boinc/sched/sched_send.C

1153 lines
38 KiB
C

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2005 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// scheduler code related to sending work
#include "config.h"
#include <vector>
#include <string>
#include <ctime>
#include <cstdio>
#include <stdlib.h>
using namespace std;
#include <unistd.h>
#include "error_numbers.h"
#include "parse.h"
#include "util.h"
#include "str_util.h"
#include "server_types.h"
#include "sched_shmem.h"
#include "sched_config.h"
#include "sched_util.h"
#include "main.h"
#include "sched_array.h"
#include "sched_msgs.h"
#include "sched_hr.h"
#include "hr.h"
#include "sched_locality.h"
#include "sched_timezone.h"
#include "sched_send.h"
#ifdef _USING_FCGI_
#include "fcgi_stdio.h"
#else
#define FCGI_ToFILE(x) (x)
#endif
const char* infeasible_string(int code) {
switch (code) {
case INFEASIBLE_MEM: return "Not enough memory";
case INFEASIBLE_DISK: return "Not enough disk";
case INFEASIBLE_CPU: return "CPU too slow";
case INFEASIBLE_APP_SETTING: return "App not selected";
case INFEASIBLE_WORKLOAD: return "Existing workload";
case INFEASIBLE_DUP: return "Already in reply";
case INFEASIBLE_HR: return "Homogeneous redundancy";
}
return "Unknown";
}
const int MIN_SECONDS_TO_SEND = 0;
const int MAX_SECONDS_TO_SEND = (28*SECONDS_IN_DAY);
const int MAX_CPUS = 8;
// max multiplier for daily_result_quota and max_wus_in_progress;
// need to change as multicore processors expand
const double DEFAULT_RAM_SIZE = 64000000;
// if host sends us an impossible RAM size, use this instead
bool anonymous(PLATFORM* platform) {
return (!strcmp(platform->name, "anonymous"));
}
bool SCHEDULER_REQUEST::has_version(APP& app) {
unsigned int i;
for (i=0; i<client_app_versions.size(); i++) {
CLIENT_APP_VERSION& cav = client_app_versions[i];
if (!strcmp(cav.app_name, app.name) && cav.version_num >= app.min_version) {
return true;
}
}
return false;
}
// Find an app and app_version for the client's platform(s).
//
int get_app_version(
WORKUNIT& wu, APP* &app, APP_VERSION* &avp,
SCHEDULER_REQUEST& sreq, SCHEDULER_REPLY& reply, PLATFORM_LIST& platforms,
SCHED_SHMEM& ss
) {
bool found;
if (anonymous(platforms.list[0])) {
app = ss.lookup_app(wu.appid);
found = sreq.has_version(*app);
if (!found) {
log_messages.printf(SCHED_MSG_LOG::MSG_DEBUG,
"Didn't find anonymous app\n"
);
return ERR_NO_APP_VERSION;
}
avp = NULL;
} else {
found = find_app_version(reply.wreq, wu, platforms, ss, app, avp);
if (!found) {
log_messages.printf(SCHED_MSG_LOG::MSG_DEBUG, "Didn't find app version\n");
return ERR_NO_APP_VERSION;
}
// see if the core client is too old.
//
if (!app_core_compatible(reply.wreq, *avp)) {
log_messages.printf(SCHED_MSG_LOG::MSG_DEBUG, "Didn't find app version: core client too old\n");
return ERR_NO_APP_VERSION;
}
}
return 0;
}
// Compute the max additional disk usage we can impose on the host.
// Depending on the client version, it can either send us
// - d_total and d_free (pre 4 oct 2005)
// - the above plus d_boinc_used_total and d_boinc_used_project
//
double max_allowable_disk(SCHEDULER_REQUEST& req, SCHEDULER_REPLY& reply) {
HOST host = req.host;
GLOBAL_PREFS prefs = req.global_prefs;
double x1, x2, x3, x;
// defaults are from config.xml
// if not there these are used:
// -default_max_used_gb= 100
// -default_max_used_pct = 50
// -default_min_free_gb = .001
//
if (prefs.disk_max_used_gb == 0) {
prefs.disk_max_used_gb = config.default_disk_max_used_gb;
}
if (prefs.disk_max_used_pct == 0) {
prefs.disk_max_used_pct = config.default_disk_max_used_pct;
}
// Always leave some disk space free
if (prefs.disk_min_free_gb < config.default_disk_min_free_gb) {
prefs.disk_min_free_gb = config.default_disk_min_free_gb;
}
// no defaults for total/free disk space (host.d_total, d_free)
// if they're zero, client will get no work.
//
if (host.d_boinc_used_total) {
// The post 4 oct 2005 case.
// Compute the max allowable additional disk usage based on prefs
//
x1 = prefs.disk_max_used_gb*1e9 - host.d_boinc_used_total;
x2 = host.d_total*prefs.disk_max_used_pct/100.
- host.d_boinc_used_total;
x3 = host.d_free - prefs.disk_min_free_gb*1e9; // may be negative
x = min(x1, min(x2, x3));
// see which bound is the most stringent
//
if (x==x1) {
reply.disk_limits.max_used = x;
} else if (x==x2) {
reply.disk_limits.max_frac = x;
} else {
reply.disk_limits.min_free = x;
}
} else {
// here we don't know how much space BOINC is using.
// so we're kinda screwed.
// All we can do is assume that BOINC is using zero space.
// We can't honor the max_used for max_used_pct preferences.
// We can only honor the min_free pref.
//
x = host.d_free - prefs.disk_min_free_gb*1e9; // may be negative
reply.disk_limits.min_free = x;
x1 = x2 = x3 = 0;
}
if (x < 0) {
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"disk_max_used_gb %f disk_max_used_pct %f disk_min_free_gb %f\n",
prefs.disk_max_used_gb, prefs.disk_max_used_pct,
prefs.disk_min_free_gb
);
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"host.d_total %f host.d_free %f host.d_boinc_used_total %f\n",
host.d_total, host.d_free, host.d_boinc_used_total
);
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"x1 %f x2 %f x3 %f x %f\n",
x1, x2, x3, x
);
reply.wreq.disk.set_insufficient(-x);
}
return x;
}
// if a host has active_frac < 0.1, assume 0.1 so we don't deprive it of work.
//
const double HOST_ACTIVE_FRAC_MIN = 0.1;
// estimate the number of CPU seconds that a workunit requires
// running on this host.
//
double estimate_cpu_duration(WORKUNIT& wu, SCHEDULER_REPLY& reply) {
double p_fpops = reply.host.p_fpops;
if (p_fpops <= 0) p_fpops = 1e9;
double rsc_fpops_est = wu.rsc_fpops_est;
if (rsc_fpops_est <= 0) rsc_fpops_est = 1e12;
return rsc_fpops_est/p_fpops;
}
// estimate the amount of real time to complete this WU,
// taking into account active_frac etc.
// Note: don't factor in resource_share_fraction.
// The core client no longer necessarily does round-robin
// across all projects.
//
static double estimate_wallclock_duration(
WORKUNIT& wu, SCHEDULER_REQUEST& request, SCHEDULER_REPLY& reply
) {
double running_frac;
if (reply.wreq.core_client_version<=419) {
running_frac = reply.host.on_frac;
} else {
running_frac = reply.host.active_frac * reply.host.on_frac;
}
if (running_frac < HOST_ACTIVE_FRAC_MIN) {
running_frac = HOST_ACTIVE_FRAC_MIN;
}
if (running_frac > 1) running_frac = 1;
double ecd = estimate_cpu_duration(wu, reply);
double ewd = ecd/running_frac;
if (reply.host.duration_correction_factor) {
ewd *= reply.host.duration_correction_factor;
}
if (reply.host.cpu_efficiency) {
ewd /= reply.host.cpu_efficiency;
}
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"est cpu dur %f; running_frac %f; est %f\n",
ecd, running_frac, ewd
);
return ewd;
}
// Find or compute various info about the host.
// These parameters affect how work is sent to the host
//
static int get_host_info(SCHEDULER_REPLY& reply) {
char buf[8096];
std::string str;
unsigned int pos = 0;
int temp_int;
extract_venue(reply.user.project_prefs, reply.host.venue, buf);
str = buf;
// scan user's project prefs for elements of the form <app_id>N</app_id>,
// indicating the apps they want to run.
//
reply.wreq.host_info.preferred_apps.clear();
while (parse_int(str.substr(pos,str.length()-pos).c_str(), "<app_id>", temp_int)) {
APP_INFO ai;
ai.appid = temp_int;
reply.wreq.host_info.preferred_apps.push_back(ai);
pos = str.find("<app_id>", pos) + 1;
}
temp_int = parse_int(buf,"<allow_beta_work>", temp_int);
reply.wreq.host_info.allow_beta_work = temp_int;
// Decide whether or not this computer is a 'reliable' computer
//
double expavg_credit = reply.host.expavg_credit;
double expavg_time = reply.host.expavg_time;
double avg_turnaround = reply.host.avg_turnaround;
update_average(0, 0, CREDIT_HALF_LIFE, expavg_credit, expavg_time);
double credit_scale, turnaround_scale;
if (strstr(reply.host.os_name,"Windows") || strstr(reply.host.os_name,"Linux")
) {
credit_scale = 1;
turnaround_scale = 1;
} else {
credit_scale = .75;
turnaround_scale = 1.25;
}
if (((expavg_credit/reply.host.p_ncpus) > config.reliable_min_avg_credit*credit_scale || config.reliable_min_avg_credit == 0)
&& (avg_turnaround < config.reliable_max_avg_turnaround*turnaround_scale || config.reliable_max_avg_turnaround == 0)
){
reply.wreq.host_info.reliable = true;
log_messages.printf(SCHED_MSG_LOG::MSG_DEBUG,
"[HOST#%d] is reliable (OS = %s) expavg_credit = %.0f avg_turnaround(hours) = %.0f \n",
reply.host.id, reply.host.os_name, expavg_credit,
avg_turnaround/3600
);
}
return 0;
}
// Check to see if the user has set application preferences.
// If they have, then only send work for the allowed applications
//
static inline int check_app_filter(
WORKUNIT& wu, SCHEDULER_REQUEST& , SCHEDULER_REPLY& reply
) {
unsigned int i;
if (reply.wreq.host_info.preferred_apps.size() == 0) return 0;
bool app_allowed = false;
for (i=0; i<reply.wreq.host_info.preferred_apps.size(); i++) {
if (wu.appid==reply.wreq.host_info.preferred_apps[i].appid) {
app_allowed = true;
break;
}
}
// TODO: select between the following via config
//if (!app_allowed) {
if (!app_allowed && !reply.wreq.beta_only) {
reply.wreq.no_allowed_apps_available = true;
log_messages.printf(SCHED_MSG_LOG::MSG_DEBUG,
"[USER#%d] [WU#%d] user doesn't want work for this application\n",
reply.user.id, wu.id
);
return INFEASIBLE_APP_SETTING;
}
return 0;
}
// see how much RAM we can use on this machine
// TODO: compute this once, not once per job
//
static inline void get_mem_sizes(
SCHEDULER_REQUEST& request, SCHEDULER_REPLY& reply,
double& ram, double& usable_ram
) {
ram = reply.host.m_nbytes;
if (ram <= 0) ram = DEFAULT_RAM_SIZE;
usable_ram = ram;
double busy_frac = request.global_prefs.ram_max_used_busy_frac;
double idle_frac = request.global_prefs.ram_max_used_idle_frac;
double frac = 1;
if (busy_frac>0 && idle_frac>0) {
frac = std::max(busy_frac, idle_frac);
if (frac > 1) frac = 1;
usable_ram *= frac;
}
}
static inline int check_memory(
WORKUNIT& wu, SCHEDULER_REQUEST& request, SCHEDULER_REPLY& reply
) {
double ram, usable_ram;
get_mem_sizes(request, reply, ram, usable_ram);
double diff = wu.rsc_memory_bound - usable_ram;
if (diff > 0) {
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[WU#%d %s] needs %0.2fMB RAM; [HOST#%d] has %0.2fMB, %0.2fMB usable\n",
wu.id, wu.name, wu.rsc_memory_bound/MEGA,
reply.host.id, ram/MEGA, usable_ram/MEGA
);
reply.wreq.mem.set_insufficient(wu.rsc_memory_bound);
reply.set_delay(DELAY_NO_WORK_TEMP);
return INFEASIBLE_MEM;
}
return 0;
}
static inline int check_disk(
WORKUNIT& wu, SCHEDULER_REQUEST& , SCHEDULER_REPLY& reply
) {
double diff = wu.rsc_disk_bound - reply.wreq.disk_available;
if (diff > 0) {
reply.wreq.disk.set_insufficient(diff);
return INFEASIBLE_DISK;
}
return 0;
}
static inline int check_deadline(
WORKUNIT& wu, SCHEDULER_REQUEST& request, SCHEDULER_REPLY& reply
) {
// skip delay check if host currently doesn't have any work
// (i.e. everyone gets one result, no matter how slow they are)
//
if (!config.ignore_delay_bound && request.estimated_delay>0) {
double ewd = estimate_wallclock_duration(wu, request, reply);
double est_completion_delay = request.estimated_delay + ewd;
double est_report_delay = max(est_completion_delay, request.global_prefs.work_buf_min());
double diff = est_report_delay - wu.delay_bound;
if (diff > 0) {
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[WU#%d %s] needs %d seconds on [HOST#%d]; delay_bound is %d (estimated_delay is %f)\n",
wu.id, wu.name, (int)ewd, reply.host.id, wu.delay_bound,
request.estimated_delay
);
reply.wreq.speed.set_insufficient(diff);
return INFEASIBLE_CPU;
}
}
return 0;
}
// Quick checks (no DB access) to see if the WU can be sent on the host.
// Reasons why not include:
// 1) the host doesn't have enough memory;
// 2) the host doesn't have enough disk space;
// 3) based on CPU speed, resource share and estimated delay,
// the host probably won't get the result done within the delay bound
// 4) app isn't in user's "approved apps" list
//
// TODO: this should be used in locality scheduling case too.
// Should move a few other checks from sched_array.C
//
int wu_is_infeasible(
WORKUNIT& wu, SCHEDULER_REQUEST& request, SCHEDULER_REPLY& reply, APP& app
) {
int retval;
// homogeneous redundancy, quick check
//
if (app_hr_type(app)) {
if (hr_unknown_platform_type(reply.host, app_hr_type(app))) {
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[HOST#%d] [WU#%d %s] host is of unknown class in HR type %d\n",
reply.host.id, wu.id, app_hr_type(app)
);
return INFEASIBLE_HR;
}
if (already_sent_to_different_platform_quick(request, wu, app)) {
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[HOST#%d] [WU#%d %s] failed quick HR check: WU is class %d, host is class %d\n",
reply.host.id, wu.id, wu.name, wu.hr_class, hr_class(request.host, app_hr_type(app))
);
return INFEASIBLE_HR;
}
}
if (config.one_result_per_user_per_wu || config.one_result_per_host_per_wu) {
if (wu_already_in_reply(wu, reply)) {
return INFEASIBLE_DUP;
}
}
retval = check_app_filter(wu, request, reply);
if (retval) return retval;
retval = check_memory(wu, request, reply);
if (retval) return retval;
retval = check_disk(wu, request, reply);
if (retval) return retval;
// do this last because EDF sim uses some CPU
//
if (config.workload_sim && request.have_other_results_list) {
double est_cpu = estimate_cpu_duration(wu, reply);
IP_RESULT candidate("", wu.delay_bound, est_cpu);
strcpy(candidate.name, wu.name);
if (check_candidate(candidate, reply.host.p_ncpus, request.ip_results)) {
// it passed the feasibility test,
// but don't add it the the workload yet;
// wait until we commit to sending it
} else {
reply.wreq.speed.set_insufficient(0);
return INFEASIBLE_WORKLOAD;
}
} else {
retval = check_deadline(wu, request, reply);
if (retval) return INFEASIBLE_WORKLOAD;
}
return 0;
}
// insert "text" right after "after" in the given buffer
//
int insert_after(char* buffer, const char* after, const char* text) {
char* p;
char temp[LARGE_BLOB_SIZE];
if (strlen(buffer) + strlen(text) > LARGE_BLOB_SIZE-1) {
log_messages.printf(SCHED_MSG_LOG::MSG_CRITICAL,
"insert_after: overflow: %d %d\n",
strlen(buffer), strlen(text)
);
return ERR_BUFFER_OVERFLOW;
}
p = strstr(buffer, after);
if (!p) {
log_messages.printf(SCHED_MSG_LOG::MSG_CRITICAL,
"insert_after: %s not found in %s\n", after, buffer
);
return ERR_NULL;
}
p += strlen(after);
strcpy(temp, p);
strcpy(p, text);
strcat(p, temp);
return 0;
}
// add elements to WU's xml_doc,
// in preparation for sending it to a client
//
int insert_wu_tags(WORKUNIT& wu, APP& app) {
char buf[LARGE_BLOB_SIZE];
sprintf(buf,
" <rsc_fpops_est>%f</rsc_fpops_est>\n"
" <rsc_fpops_bound>%f</rsc_fpops_bound>\n"
" <rsc_memory_bound>%f</rsc_memory_bound>\n"
" <rsc_disk_bound>%f</rsc_disk_bound>\n"
" <name>%s</name>\n"
" <app_name>%s</app_name>\n",
wu.rsc_fpops_est,
wu.rsc_fpops_bound,
wu.rsc_memory_bound,
wu.rsc_disk_bound,
wu.name,
app.name
);
return insert_after(wu.xml_doc, "<workunit>\n", buf);
}
// return the APP and APP_VERSION for the given WU, for the given platform.
// return false if none
//
bool find_app_version(
WORK_REQ& wreq, WORKUNIT& wu, PLATFORM_LIST& platforms, SCHED_SHMEM& ss,
APP*& app, APP_VERSION*& avp
) {
app = ss.lookup_app(wu.appid);
if (!app) {
log_messages.printf(
SCHED_MSG_LOG::MSG_CRITICAL, "Can't find APP#%d\n", wu.appid
);
return false;
}
unsigned int i;
for (i=0; i<platforms.list.size(); i++) {
PLATFORM* p = platforms.list[i];
avp = ss.lookup_app_version(app->id, p->id, app->min_version);
if (avp) return true;
}
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"no app version available: APP#%d PLATFORM#%d min_version %d\n",
app->id, platforms.list[0]->id, app->min_version
);
wreq.no_app_version = true;
return false;
}
// verify that the given APP_VERSION will work with the core client
//
bool app_core_compatible(WORK_REQ& wreq, APP_VERSION& av) {
if (wreq.core_client_version < av.min_core_version) {
#if 0
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"Outdated core version: wanted %d, got %d\n",
av.min_core_version, wreq.core_client_version
);
#endif
wreq.outdated_core = true;
return false;
}
return true;
}
// add the given workunit to a reply.
// look up its app, and make sure there's a version for this platform.
// Add the app and app_version to the reply also.
//
int add_wu_to_reply(
WORKUNIT& wu, SCHEDULER_REPLY& reply, PLATFORM_LIST& ,
APP* app, APP_VERSION* avp
) {
int retval;
WORKUNIT wu2, wu3;
// add the app, app_version, and workunit to the reply,
// but only if they aren't already there
//
if (avp) {
APP_VERSION av2=*avp, *avp2=&av2;
if (config.choose_download_url_by_timezone) {
process_av_timezone(reply, avp, av2);
}
reply.insert_app_unique(*app);
reply.insert_app_version_unique(*avp2);
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[HOST#%d] Sending app_version %s %d %d\n",
reply.host.id, app->name, avp2->platformid, avp2->version_num
);
}
// add time estimate to reply
//
wu2 = wu; // make copy since we're going to modify its XML field
retval = insert_wu_tags(wu2, *app);
if (retval) {
log_messages.printf(SCHED_MSG_LOG::MSG_NORMAL,
"insert_wu_tags failed %d\n", retval
);
return retval;
}
wu3=wu2;
if (config.choose_download_url_by_timezone) {
process_wu_timezone(reply, wu2, wu3);
}
reply.insert_workunit_unique(wu3);
// switch to tighter policy for estimating delay
//
return 0;
}
int insert_name_tags(RESULT& result, WORKUNIT const& wu) {
char buf[256];
int retval;
sprintf(buf, "<name>%s</name>\n", result.name);
retval = insert_after(result.xml_doc_in, "<result>\n", buf);
if (retval) return retval;
sprintf(buf, "<wu_name>%s</wu_name>\n", wu.name);
retval = insert_after(result.xml_doc_in, "<result>\n", buf);
if (retval) return retval;
return 0;
}
int insert_deadline_tag(RESULT& result) {
char buf[256];
sprintf(buf, "<report_deadline>%d</report_deadline>\n", result.report_deadline);
int retval = insert_after(result.xml_doc_in, "<result>\n", buf);
if (retval) return retval;
return 0;
}
int update_wu_transition_time(WORKUNIT wu, time_t x) {
DB_WORKUNIT dbwu;
char buf[256];
dbwu.id = wu.id;
// SQL note: can't use min() here
//
sprintf(buf,
"transition_time=if(transition_time<%d, transition_time, %d)",
(int)x, (int)x
);
return dbwu.update_field(buf);
}
// return true iff a result for same WU is already being sent
//
bool wu_already_in_reply(WORKUNIT& wu, SCHEDULER_REPLY& reply) {
unsigned int i;
for (i=0; i<reply.results.size(); i++) {
if (wu.id == reply.results[i].workunitid) {
return true;
}
}
return false;
}
void lock_sema() {
lock_semaphore(sema_key);
}
void unlock_sema() {
unlock_semaphore(sema_key);
}
// return true if additional work is needed,
// and there's disk space left,
// and we haven't exceeded result per RPC limit,
// and we haven't exceeded results per day limit
//
bool SCHEDULER_REPLY::work_needed(bool locality_sched) {
if (locality_sched) {
// if we've failed to send a result because of a transient condition,
// return false to preserve invariant
//
if (wreq.disk.insufficient || wreq.speed.insufficient || wreq.mem.insufficient || wreq.no_allowed_apps_available) {
return false;
}
}
if (wreq.seconds_to_fill <= 0) return false;
if (wreq.disk_available <= 0) {
return false;
}
if (wreq.nresults >= config.max_wus_to_send) return false;
// daily quota and max jobs per host are scaled by #CPUs,
// but only up to MAX_CPUs (currently 8)
//
int ncpus = host.p_ncpus;
if (ncpus > MAX_CPUS) ncpus = MAX_CPUS;
if (ncpus < 1) ncpus = 1;
// host.max_results_day is between 1 and config.daily_result_quota inclusive
// wreq.daily_result_quota is between ncpus
// and ncpus*host.max_results_day inclusive
//
if (config.daily_result_quota) {
if (host.max_results_day == 0 || host.max_results_day>config.daily_result_quota) {
host.max_results_day = config.daily_result_quota;
}
wreq.daily_result_quota = ncpus*host.max_results_day;
if (host.nresults_today >= wreq.daily_result_quota) {
wreq.daily_result_quota_exceeded = true;
return false;
}
}
if (config.max_wus_in_progress) {
if (wreq.nresults_on_host >= config.max_wus_in_progress*ncpus) {
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"cache limit exceeded; %d > %d*%d\n",
wreq.nresults_on_host, config.max_wus_in_progress, ncpus
);
wreq.cache_size_exceeded = true;
return false;
}
}
return true;
}
void SCHEDULER_REPLY::got_good_result() {
host.max_results_day *= 2;
if (host.max_results_day > config.daily_result_quota) {
host.max_results_day = config.daily_result_quota;
}
}
void SCHEDULER_REPLY::got_bad_result() {
host.max_results_day -= 1;
if (host.max_results_day < 1) {
host.max_results_day = 1;
}
}
int add_result_to_reply(
DB_RESULT& result, WORKUNIT& wu, SCHEDULER_REQUEST& request,
SCHEDULER_REPLY& reply, PLATFORM_LIST& platforms,
APP* app, APP_VERSION* avp
) {
int retval;
double wu_seconds_filled;
bool resent_result = false;
retval = add_wu_to_reply(wu, reply, platforms, app, avp);
if (retval) return retval;
// in the scheduling locality case,
// reduce the available space by LESS than the workunit rsc_disk_bound,
// IF the host already has the file OR the file was not already sent.
//
if (!config.locality_scheduling ||
decrement_disk_space_locality(wu, request, reply)
) {
reply.wreq.disk_available -= wu.rsc_disk_bound;
}
// update the result in DB
//
result.hostid = reply.host.id;
result.userid = reply.user.id;
result.sent_time = time(0);
int old_server_state = result.server_state;
int delay_bound = wu.delay_bound;
if (result.server_state != RESULT_SERVER_STATE_IN_PROGRESS) {
// We are sending this result for the first time
//
// If the workunit needs reliable and is being sent to a reliable host,
// then shorten the delay bound by the percent specified
//
if (config.reliable_time && reply.wreq.host_info.reliable && config.reliable_reduced_delay_bound > 0.01) {
if ((wu.create_time + config.reliable_time) <= time(0)) {
delay_bound = (int) (delay_bound * config.reliable_reduced_delay_bound);
}
}
result.report_deadline = result.sent_time + delay_bound;
result.server_state = RESULT_SERVER_STATE_IN_PROGRESS;
} else {
// Result was already sent to this host but was lost,
// so we are resending it.
//
resent_result = true;
// TODO: explain the following
//
if (result.report_deadline < result.sent_time) {
result.report_deadline = result.sent_time + 10;
}
if (result.report_deadline > result.sent_time + delay_bound) {
result.report_deadline = result.sent_time + delay_bound;
}
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[RESULT#%d] [HOST#%d] (resend lost work)\n",
result.id, reply.host.id
);
}
retval = result.mark_as_sent(old_server_state);
if (retval==ERR_DB_NOT_FOUND) {
log_messages.printf(
SCHED_MSG_LOG::MSG_CRITICAL,
"[RESULT#%d] [HOST#%d]: CAN'T SEND, already sent to another host\n",
result.id, reply.host.id
);
} else if (retval) {
log_messages.printf(
SCHED_MSG_LOG::MSG_CRITICAL,
"add_result_to_reply: can't update result: %d\n", retval
);
}
if (retval) return retval;
wu_seconds_filled = estimate_wallclock_duration(wu, request, reply);
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"[HOST#%d] Sending [RESULT#%d %s] (fills %.2f seconds)\n",
reply.host.id, result.id, result.name, wu_seconds_filled
);
retval = update_wu_transition_time(wu, result.report_deadline);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::MSG_CRITICAL,
"add_result_to_reply: can't update WU transition time: %d\n",
retval
);
return retval;
}
// The following overwrites the result's xml_doc field.
// But that's OK cuz we're done with DB updates
//
retval = insert_name_tags(result, wu);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::MSG_CRITICAL,
"add_result_to_reply: can't insert name tags: %d\n",
retval
);
return retval;
}
retval = insert_deadline_tag(result);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::MSG_CRITICAL,
"add_result_to_reply: can't insert deadline tag: %d\n", retval
);
return retval;
}
if (avp) {
PLATFORM* pp = ssp->lookup_platform_id(avp->platformid);
strcpy(result.platform_name, pp->name);
result.version_num = avp->version_num;
}
reply.insert_result(result);
reply.wreq.seconds_to_fill -= wu_seconds_filled;
request.estimated_delay += wu_seconds_filled/reply.host.p_ncpus;
reply.wreq.nresults++;
reply.wreq.nresults_on_host++;
if (!resent_result) reply.host.nresults_today++;
// add this result to workload for simulation
//
if (config.workload_sim && request.have_other_results_list) {
double est_cpu = estimate_cpu_duration(wu, reply);
IP_RESULT ipr ("", time(0)+wu.delay_bound, est_cpu);
request.ip_results.push_back(ipr);
}
// mark job as done if debugging flag is set
//
if (mark_jobs_done) {
DB_WORKUNIT dbwu;
char buf[256];
sprintf(buf,
"server_state=%d outcome=%d",
RESULT_SERVER_STATE_OVER, RESULT_OUTCOME_SUCCESS
);
result.update_field(buf);
dbwu.id = wu.id;
sprintf(buf, "transition_time=%d", time(0));
dbwu.update_field(buf);
}
return 0;
}
void send_work(
SCHEDULER_REQUEST& sreq, SCHEDULER_REPLY& reply, PLATFORM_LIST& platforms,
SCHED_SHMEM& ss
) {
char helpful[512];
reply.wreq.disk_available = max_allowable_disk(sreq, reply);
reply.wreq.core_client_version = sreq.core_client_major_version*100
+ sreq.core_client_minor_version;
if (hr_unknown_platform(sreq.host)) {
reply.wreq.hr_reject_perm = true;
return;
}
get_host_info(reply); // parse project prefs for app details
reply.wreq.beta_only = false;
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"[HOST#%d] got request for %f seconds of work; available disk %f GB\n",
reply.host.id, sreq.work_req_seconds, reply.wreq.disk_available/1e9
);
if (sreq.work_req_seconds <= 0) return;
reply.wreq.seconds_to_fill = sreq.work_req_seconds;
if (reply.wreq.seconds_to_fill > MAX_SECONDS_TO_SEND) {
reply.wreq.seconds_to_fill = MAX_SECONDS_TO_SEND;
}
if (reply.wreq.seconds_to_fill < MIN_SECONDS_TO_SEND) {
reply.wreq.seconds_to_fill = MIN_SECONDS_TO_SEND;
}
if (config.workload_sim && sreq.have_other_results_list) {
init_ip_results(
sreq.global_prefs.work_buf_min(), reply.host.p_ncpus, sreq.ip_results
);
}
if (config.locality_scheduling) {
reply.wreq.infeasible_only = false;
send_work_locality(sreq, reply, platforms, ss);
} else {
// give top priority to results that require a 'reliable host'
//
if (reply.wreq.host_info.reliable) {
reply.wreq.reliable_only = true;
reply.wreq.infeasible_only = false;
scan_work_array(sreq, reply, platforms, ss);
}
reply.wreq.reliable_only = false;
// give 2nd priority to results for a beta app
// (projects should load beta work with care,
// otherwise your users won't get production work done!
//
if (reply.wreq.host_info.allow_beta_work) {
reply.wreq.beta_only = true;
log_messages.printf(
SCHED_MSG_LOG::MSG_DEBUG,
"[HOST#%d] will accept beta work. Scanning for beta work.\n",
reply.host.id
);
scan_work_array(sreq, reply, platforms, ss);
}
reply.wreq.beta_only = false;
// give next priority to results that were infeasible for some other host
//
reply.wreq.infeasible_only = true;
scan_work_array(sreq, reply, platforms, ss);
reply.wreq.infeasible_only = false;
scan_work_array(sreq, reply, platforms, ss);
}
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"[HOST#%d] Sent %d results [scheduler ran %f seconds]\n",
reply.host.id, reply.wreq.nresults, elapsed_wallclock_time()
);
// if client asked for work and we're not sending any, explain why
//
if (reply.wreq.nresults == 0) {
reply.set_delay(DELAY_NO_WORK_TEMP);
USER_MESSAGE um2("No work sent", "high");
reply.insert_message(um2);
if (reply.wreq.no_app_version) {
USER_MESSAGE um("(there was work for other platforms)", "high");
reply.insert_message(um);
reply.set_delay(DELAY_NO_WORK_PERM);
}
if (reply.wreq.no_allowed_apps_available) {
USER_MESSAGE um(
"(There was work but not for the applications you have allowed. Please check your settings on the website.)",
"high"
);
reply.insert_message(um);
}
if (reply.wreq.disk.insufficient) {
USER_MESSAGE um(
"There was work but you don't have enough disk space allocated.",
"high"
);
reply.insert_message(um);
if (reply.wreq.disk.needed) {
sprintf(helpful,
"An additional %.0f MB is needed.",
reply.wreq.disk.needed/MEGA
);
USER_MESSAGE um2(helpful, "high");
reply.insert_message(um2);
}
}
if (reply.wreq.mem.insufficient) {
double ram, usable_ram;
get_mem_sizes(sreq, reply, ram, usable_ram);
if (reply.wreq.mem.needed > ram) {
sprintf(helpful,
"Your computer has %.0f MB of memory, and %.0f MB is needed",
ram/MEGA, reply.wreq.mem.needed/MEGA
);
} else {
sprintf(helpful,
"Your preferences limit memory usage to %.0f MB, and %.0f MB is needed",
usable_ram/MEGA, reply.wreq.mem.needed/MEGA
);
}
USER_MESSAGE um(helpful, "high");
reply.insert_message(um);
}
if (reply.wreq.speed.insufficient) {
if (reply.wreq.core_client_version>419) {
sprintf(helpful,
"(won't finish in time) "
"Computer on %.1f%% of time, BOINC on %.1f%% of that",
100.0*reply.host.on_frac, 100.0*reply.host.active_frac
);
} else {
sprintf(helpful,
"(won't finish in time) "
"Computer available %.1f%% of time",
100.0*reply.host.on_frac
);
}
USER_MESSAGE um(helpful, "high");
reply.insert_message(um);
}
if (reply.wreq.hr_reject_temp) {
USER_MESSAGE um(
"(there was work but it was committed to other platforms)",
"high"
);
reply.insert_message(um);
}
if (reply.wreq.hr_reject_perm) {
USER_MESSAGE um(
"(your platform is not supported by this project)",
"high"
);
reply.insert_message(um);
}
if (reply.wreq.outdated_core) {
USER_MESSAGE um(
" (your BOINC client is old - please install current version)",
"high"
);
reply.insert_message(um);
reply.set_delay(DELAY_NO_WORK_PERM);
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"Not sending work because client is outdated\n"
);
}
if (reply.wreq.excessive_work_buf) {
USER_MESSAGE um(
"(Your network connection interval is longer than WU deadline)",
"high"
);
reply.insert_message(um);
}
if (reply.wreq.daily_result_quota_exceeded) {
struct tm *rpc_time_tm;
int delay_time;
sprintf(helpful, "(reached daily quota of %d results)", reply.wreq.daily_result_quota);
USER_MESSAGE um(helpful, "high");
reply.insert_message(um);
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"Daily result quota exceeded for host %d\n",
reply.host.id
);
// set delay so host won't return until a random time in
// the first hour of 'the next day'. This is to prevent a
// lot of hosts from flooding the scheduler with requests
// at the same time of day.
rpc_time_tm = localtime((const time_t*)&reply.host.rpc_time);
delay_time = (23 - rpc_time_tm->tm_hour) * 3600 +
(59 - rpc_time_tm->tm_min) * 60 +
(60 - rpc_time_tm->tm_sec) +
(int)(3600*(double)rand()/(double)RAND_MAX);
reply.set_delay(delay_time);
}
if (reply.wreq.cache_size_exceeded) {
sprintf(helpful, "(reached per-host limit of %d tasks)",
config.max_wus_in_progress
);
USER_MESSAGE um(helpful, "high");
reply.insert_message(um);
reply.set_delay(DELAY_NO_WORK_CACHE);
log_messages.printf(
SCHED_MSG_LOG::MSG_NORMAL,
"host %d already has %d result(s) on cache\n",
reply.host.id, reply.wreq.nresults_on_host
);
}
}
}
const char *BOINC_RCSID_32dcd335e7 = "$Id$";