boinc/zip/unzip/unshrink.c

317 lines
11 KiB
C

/*
Copyright (c) 1990-2001 Info-ZIP. All rights reserved.
See the accompanying file LICENSE, version 2000-Apr-09 or later
(the contents of which are also included in unzip.h) for terms of use.
If, for some reason, all these files are missing, the Info-ZIP license
also may be found at: ftp://ftp.info-zip.org/pub/infozip/license.html
*/
/*---------------------------------------------------------------------------
unshrink.c version 1.21 23 Nov 95
NOTE: This code may or may not infringe on the so-called "Welch
patent" owned by Unisys. (From reading the patent, it appears
that a pure LZW decompressor is *not* covered, but this claim has
not been tested in court, and Unisys is reported to believe other-
wise.) It is therefore the responsibility of the user to acquire
whatever license(s) may be required for legal use of this code.
THE INFO-ZIP GROUP DISCLAIMS ALL LIABILITY FOR USE OF THIS CODE
IN VIOLATION OF APPLICABLE PATENT LAW.
Shrinking is basically a dynamic LZW algorithm with allowed code sizes of
up to 13 bits; in addition, there is provision for partial clearing of
leaf nodes. PKWARE uses the special code 256 (decimal) to indicate a
change in code size or a partial clear of the code tree: 256,1 for the
former and 256,2 for the latter. [Note that partial clearing can "orphan"
nodes: the parent-to-be can be cleared before its new child is added,
but the child is added anyway (as an orphan, as though the parent still
existed). When the tree fills up to the point where the parent node is
reused, the orphan is effectively "adopted." Versions prior to 1.05 were
affected more due to greater use of pointers (to children and siblings
as well as parents).]
This replacement version of unshrink.c was written from scratch. It is
based only on the algorithms described in Mark Nelson's _The Data Compres-
sion Book_ and in Terry Welch's original paper in the June 1984 issue of
IEEE _Computer_; no existing source code, including any in Nelson's book,
was used.
Memory requirements have been reduced in this version and are now no more
than the original Sam Smith code. This is still larger than any of the
other algorithms: at a minimum, 8K+8K+16K (stack+values+parents) assuming
16-bit short ints, and this does not even include the output buffer (the
other algorithms leave the uncompressed data in the work area, typically
called slide[]). For machines with a 64KB data space this is a problem,
particularly when text conversion is required and line endings have more
than one character. UnZip's solution is to use two roughly equal halves
of outbuf for the ASCII conversion in such a case; the "unshrink" argument
to flush() signals that this is the case.
For large-memory machines, a second outbuf is allocated for translations,
but only if unshrinking and only if translations are required.
| binary mode | text mode
---------------------------------------------------
big mem | big outbuf | big outbuf + big outbuf2 <- malloc'd here
small mem | small outbuf | half + half small outbuf
Copyright 1994, 1995 Greg Roelofs. See the accompanying file "COPYING"
in UnZip 5.20 (or later) source or binary distributions.
---------------------------------------------------------------------------*/
#define __UNSHRINK_C /* identifies this source module */
#define UNZIP_INTERNAL
#include "unzip.h" /* defines LZW_CLEAN by default */
#ifndef LZW_CLEAN
static void partial_clear OF((__GPRO));
#ifdef DEBUG
# define OUTDBG(c) \
if ((c)<32 || (c)>=127) fprintf(stderr,"\\x%02x",(c)); else putc((c),stderr);
#else
# define OUTDBG(c)
#endif
/* HSIZE is defined as 2^13 (8192) in unzip.h */
#define BOGUSCODE 256
#define FLAG_BITS parent /* upper bits of parent[] used as flag bits */
#define CODE_MASK (HSIZE - 1) /* 0x1fff (lower bits are parent's index) */
#define FREE_CODE HSIZE /* 0x2000 (code is unused or was cleared) */
#define HAS_CHILD (HSIZE << 1) /* 0x4000 (code has a child--do not clear) */
#define parent G.area.shrink.Parent
#define Value G.area.shrink.value /* "value" conflicts with Pyramid ioctl.h */
#define stack G.area.shrink.Stack
/***********************/
/* Function unshrink() */
/***********************/
int unshrink(__G)
__GDEF
{
int offset = (HSIZE - 1);
uch *stacktop = stack + offset;
register uch *newstr;
int codesize=9, len, KwKwK, error;
shrint code, oldcode, freecode, curcode;
shrint lastfreecode;
unsigned int outbufsiz;
#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
/* Normally realbuf and outbuf will be the same. However, if the data
* are redirected to a large memory buffer, realbuf will point to the
* new location while outbuf will remain pointing to the malloc'd
* memory buffer. */
uch *realbuf = G.outbuf;
#else
# define realbuf G.outbuf
#endif
/*---------------------------------------------------------------------------
Initialize various variables.
---------------------------------------------------------------------------*/
lastfreecode = BOGUSCODE;
#ifndef VMS /* VMS uses its own buffer scheme for textmode flush(). */
#ifndef SMALL_MEM
/* non-memory-limited machines: allocate second (large) buffer for
* textmode conversion in flush(), but only if needed */
if (G.pInfo->textmode && !G.outbuf2 &&
(G.outbuf2 = (uch *)malloc(TRANSBUFSIZ)) == (uch *)NULL)
return PK_MEM3;
#endif
#endif /* !VMS */
for (code = 0; code < BOGUSCODE; ++code) {
Value[code] = (uch)code;
parent[code] = BOGUSCODE;
}
for (code = BOGUSCODE+1; code < HSIZE; ++code)
parent[code] = FREE_CODE;
#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
if (G.redirect_slide) { /* use normal outbuf unless we're a DLL routine */
realbuf = G.redirect_buffer;
outbufsiz = (unsigned)G.redirect_size;
} else
#endif
#ifdef DLL
if (G.pInfo->textmode && !G.redirect_data)
#else
if (G.pInfo->textmode)
#endif
outbufsiz = RAWBUFSIZ;
else
outbufsiz = OUTBUFSIZ;
G.outptr = realbuf;
G.outcnt = 0L;
/*---------------------------------------------------------------------------
Get and output first code, then loop over remaining ones.
---------------------------------------------------------------------------*/
READBITS(codesize, oldcode)
if (!G.zipeof) {
*G.outptr++ = (uch)oldcode;
OUTDBG((uch)oldcode)
++G.outcnt;
}
do {
READBITS(codesize, code)
if (G.zipeof)
break;
if (code == BOGUSCODE) { /* possible to have consecutive escapes? */
READBITS(codesize, code)
if (code == 1) {
++codesize;
Trace((stderr, " (codesize now %d bits)\n", codesize));
} else if (code == 2) {
Trace((stderr, " (partial clear code)\n"));
partial_clear(__G); /* clear leafs (nodes with no children) */
Trace((stderr, " (done with partial clear)\n"));
lastfreecode = BOGUSCODE; /* reset start of free-node search */
}
continue;
}
/*-----------------------------------------------------------------------
Translate code: traverse tree from leaf back to root.
-----------------------------------------------------------------------*/
newstr = stacktop;
curcode = code;
if (parent[curcode] == FREE_CODE) {
/* or (FLAG_BITS[curcode] & FREE_CODE)? */
KwKwK = TRUE;
Trace((stderr, " (found a KwKwK code %d; oldcode = %d)\n", code,
oldcode));
--newstr; /* last character will be same as first character */
curcode = oldcode;
} else
KwKwK = FALSE;
do {
*newstr-- = Value[curcode];
curcode = (shrint)(parent[curcode] & CODE_MASK);
} while (curcode != BOGUSCODE);
len = (int)(stacktop - newstr++);
if (KwKwK)
*stacktop = *newstr;
/*-----------------------------------------------------------------------
Write expanded string in reverse order to output buffer.
-----------------------------------------------------------------------*/
Trace((stderr, "code %4d; oldcode %4d; char %3d (%c); string [", code,
oldcode, (int)(*newstr), (*newstr<32 || *newstr>=127)? ' ':*newstr));
{
register uch *p;
for (p = newstr; p < newstr+len; ++p) {
*G.outptr++ = *p;
OUTDBG(*p)
if (++G.outcnt == outbufsiz) {
Trace((stderr, "doing flush(), outcnt = %lu\n", G.outcnt));
if ((error = flush(__G__ realbuf, G.outcnt, TRUE)) != 0) {
Trace((stderr, "unshrink: flush() error (%d)\n",
error));
return error;
}
G.outptr = realbuf;
G.outcnt = 0L;
Trace((stderr, "done with flush()\n"));
}
}
}
/*-----------------------------------------------------------------------
Add new leaf (first character of newstr) to tree as child of oldcode.
-----------------------------------------------------------------------*/
/* search for freecode */
freecode = (shrint)(lastfreecode + 1);
/* add if-test before loop for speed? */
while (parent[freecode] != FREE_CODE)
++freecode;
lastfreecode = freecode;
Trace((stderr, "]; newcode %d\n", freecode));
Value[freecode] = *newstr;
parent[freecode] = oldcode;
oldcode = code;
} while (!G.zipeof);
/*---------------------------------------------------------------------------
Flush any remaining data and return to sender...
---------------------------------------------------------------------------*/
if (G.outcnt > 0L) {
Trace((stderr, "doing final flush(), outcnt = %lu\n", G.outcnt));
if ((error = flush(__G__ realbuf, G.outcnt, TRUE)) != 0) {
Trace((stderr, "unshrink: flush() error (%d)\n", error));
return error;
}
Trace((stderr, "done with flush()\n"));
}
return PK_OK;
} /* end function unshrink() */
/****************************/
/* Function partial_clear() */ /* no longer recursive... */
/****************************/
static void partial_clear(__G)
__GDEF
{
register shrint code;
/* clear all nodes which have no children (i.e., leaf nodes only) */
/* first loop: mark each parent as such */
for (code = BOGUSCODE+1; code < HSIZE; ++code) {
register shrint cparent = (shrint)(parent[code] & CODE_MASK);
if (cparent > BOGUSCODE && cparent != FREE_CODE)
FLAG_BITS[cparent] |= HAS_CHILD; /* set parent's child-bit */
}
/* second loop: clear all nodes *not* marked as parents; reset flag bits */
for (code = BOGUSCODE+1; code < HSIZE; ++code) {
if (FLAG_BITS[code] & HAS_CHILD) /* just clear child-bit */
FLAG_BITS[code] &= ~HAS_CHILD;
else { /* leaf: lose it */
Trace((stderr, "%d\n", code));
parent[code] = FREE_CODE;
}
}
return;
}
#endif /* !LZW_CLEAN */
const char *BOINC_RCSID_c6ab4f7f3b = "$Id$";