;
\item else, if either argument is a long integer,
the other is converted to long integer;
\item otherwise, both must be short integers and no conversion
is necessary.
\end{itemize}
(Note: ``short integers'' in Python are at least 32 bits in size;
``long integers'' are arbitrary precision integers.)
\section{Atoms}
Atoms are the most basic elements of expressions.
Forms enclosed in reverse quotes or various types of parentheses
or braces are also categorized syntactically as atoms.
Syntax rules for atoms:
\begin{verbatim}
atom: identifier | literal | parenth_form | string_conversion
literal: stringliteral | integer | longinteger | floatnumber
parenth_form: enclosure | list_display | dict_display
enclosure: '(' [condition_list] ')'
list_display: '[' [condition_list] ']'
dict_display: '{' [key_datum (',' key_datum)* [','] '}'
key_datum: condition ':' condition
string_conversion:'`' condition_list '`'
\end{verbatim}
\subsection{Identifiers (Names)}
An identifier occurring as an atom is a reference to a local, global
or built-in name binding. If a name can be assigned to anywhere in a code
block, it refers to a local name throughout that code block.
Otherwise, it refers to a global name if one exists, else to a
built-in name.
When the name is bound to an object, evaluation of the atom
yields that object.
When it is not bound, a {\tt NameError} exception
is raised, with the identifier as string parameter.
\subsection{Literals}
Evaluation of a literal yields an object of the given type
(string, integer, long integer, floating point number)
with the given value.
The value may be approximated in the case of floating point literals.
All literals correspond to immutable data types, and hence the object's
identity is less important than its value.
Multiple evaluations of the same literal (either the same occurrence
in the program text or a different occurrence) may
obtain the same object or a different object with the same value.
(In the original implementation, all literals in the same code block
with the same type and value yield the same object.)
\subsection{Enclosures}
An empty enclosure yields an empty tuple object.
An enclosed condition list yields whatever that condition list yields.
(Note that, except for empty tuples, tuples are not formed by
enclosure in parentheses, but rather by use of the comma operator.)
\subsection{List displays}
A list display yields a new list object.
If it has no condition list, the list object has no items.
Otherwise, the elements of the condition list are evaluated
from left to right and inserted in the list object in that order.
\subsection{Dictionary displays}
A dictionary display yields a new dictionary object.
The key/datum pairs are evaluated from left to right to
define the entries of the dictionary:
each key object is used as a key into the dictionary to store
the corresponding datum pair.
Key objects must be strings, otherwise a {\tt TypeError}
exception is raised.
Clashes between keys are not detected; the last datum stored for a given
key value prevails.
\subsection{String conversions}
A string conversion evaluates the contained condition list and converts the
resulting object into a string according to rules specific to its type.
If the object is a string, a number, \verb/None/, or a tuple, list or
dictionary containing only objects whose type is in this list,
the resulting
string is a valid Python expression which can be passed to the
built-in function \verb/eval()/ to yield an expression with the
same value (or an approximation, if floating point numbers are
involved).
(In particular, converting a string adds quotes around it and converts
``funny'' characters to escape sequences that are safe to print.)
It is illegal to attempt to convert recursive objects (e.g.,
lists or dictionaries that -- directly or indirectly -- contain a reference
to themselves.)
\section{Primaries}
Primaries represent the most tightly bound operations of the language.
Their syntax is:
\begin{verbatim}
primary: atom | attributeref | call | subscription | slicing
attributeref: primary '.' identifier
call: primary '(' [condition_list] ')'
subscription: primary '[' condition ']'
slicing: primary '[' [condition] ':' [condition] ']'
\end{verbatim}
\subsection{Attribute references}
\subsection{Calls}
\subsection{Subscriptions}
\subsection{Slicings}
\section{Factors}
Factors represent the unary numeric operators.
Their syntax is:
\begin{verbatim}
factor: primary | '-' factor | '+' factor | '~' factor
\end{verbatim}
The unary \verb/'-'/ operator yields the negative of its numeric argument.
The unary \verb/'+'/ operator yields its numeric argument unchanged.
The unary \verb/'~'/ operator yields the bit-wise negation of its
integral numerical argument.
In all three cases, if the argument does not have the proper type,
a {\tt TypeError} exception is raised.
\section{Terms}
Terms represent the most tightly binding binary operators:
\begin{verbatim}
term: factor | term '*' factor | term '/' factor | term '%' factor
\end{verbatim}
The \verb/'*'/ operator yields the product of its arguments.
The arguments must either both be numbers, or one argument must be
a (short) integer and the other must be a string.
In the former case, the numbers are converted to a common type
and then multiplied together.
In the latter case, string repetition is performed; a negative
repetition factor yields the empty string.
The \verb|'/'| operator yields the quotient of its arguments.
The numeric arguments are first converted to a common type.
(Short or long) integer division yields an integer of the same type,
truncating towards zero.
Division by zero raises a {\tt RuntimeError} exception.
The \verb|'%'| operator yields the remainder from the division
of the first argument by the second.
The numeric arguments are first converted to a common type.
The outcome of $x % y$ is defined as $x - y*trunc(x/y)$.
A zero right argument raises a {\tt RuntimeError} exception.
The arguments may be floating point numbers, e.g.,
$3.14 % 0.7$ equals $0.34$.
\section{Arithmetic expressions}
\begin{verbatim}
arith_expr: term | arith_expr '+' term | arith_expr '-' term
\end{verbatim}
The \verb|'+'| operator yields the sum of its arguments.
The arguments must either both be numbers, or both strings.
In the former case, the numbers are converted to a common type
and then added together.
In the latter case, the strings are concatenated directly,
without inserting a space.
The \verb|'-'| operator yields the difference of its arguments.
The numeric arguments are first converted to a common type.
\section{Shift expressions}
\begin{verbatim}
shift_expr: arith_expr | shift_expr '<<' arith_expr | shift_expr '>>' arith_expr
\end{verbatim}
These operators accept short integers as arguments only.
They shift their left argument to the left or right by the number of bits
given by the right argument. Shifts are ``logical'', e.g., bits shifted
out on one end are lost, and bits shifted in are zero;
negative numbers are shifted as if they were unsigned in C.
Negative shift counts and shift counts greater than {\em or equal to}
the word size yield undefined results.
\section{Bitwise AND expressions}
\begin{verbatim}
and_expr: shift_expr | and_expr '&' shift_expr
\end{verbatim}
This operator yields the bitwise AND of its arguments,
which must be short integers.
\section{Bitwise XOR expressions}
\begin{verbatim}
xor_expr: and_expr | xor_expr '^' and_expr
\end{verbatim}
This operator yields the bitwise exclusive OR of its arguments,
which must be short integers.
\section{Bitwise OR expressions}
\begin{verbatim}
or_expr: xor_expr | or_expr '|' xor_expr
\end{verbatim}
This operator yields the bitwise OR of its arguments,
which must be short integers.
\section{Expressions and expression lists}
\begin{verbatim}
expression: or_expression
expr_list: expression (',' expression)* [',']
\end{verbatim}
An expression list containing at least one comma yields a new tuple.
The length of the tuple is the number of expressions in the list.
The expressions are evaluated from left to right.
The trailing comma is required only to create a single tuple;
it is optional in all other cases (a single expression without
a trailing comma doesn't create a tuple, but rather yields the
value of that expression).
To create an empty tuple, use an empty pair of parentheses: \verb/()/.
\section{Comparisons}
\begin{verbatim}
comparison: expression (comp_operator expression)*
comp_operator: '<'|'>'|'='|'=='|'>='|'<='|'<>'|'!='|['not'] 'in'|is' ['not']
\end{verbatim}
Comparisons yield integer value: 1 for true, 0 for false.
Comparisons can be chained arbitrarily,
e.g., $x < y <= z$ is equivalent to
$x < y$ {\tt and} $y <= z$, except that $y$ is evaluated only once
(but in both cases $z$ is not evaluated at all when $x < y$ is
found to be false).
Formally, $e_0 op_1 e_1 op_2 e_2 ...e_{n-1} op_n e_n$ is equivalent to
$e_0 op_1 e_1$ {\tt and} $e_1 op_2 e_2$ {\tt and} ... {\tt and}
$e_{n-1} op_n e_n$, except that each expression is evaluated at most once.
Note that $e_0 op_1 e_1 op_2 e_2$ does not imply any kind of comparison
between $e_0$ and $e_2$, e.g., $x < y > z$ is perfectly legal.
For the benefit of C programmers,
the comparison operators \verb/=/ and \verb/==/ are equivalent,
and so are \verb/<>/ and \verb/!=/.
Use of the C variants is discouraged.
The operators {\tt '<', '>', '=', '>=', '<='}, and {\tt '<>'} compare
the values of two objects. The objects needn't have the same type.
If both are numbers, they are compared to a common type.
Otherwise, objects of different types {\em always} compare unequal,
and are ordered consistently but arbitrarily, except that
the value \verb\None\ compares smaller than the values of any other type.
(This unusual
definition of comparison is done to simplify the definition of
operations like sorting and the \verb/in/ and \verb/not in/ operators.)
Comparison of objects of the same type depends on the type:
\begin{itemize}
\item Numbers are compared arithmetically.
\item Strings are compared lexicographically using the numeric
equivalents (the result of the built-in function ord())
of their characters.
\item Tuples and lists are compared lexicographically
using comparison of corresponding items.
\item Dictionaries compare unequal unless they are the same object;
the choice whether one dictionary object is considered smaller
or larger than another one is made arbitrarily but
consistently within one execution of a program.
\item The latter rule is also used for most other built-in types.
\end{itemize}
The operators \verb\in\ and \verb\not in\ test for sequence membership:
if $y$ is a sequence, $x {\tt in} y$ is true if and only if there exists
an index $i$ such that $x = y_i$.
$x {\tt not in} y$ yields the inverse truth value.
The exception {\tt TypeError} is raised when $y$ is not a sequence,
or when $y$ is a string and $x$ is not a string of length one.
The operators \verb\is\ and \verb\is not\ compare object identity:
$x {\tt is} y$ is true if and only if $x$ and $y$ are the same object.
$x {\tt is not} y$ yields the inverse truth value.
\section{Boolean operators}
\begin{verbatim}
condition: or_test
or_test: and_test | or_test 'or' and_test
and_test: not_test | and_test 'and' not_test
not_test: comparison | 'not' not_test
\end{verbatim}
In the context of Boolean operators, and also when conditions are
used by control flow statements, the following values are interpreted
as false: None, numeric zero of all types, empty sequences (strings,
tuples and lists), and empty mappings (dictionaries).
All other values are interpreted as true.
The operator \verb\not\ yields 1 if its argument is false, 0 otherwise.
The condition $x {\tt and} y$ first evaluates $x$; if $x$ is false,
$x$ is returned; otherwise, $y$ is evaluated and returned.
The condition $x {\tt or} y$ first evaluates $x$; if $x$ is true,
$x$ is returned; otherwise, $y$ is evaluated and returned.
(Note that \verb\and\ and \verb\or\ do not restrict the value and type
they return to 0 and 1, but rather return the last evaluated argument.
This is sometimes useful, e.g., if $s$ is a string, which should be
replaced by a default value if it is empty, $s {\tt or} 'foo'$
returns the desired value. Because \verb\not\ has to invent a value
anyway, it does not bother to return a value of the same type as its
argument, so \verb\not 'foo'\ yields $0$, not $''$.)
\chapter{Simple statements}
Simple statements are comprised within a single logical line.
Several simple statements may occor on a single line separated
by semicolons. The syntax for simple statements is:
\begin{verbatim}
stmt_list: simple_stmt (';' simple_stmt)* [';']
simple_stmt: expression_stmt
| assignment
| pass_stmt
| del_stmt
| print_stmt
| return_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
\end{verbatim}
\section{Expression statements}
\begin{verbatim}
expression_stmt: expression_list
\end{verbatim}
An expression statement evaluates the expression list (which may
be a single expression).
If the value is not \verb\None\, it is converted to a string
using the rules for string conversions, and the resulting string
is written to standard output on a line by itself.
(The exception for \verb\None\ is made so that procedure calls,
which are syntactically equivalent to expressions,
do not cause any output.)
\section{Assignments}
\begin{verbatim}
assignment: target_list ('=' target_list)* '=' expression_list
target_list: target (',' target)* [',']
target: identifier | '(' target_list ')' | '[' target_list ']'
| attributeref | subscription | slicing
\end{verbatim}
(See the section on primaries for the definition of the last
three symbols.)
An assignment evaluates the expression list (remember that this can
be a single expression or a comma-separated list,
the latter yielding a tuple)
and assigns the single resulting object to each of the target lists,
from left to right.
Assignment is defined recursively depending on the type of the
target. Where assignment is to part of a mutable object
(through an attribute reference, subscription or slicing),
the mutable object must ultimately perform the
assignment and decide about its validity, raising an exception
if the assignment is unacceptable. The rules observed by
various types and the exceptions raised are given with the
definition of the object types (some of which are defined
in the library reference).
Assignment of an object to a target list is recursively
defined as follows.
\begin{itemize}
\item
If the target list contains no commas (except in nested constructs):
the object is assigned to the single target contained in the list.
\item
If the target list contains commas (that are not in nested constructs):
the object must be a tuple with as many items
as the list contains targets, and the items are assigned, from left
to right, to the corresponding targets.
\end{itemize}
Assignment of an object to a (non-list)
target is recursively defined as follows.
\begin{itemize}
\item
If the target is an identifier (name):
the object is bound to that name
in the current local scope. Any previous binding of the same name
is undone.
\item
If the target is a target list enclosed in parentheses:
the object is assigned to that target list.
\item
If the target is a target list enclosed in square brackets:
the object must be a list with as many items
as the target list contains targets,
and the list's items are assigned, from left to right,
to the corresponding targets.
\item
If the target is an attribute reference:
The primary expression in the reference is evaluated.
It should yield an object with assignable attributes;
if this is not the case, a {\tt TypeError} exception is raised.
That object is then asked to assign the assigned object
to the given attribute; if it cannot perform the assignment,
it raises an exception.
\item
If the target is a subscription:
The primary expression in the reference is evaluated.
It should yield either a mutable sequence object or a mapping
(dictionary) object.
Next, the subscript expression is evaluated.
If the primary is a sequence object, the subscript must yield a
nonnegative integer smaller than the sequence's length,
and the sequence is asked to assign the assigned object
to its item with that index.
If the primary is a mapping object, the subscript must have a
type compatible with the mapping's key type,
and the mapping is then asked to to create a key/datum pair
which maps the subscript to the assigned object.
Various exceptions can be raised.
\item
If the target is a slicing:
The primary expression in the reference is evaluated.
It should yield a mutable sequence object (currently only lists).
The assigned object should be a sequence object of the same type.
Next, the lower and upper bound expressions are evaluated,
insofar they are present; defaults are zero and the sequence's length.
The bounds should evaluate to (small) integers.
If either bound is negative, the sequence's length is added to it (once).
The resulting bounds are clipped to lie between zero
and the sequence's length, inclusive.
(XXX Shouldn't this description be with expressions?)
Finally, the sequence object is asked to replace the items
indicated by the slice with the items of the assigned sequence.
This may change the sequence's length, if it allows it.
\end{itemize}
(In the original implementation, the syntax for targets is taken
to be the same as for expressions, and invalid syntax is rejected
during the code generation phase, causing less detailed error
messages.)
\section{The {\tt pass} statement}
\begin{verbatim}
pass_stmt: 'pass'
\end{verbatim}
{\tt pass} is a null operation -- when it is executed,
nothing happens.
\section{The {\tt del} statement}
\begin{verbatim}
del_stmt: 'del' target_list
\end{verbatim}
Deletion is recursively defined similar to assignment.
(XXX Rather that spelling it out in full details,
here are some hints.)
Deletion of a target list recursively deletes each target,
from left to right.
Deletion of a name removes the binding of that name (which must exist)
from the local scope.
Deletion of attribute references, subscriptions and slicings
is passed to the primary object involved; deletion of a slicing
is in general equivalent to assignment of an empty slice of the
right type (but even this is determined by the sliced object).
\section{The {\tt print} statement}
\begin{verbatim}
print_stmt: 'print' [ condition (',' condition)* [','] ]
\end{verbatim}
{\tt print} evaluates each condition in turn and writes the resulting
object to standard output (see below).
If an object is not a string, it is first converted to
a string using the rules for string conversions.
The (resulting or original) string is then written.
A space is written before each object is (converted and) written,
unless the output system believes it is positioned at the beginning
of a line. This is the case: (1) when no characters have been written
to standard output; or (2) when the last character written to
standard output is \verb/'\n'/;
or (3) when the last I/O operation
on standard output was not a \verb\print\ statement.
Finally,
a \verb/'\n'/ character is written at the end,
unless the \verb\print\ statement ends with a comma.
This is the only action if the statement contains just the keyword
\verb\print\.
Standard output is defined as the file object named \verb\stdout\
in the built-in module \verb\sys\. If no such object exists,
or if it is not a writable file, a {\tt RuntimeError} exception is raised.
(The original implementation attempts to write to the system's original
standard output instead, but this is not safe, and should be fixed.)
\section{The {\tt return} statement}
\begin{verbatim}
return_stmt: 'return' [condition_list]
\end{verbatim}
\verb\return\ may only occur syntactically nested in a function
definition, not within a nested class definition.
If a condition list is present, it is evaluated, else \verb\None\
is substituted.
\verb\return\ leaves the current function call with the condition
list (or \verb\None\) as return value.
When \verb\return\ passes control out of a \verb\try\ statement
with a \verb\finally\ clause, that finally clause is executed
before really leaving the function.
(XXX This should be made more exact, a la Modula-3.)
\section{The {\tt raise} statement}
\begin{verbatim}
raise_stmt: 'raise' condition [',' condition]
\end{verbatim}
\verb\raise\ evaluates its first condition, which must yield
a string object. If there is a second condition, this is evaluated,
else \verb\None\ is substituted.
It then raises the exception identified by the first object,
with the second one (or \verb\None\) as its parameter.
\section{The {\tt break} statement}
\begin{verbatim}
break_stmt: 'break'
\end{verbatim}
\verb\break\ may only occur syntactically nested in a \verb\for\
or \verb\while\ loop, not nested in a function or class definition.
It terminates the neares enclosing loop, skipping the optional
\verb\else\ clause if the loop has one.
If a \verb\for\ loop is terminated by \verb\break\, the loop control
target (list) keeps its current value.
When \verb\break\ passes control out of a \verb\try\ statement
with a \verb\finally\ clause, that finally clause is executed
before really leaving the loop.
\section{The {\tt continue} statement}
\begin{verbatim}
continue_stmt: 'continue'
\end{verbatim}
\verb\continue\ may only occur syntactically nested in a \verb\for\
or \verb\while\ loop, not nested in a function or class definition,
and {\em not nested in a \verb\try\ statement with a \verb\finally\
clause}.
It continues with the next cycle of the nearest enclosing loop.
\section{The {\tt import} statement}
\begin{verbatim}
import_stmt: 'import' identifier (',' identifier)*
| 'from' identifier 'import' identifier (',' identifier)*
| 'from' identifier 'import' '*'
\end{verbatim}
(XXX To be done.)
\chapter{Compound statements}
(XXX The semantic definitions of this chapter are still to be done.)
\begin{verbatim}
statement: stmt_list NEWLINE | compound_stmt
compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | funcdef | classdef
suite: statement | NEWLINE INDENT statement+ DEDENT
\end{verbatim}
\section{The {\tt if} statement}
\begin{verbatim}
if_stmt: 'if' condition ':' suite
('elif' condition ':' suite)*
['else' ':' suite]
\end{verbatim}
\section{The {\tt while} statement}
\begin{verbatim}
while_stmt: 'while' condition ':' suite ['else' ':' suite]
\end{verbatim}
\section{The {\tt for} statement}
\begin{verbatim}
for_stmt: 'for' target_list 'in' condition_list ':' suite
['else' ':' suite]
\end{verbatim}
\section{The {\tt try} statement}
\begin{verbatim}
try_stmt: 'try' ':' suite
('except' condition [',' condition] ':' suite)*
['finally' ':' suite]
\end{verbatim}
\section{Function definitions}
\begin{verbatim}
funcdef: 'def' identifier '(' [parameter_list] ')' ':' suite
parameter_list: parameter (',' parameter)*
parameter: identifier | '(' parameter_list ')'
\end{verbatim}
\section{Class definitions}
\begin{verbatim}
classdef: 'class' identifier '(' ')' [inheritance] ':' suite
inheritance: '=' identifier '(' ')' (',' identifier '(' ')')*
\end{verbatim}
XXX Syntax for scripts, modules
XXX Syntax for interactive input, eval, exec, input
\end{document}