boinc/lib/coproc.h

249 lines
7.9 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Structures representing coprocessors (e.g. GPUs);
// used in both client and server.
//
// Notes:
//
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
// 2) The design treats each resource type as a pool of identical devices;
// for example, there is a single "CUDA long-term debt" per project,
// and a scheduler request contains a request (#instances, instance-seconds)
// for CUDA jobs.
// In reality, the instances of a resource type can have different properties:
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
// How to resolve this discrepancy?
//
// Prior to 21 Apr 09 we identified the fastest instance
// and pretended that the others were identical to it.
// This approach has a serious flaw:
// suppose that the fastest instance has characteristics
// (version, RAM etc.) that satisfy the project's requirements,
// but other instances to not.
// Then BOINC executes jobs on GPUs that can't handle them,
// the jobs fail, the host is punished, etc.
//
// We could treat each GPU has a separate resource,
// with its own set of debts, backoffs, etc.
// However, this would imply tying jobs to instances,
// which is undesirable from a scheduling viewpoint.
// It would also be a big code change in both client and server.
//
// Instead, (as of 21 Apr 09) our approach is to identify a
// "most capable" instance, which in the case of CUDA is based on
// a) compute capability
// b) driver version
// c) RAM size
// d) est. FLOPS
// (in decreasing priority).
// We ignore and don't use any instances that are less capable
// on any of these axes.
//
// This design avoids running coprocessor apps on instances
// that are incapable of handling them, and it involves no server changes.
// Its drawback is that, on systems with multiple and differing GPUs,
// it may not use some GPUs that actually could be used.
#ifndef _COPROC_
#define _COPROC_
#include <vector>
#include <string>
#include <cstring>
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
#include "miofile.h"
#define MAX_COPROC_INSTANCES 64
// represents a set of equivalent coprocessors
//
struct COPROC {
char type[256]; // must be unique
int count; // how many are present
int used; // how many are in use (used by client)
// the following are used in both client and server for work-fetch info
//
double req_secs; // how many instance-seconds of work requested
int req_instances; // requesting enough jobs to use this many instances
double estimated_delay; // resource will be saturated for this long
// Used in client to keep track of which tasks are using which instances
// The pointers point to ACTIVE_TASK
//
void* owner[MAX_COPROC_INSTANCES];
// the device number of each instance
// These are not sequential if we omit instances (see above)
//
int device_nums[MAX_COPROC_INSTANCES];
int device_num; // temp used in scan process
#ifndef _USING_FCGI_
virtual void write_xml(MIOFILE&);
#endif
inline void clear() {
// can't just memcpy() - trashes vtable
type[0] = 0;
count = 0;
used = 0;
req_secs = 0;
req_instances = 0;
estimated_delay = 0;
memset(owner, 0, sizeof(owner));
}
COPROC(const char* t){
clear();
strcpy(type, t);
}
COPROC() {
clear();
}
virtual ~COPROC(){}
int parse(MIOFILE&);
};
struct COPROCS {
std::vector<COPROC*> coprocs; // not deleted in destructor
// so any structure that includes this needs to do it manually
COPROCS(){}
~COPROCS(){}
void delete_coprocs(){
for (unsigned int i=0; i<coprocs.size(); i++) {
delete coprocs[i];
}
}
#ifndef _USING_FCGI_
void write_xml(MIOFILE& out) {
for (unsigned int i=0; i<coprocs.size(); i++) {
coprocs[i]->write_xml(out);
}
}
#endif
std::vector<std::string> get(bool use_all);
int parse(FILE*);
void summary_string(char*, int);
COPROC* lookup(const char*);
bool sufficient_coprocs(COPROCS&, bool log_flag, const char* prefix);
void reserve_coprocs(COPROCS&, bool log_flag, const char* prefix);
void free_coprocs(COPROCS&, bool log_flag, const char* prefix);
bool fully_used() {
for (unsigned int i=0; i<coprocs.size(); i++) {
COPROC* cp = coprocs[i];
if (cp->used < cp->count) return false;
}
return true;
}
// Copy a coproc set, possibly setting usage to zero.
// used in round-robin simulator and CPU scheduler,
// to avoid messing w/ master copy
//
void clone(COPROCS& c, bool copy_used) {
for (unsigned int i=0; i<c.coprocs.size(); i++) {
COPROC* cp = c.coprocs[i];
COPROC* cp2 = new COPROC(cp->type);
cp2->count = cp->count;
if (copy_used) cp2->used = cp->used;
coprocs.push_back(cp2);
}
}
};
// the following copied from /usr/local/cuda/include/driver_types.h
//
struct cudaDeviceProp {
char name[256];
unsigned int totalGlobalMem;
// not used on the server; dtotalGlobalMem is used instead
// (since some boards have >= 4GB)
int sharedMemPerBlock;
int regsPerBlock;
int warpSize;
int memPitch;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int clockRate;
int totalConstMem;
int major;
int minor;
int textureAlignment;
int deviceOverlap;
int multiProcessorCount;
double dtotalGlobalMem; // not defined in client
};
struct COPROC_CUDA : public COPROC {
int cuda_version; // CUDA runtime version
int display_driver_version;
cudaDeviceProp prop;
#ifndef _USING_FCGI_
virtual void write_xml(MIOFILE&);
#endif
COPROC_CUDA(): COPROC("CUDA"){}
virtual ~COPROC_CUDA(){}
static void get(COPROCS&, std::vector<std::string>&, bool use_all);
void description(char*);
void clear();
int parse(FILE*);
// rough estimate of FLOPS
// The following is based on SETI@home CUDA,
// which gets 50 GFLOPS on a Quadro FX 3700,
// which has 14 MPs and a clock rate of 1.25 MHz
//
inline double flops_estimate() {
double x = (prop.clockRate * prop.multiProcessorCount)*5e10/(14*1.25e6);
return x?x:5e10;
}
};
void fake_cuda(COPROCS&, int);
enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7,
CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8,
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9,
CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10,
CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11,
CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12,
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13,
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14,
CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16,
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17,
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18,
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19,
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20
};
#endif