boinc/samples/atiopencl/atiopencl.cpp

1141 lines
36 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
//
// This program serves as both
// - An example BOINC-ATIOpenCL application, illustrating the use of the BOINC API
// and ATIStream OpenCL API.
// - A program for testing various features of BOINC.
//
// The program reads the input nxn matrix from the "input" file, inverts the
// matrix NUM_ITERATIONS times and write to "output" file.
//
// command line options
// -run_slow: sleep 1 second after each character
// -cpu_time N: use about N CPU seconds after copying files
// -early_exit: exit(10) after 30 chars
// -early_crash: crash after 30 chars
//
// See http://boinc.berkeley.edu/trac/wiki/GPUApp for any compiling issues
// Contributor: Tuan Le (tuanle86@berkeley.edu)
#include "atiopencl.hpp"
using std::string;
int main(int argc, char * argv[]) {
int i, retval, lastInversion=0, checkpointExists=0, matrixSize=0;
double fd;
char input_path[512], output_path[512], chkpt_path[512], buf[256];
MFILE out;
FILE* state, *infile;
generate_random_input_file(MATRIX_SIZE); //call this if you don't want to
//construct the input file manually
for (i=0; i<argc; i++) {
if (!strcmp(argv[i], "-early_exit")) early_exit = true;
if (!strcmp(argv[i], "-early_crash")) early_crash = true;
if (!strcmp(argv[i], "-early_sleep")) early_sleep = true;
if (!strcmp(argv[i], "-run_slow")) run_slow = true;
if (!strcmp(argv[i], "-cpu_time")) {
cpu_time = atof(argv[++i]);
}
}
retval = boinc_init();
if (retval) {
fprintf(stderr, "%s boinc_init returned %d\n",
boinc_msg_prefix(buf), retval );
exit(retval);
}
// open the input file (resolve logical name first)
//
boinc_resolve_filename(INPUT_FILENAME, input_path, sizeof(input_path));
infile = boinc_fopen(input_path, "r");
if (!infile) {
fprintf(stderr,
"%s Couldn't find input file in boinc\\win_build, resolved name %s.\n",
boinc_msg_prefix(buf), input_path
);
getchar();
exit(-1);
}
boinc_resolve_filename(OUTPUT_FILENAME, output_path, sizeof(output_path));
// See if there's a valid checkpoint file.
// If so retrieve the current matrix and inversion number
//
boinc_resolve_filename(CHECKPOINT_FILE, chkpt_path, sizeof(chkpt_path));
state = boinc_fopen(chkpt_path, "r");
if (state) {
printf("Checkpoint file is detected. Read from checkpoint file ... \n");
checkpointExists=fscanf(state, "%d", &lastInversion);
if (checkpointExists == 1) {
isStateFileInUse=true;
printf("Last inversion # is : %d\n",lastInversion);
fscanf(state,"%d",&matrixSize);
width=height=matrixSize;
printf("Initialize host ....\n");
initialize_host(state);
}
fclose(state);
} else {
printf("There's no valid checkpoint file!\n");
}
retval = out.open(output_path, "wb");
if (retval) {
fprintf(stderr, "%s APP: matrix_inversion output open failed:\n",
boinc_msg_prefix(buf)
);
fprintf(stderr, "%s resolved name %s, retval %d\n",
boinc_msg_prefix(buf), output_path, retval
);
perror("open");
exit(1);
}
#ifdef APP_GRAPHICS
// create shared mem segment for graphics, and arrange to update it
//
shmem = (UC_SHMEM*)boinc_graphics_make_shmem("matrix_inversion", sizeof(UC_SHMEM));
if (!shmem) {
fprintf(stderr, "%s failed to create shared mem segment\n",
boinc_msg_prefix(buf)
);
}
update_shmem();
boinc_register_timer_callback(update_shmem);
#endif
if (checkpointExists != 1) { //checkpoint file is not found.
matrixSize=get_matrix_size(infile);
printf("Matrix Size: width = height = %d\n",matrixSize);
width=height=matrixSize;
// Initialize Host application
printf("Initialize host ....\n");
if (initialize_host(infile)==1) {
return 1;
}
out.printf("\n----------------- Before being inversed ----------------\n\n");
printf("Computation is running ... Inverse the matrix %d times. Start at inversion #1\n",
NUM_ITERATIONS);
} else {
out.printf("\n----------------- Last checkpointed inversion #%d ----------------\n\n",
lastInversion);
printf("Computation is resumed ... Inverse the matrix %d more times. Start at inversion #%d\n",
NUM_ITERATIONS-lastInversion,lastInversion+1);
}
// Initialize OpenCL resources
if (initialize_cl()==1) {
return 1;
}
print_to_file(&out,input,matrixSize);
for (int i=lastInversion+1;i<=NUM_ITERATIONS;++i) {
//the invert function will trigger kernel calls.
invert(input,output,matrixSize);
printf("Finish inversion #%d\n",i);
for (int j=0;j<matrixSize*matrixSize;++j) {
input[j]=output[j]; //change the input for the next iteration
}
if (run_slow) {
boinc_sleep(1.);
}
if (early_exit && i>30) {
exit(-10);
}
if (early_crash && i>30) {
boinc_crash();
}
if (early_sleep && i>30) {
g_sleep = true;
while (1) boinc_sleep(1);
}
if (boinc_time_to_checkpoint()) {
printf("Perform checkpointing at inversion # %d\n",i);
//we'll need to write the current matrix to the state file.
retval = do_checkpoint(out, i, input, matrixSize);
if (retval) {
fprintf(stderr, "%s APP: matrix_inversion checkpoint failed %d\n",
boinc_msg_prefix(buf), retval
);
exit(retval);
}
boinc_checkpoint_completed();
}
fd = i/NUM_ITERATIONS;
if (cpu_time) fd /= 2;
boinc_fraction_done(fd);
}
out.printf("\n\n----------------- Final inversion #%d ----------------\n\n",
NUM_ITERATIONS);
print_to_file(&out,output,matrixSize);
retval = out.flush(); //force the output file to be closed.
if (retval) {
fprintf(stderr, "%s APP: matrix_inversion flush failed %d\n",
boinc_msg_prefix(buf), retval
);
exit(1);
}
// Releases OpenCL resources
if (cleanup_cl()==1) {
printf("Error!");
return 1;
}
// Release host resources
cleanup_host();
// burn up some CPU time if needed
//
if (cpu_time) {
printf("\nBurning up some CPU time ... \n");
double start = dtime();
for (int i=0; ; i++) {
double e = dtime()-start;
if (e > cpu_time) break;
fd = .5 + .5*(e/cpu_time);
boinc_fraction_done(fd);
if (boinc_time_to_checkpoint()) {
retval = do_checkpoint(out, NUM_ITERATIONS, input, matrixSize);
if (retval) {
fprintf(stderr, "%s APP: maxtrix_inversion checkpoint failed %d\n",
boinc_msg_prefix(buf), retval
);
exit(1);
}
boinc_checkpoint_completed();
}
comp_result = do_a_giga_flop(i);
}
}
boinc_fraction_done(1);
#ifdef APP_GRAPHICS
update_shmem();
#endif
printf("\nDone! Please press ENTER to exit. ");
getchar();
boinc_finish(0);
}
#ifdef _WIN32
int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst, LPSTR Args, int WinMode) {
LPSTR command_line;
char* argv[100];
int argc;
command_line = GetCommandLine();
argc = parse_command_line( command_line, argv );
return main(argc, argv);
}
#endif
/*** BOINC FUNCTION DEFINITIONS ***/
/* Do a billion floating-point ops */
static double do_a_giga_flop(int foo) {
double x = 3.14159*foo;
int i;
for (i=0; i<500000000; i++) {
x += 5.12313123;
x *= 0.5398394834;
}
return x;
}
/* Save the computation state into checkpoint file */
int do_checkpoint(MFILE& mf, int n, cl_float *input, int matrixSize) {
int retval;
string resolved_name;
FILE* f = fopen("temp", "w");
if (!f) return 1;
fprintf(f, "%d", n); //write inversion number
fprintf(f, " ");
fprintf(f, "%d", matrixSize); //write matrixSize
fprintf(f, " ");
for (int i=0;i<matrixSize*matrixSize;++i) {
fprintf(f, " ");
fprintf(f, "%f", input[i]);
}
fclose(f);
retval = mf.flush();
if (retval) return retval;
boinc_resolve_filename_s(CHECKPOINT_FILE, resolved_name);
retval = boinc_rename("temp", resolved_name.c_str());
if (retval) return retval;
return 0; //return 0 to indicate success.
}
/*** FUNCTION DEFINITIONS ***/
/* Create an input file filled with random data of type cl_float. */
void generate_random_input_file(int n) {
FILE *infile;
infile=fopen(INPUT_FILENAME,"w");
cl_float *input = (cl_float *)malloc(sizeof(cl_float)*(n*n));
srand(n);
for( int i = 0; i < n; i++ ) {
for (int j = 0; j < n; j++) {
input[i*n+j] = 2.0*(rand()%32768)/32768.0 - 1.0;
}
input[i*n+i] += sqrt((float)n);
}
int j=0;
for (int i=0;i<n*n;++i) {
fprintf(infile,"%15f",input[i]);
if (j+1==n) {
fprintf(infile,"\n");
j=0;
} else {
++j;
}
}
fclose(infile);
}
/*
* Parse the input file and determine the size of the matrix.
* This is an nxn matrix. Note: if width<> height, the matrix is
* non-invertible.
*/
int get_matrix_size(FILE *infile) {
int w=0;
char c;
fseek(infile,0,SEEK_SET);
while (true) {
do {
c=fgetc(infile);
if (c == EOF || c == '\n') {
goto exitLoop;
}
} while (isspace(c));
if (isdigit(c) || c=='.' || c=='-') {
++w;
}
do {
c=fgetc(infile);
if (c == EOF || c == '\n') {
goto exitLoop;
}
} while (isdigit(c) || c=='.' || c=='-');
if (c==EOF || c == '\n') {
break;
}
}
exitLoop:
return w;
}
/*
* \brief Host Initialization
* Allocate and initialize memory
* on the host. Print input array.
*/
int initialize_host(FILE *infile) {
input = NULL;
output = NULL;
if (width!=height) {
printf("Error: non nxn matrix cannot be invertiable.\n");
return 1;
}
/////////////////////////////////////////////////////////////////
// Allocate and initialize memory used by host
/////////////////////////////////////////////////////////////////
cl_uint sizeInBytes = width * height * sizeof(cl_float);
input = (cl_float *) malloc(sizeInBytes);
if (input == NULL) {
printf("Error: Failed to allocate input memory on host\n");
return 1;
}
output = (cl_float *) malloc(sizeInBytes);
if(output == NULL) {
printf("Error: Failed to allocate output memory on host\n");
return 1;
}
//fillRandom(input,width,height);
fetch_elements_into_host_memory(infile,input);
return 0;
}
/*
* Read the float values from input file into "input" array.
*/
void fetch_elements_into_host_memory(FILE *infile, cl_float *input) {
float num=0;
int i=0;
if (!isStateFileInUse) {
fseek(infile,0,SEEK_SET);
}
while (fscanf(infile,"%f",&num)==1) {
input[i]=num;
++i;
}
}
/*
* Converts the contents of a file into a string
*/
char * convert_to_string(const char *fileName) {
int count=0;
char *s;
char c;
int i=0;
// look for "atiopencl_kernels.cl" in "boinc/samples/atiopencl/debug" or
// in "boinc/samples/atiopencl/release". Note that "atiopencl_kernels.cl"
// is automatically copied to these directories along the building process.
FILE *infile=fopen(fileName,"r");
if (!infile) { //not found. This typically happens on Linux or Mac.
//look for "atiopencl_kernels.cl" in "boinc/sample/atiopencl/" instead.
infile = fopen(KERNELS_FILEPATH,"r");
if (!infile) {
printf("File open Error!");
exit(0);
}
}
fseek(infile,0,SEEK_SET);
while (fgetc(infile)!=EOF) count++;
s=(char *) malloc(sizeof(char)*(count+1)); //add 1 for string terminator.
fseek(infile,0,SEEK_SET);
while ((c=fgetc(infile))!=EOF) {
s[i++]=c;
}
s[i]='\0';
return s;
}
/*
* \brief OpenCL related initialization
* Create Context, Device list, Command Queue
* Load CL file, compile, link CL source
* Build program and kernel objects
*/
// Note: OpenCL memory buffer objects will be created in invert
// function before kernel calls are made.
int initialize_cl(void) {
cl_int status = 0;
size_t deviceListSize;
/*
* Have a look at the available platforms and pick either
* the AMD one if available or a reasonable default.
*/
cl_uint numPlatforms;
cl_platform_id platform = NULL;
status = clGetPlatformIDs(0, NULL, &numPlatforms);
if(status != CL_SUCCESS) {
printf("Error: Getting Platforms. (clGetPlatformsIDs)\n");
return 1;
}
if (numPlatforms > 0) {
cl_platform_id* platforms = (cl_platform_id *)
malloc(sizeof(cl_platform_id)*numPlatforms);
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
if (status != CL_SUCCESS) {
printf("Error: Getting Platform Ids. (clGetPlatformsIDs)\n");
return 1;
}
for (unsigned int i=0; i < numPlatforms; ++i) {
char pbuff[100];
status = clGetPlatformInfo(platforms[i],
CL_PLATFORM_VENDOR,
sizeof(pbuff),
pbuff,
NULL);
if (status != CL_SUCCESS) {
printf("Error: Getting Platform Info.(clGetPlatformInfo)\n");
return 1;
}
platform = platforms[i];
if (!strcmp(pbuff, "Advanced Micro Devices, Inc.")) {
break;
}
}
delete platforms;
}
if(NULL == platform) {
printf("NULL platform found so Exiting Application.");
return 1;
}
/*
* If we could find our platform, use it. Otherwise use just available platform.
*/
cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM,
(cl_context_properties)platform,
0
};
/////////////////////////////////////////////////////////////////
// Create an OpenCL context
/////////////////////////////////////////////////////////////////
context = clCreateContextFromType(cps, CL_DEVICE_TYPE_ALL, NULL, NULL, &status);
if (status != CL_SUCCESS) {
printf("Error: Creating Context. (clCreateContextFromType)\n");
return 1;
}
/* First, get the size of device list data */
status = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceListSize);
if (status != CL_SUCCESS) {
printf("Error: Getting Context Info (device list size, clGetContextInfo)\n");
return 1;
}
/////////////////////////////////////////////////////////////////
// Detect OpenCL devices
/////////////////////////////////////////////////////////////////
devices = (cl_device_id *)malloc(deviceListSize);
if (devices == 0) {
printf("Error: No devices found.\n");
return 1;
}
/* Now, get the device list data */
status = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceListSize, devices, NULL);
if (status != CL_SUCCESS) {
printf("Error: Getting Context Info (device list, clGetContextInfo)\n");
return 1;
}
/////////////////////////////////////////////////////////////////
// Create an OpenCL command queue
/////////////////////////////////////////////////////////////////
commandQueue = clCreateCommandQueue(context, devices[0], 0, &status);
if(status != CL_SUCCESS) {
printf("Creating Command Queue. (clCreateCommandQueue)\n");
return 1;
}
/////////////////////////////////////////////////////////////////
// Load CL file, build CL program object, create CL kernel object
/////////////////////////////////////////////////////////////////
source = convert_to_string(KERNELS_FILENAME);
size_t sourceSize[] = { strlen(source) };
program = clCreateProgramWithSource(context, 1, &source, sourceSize, &status);
if (status != CL_SUCCESS) {
printf("Error: Loading Binary into cl_program (clCreateProgramWithBinary)\n");
return 1;
}
/* create a cl program executable for all the devices specified */
status = clBuildProgram(program, 1, devices, NULL, NULL, NULL);
if (status != CL_SUCCESS) {
printf("Error: Building Program (clBuildProgram)\n");
return 1;
}
/* get a kernel object handle for a kernel with the given name */
GEStep1A_kernel = clCreateKernel(program, "GEStep1A", &status);
if (status != CL_SUCCESS) {
printf("Error: clCreateKernel (GEStep1A)\n");
return 1;
}
GEStep2_kernel = clCreateKernel(program, "GEStep2", &status);
if (status != CL_SUCCESS) {
printf("Error: clCreateKernel (GEStep2)\n");
return 1;
}
GEStep3_kernel = clCreateKernel(program, "GEStep3", &status);
if (status != CL_SUCCESS) {
printf("Error: clCreateKernel (GEStep3)\n");
return 1;
}
return 0;
}
/*
* \brief Release OpenCL resources (Context, Memory etc.)
*/
int cleanup_cl(void) {
cl_int status;
status = clReleaseKernel(GEStep1A_kernel);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseKernel (GEStep1A_kernel)\n");
return 1;
}
status = clReleaseKernel(GEStep2_kernel);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseKernel (GEStep2_kernel)\n");
return 1;
}
status = clReleaseKernel(GEStep3_kernel);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseKernel (GEStep3_kernel)\n");
return 1;
}
status = clReleaseProgram(program);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseProgram\n");
return 1;
}
status = clReleaseMemObject(inputBuffer);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseMemObject (inputBuffer)\n");
return 1;
}
status = clReleaseCommandQueue(commandQueue);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseCommandQueue\n");
return 1;
}
status = clReleaseContext(context);
if (status != CL_SUCCESS) {
printf("Error: In clReleaseContext\n");
return 1;
}
return 0;
}
/*
* \brief Releases program's resources
*/
void cleanup_host(void) {
if (input != NULL) {
free(input);
input = NULL;
}
if (output != NULL) {
free(output);
output = NULL;
}
if (devices != NULL) {
free(devices);
devices = NULL;
}
if (source != NULL) {
free((char *)source);
source = NULL;
}
}
/*
* Write the result to output file
*/
void print_to_file(MFILE *out, float *h_odata, int n) {
int count=0;
int move=0;
int num_elements=n*n;
while (num_elements>0) {
out->printf("%15f ",h_odata[move]);
++count;
++move;
if (count==n) {
out->printf("\n");
count=0;
}
--num_elements;
}
}
/*
* Check if the device is able to support the requested number of work items.
*/
int check_device_capability(size_t *globalThreads, size_t *localThreads) {
cl_int status;
cl_uint maxDims;
size_t maxWorkGroupSize;
size_t maxWorkItemSizes[3];
/**
* Query device capabilities. Maximum
* work item matrixSizes and the maximmum
* work item sizes
*/
status = clGetDeviceInfo(devices[0],
CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(size_t),
(void*)&maxWorkGroupSize,
NULL);
if (status != CL_SUCCESS) {
printf("Error: Getting Device Info. (clGetDeviceInfo)\n");
return 1;
}
status = clGetDeviceInfo(devices[0],
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
sizeof(cl_uint),
(void*)&maxDims,
NULL);
if(status != CL_SUCCESS) {
printf("Error: Getting Device Info. (clGetDeviceInfo)\n");
return 1;
}
status = clGetDeviceInfo(devices[0],
CL_DEVICE_MAX_WORK_ITEM_SIZES,
sizeof(size_t)*maxDims,
(void*)maxWorkItemSizes,
NULL);
if (status != CL_SUCCESS) {
printf("Error: Getting Device Info. (clGetDeviceInfo)\n");
return 1;
}
globalThreads[0] = width*height; // # of threads associated with global matrixSize.
localThreads[0] = 1; // # of threads associated with local matrixSize.
/*if (globalThreads[0] > maxWorkItemSizes[0] || localThreads[0] > maxWorkGroupSize) {
printf("Unsupported: Device does not support requested number of work items.");
return 1;
}*/
return 0;
}
/*
* \brief Run OpenCL program
*
* Bind host variables to kernel arguments
* Run the CL kernel
*/
int run_GEStep1A_kernel(cl_float * AI, int i, int n2, int lda2) {
cl_int status;
size_t globalThreads[1]; //1 matrixSize
size_t localThreads[1]; //1 matrixSize
cl_event events[2];
if (check_device_capability(globalThreads,localThreads) == 1) {
return 1;
}
/*
* the input array to the kernel. This array will eventually be modified
* to the inverted array.
*/
status = clSetKernelArg(GEStep1A_kernel, 0, sizeof(cl_mem), (void *)&inputBuffer);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (input)\n");
return 1;
}
/*i*/
status = clSetKernelArg(GEStep1A_kernel, 1, sizeof(int), (void *)&i);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (i)\n");
return 1;
}
/*n2*/
status = clSetKernelArg(GEStep1A_kernel, 2, sizeof(int), (void *)&n2);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (n2)\n");
return 1;
}
/*lda2*/
status = clSetKernelArg(GEStep1A_kernel, 3, sizeof(int), (void *)&lda2);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (lda2)\n");
return 1;
}
/*
* Enqueue a kernel run call.
*/
status = clEnqueueNDRangeKernel(commandQueue,
GEStep1A_kernel,
1,
NULL,
globalThreads,
localThreads,
0,
NULL,
&events[0]);
if (status != CL_SUCCESS) {
printf("Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)\n");
return 1;
}
/* wait for the kernel call to finish execution */
status = clWaitForEvents(1, &events[0]);
if (status != CL_SUCCESS) {
printf("Error: Waiting for kernel run to finish. (clWaitForEvents)\n");
return 1;
}
status = clReleaseEvent(events[0]);
if (status != CL_SUCCESS) {
printf("Error: Release event object. (clReleaseEvent)\n");
return 1;
}
/* Enqueue readBuffer*/ //Note: we are reading back from inputBuffer since AI is modified directly in kernel
status = clEnqueueReadBuffer(commandQueue,
inputBuffer,
CL_TRUE,
0,
width * sizeof(cl_uint),
AI,
0,
NULL,
&events[1]);
if(status != CL_SUCCESS) {
printf("Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)\n");
return 1;
}
/* Wait for the read buffer to finish execution */
status = clWaitForEvents(1, &events[1]);
if (status != CL_SUCCESS) {
printf("Error: Waiting for read buffer call to finish. (clWaitForEvents)\n");
return 1;
}
status = clReleaseEvent(events[1]);
if (status != CL_SUCCESS) {
printf("Error: Release event object. (clReleaseEvent)\n");
return 1;
}
return 0;
}
int run_GEStep2_kernel(cl_float * AI, cl_float diag, int i, int n2, int lda2) {
cl_int status;
size_t globalThreads[1]; //1 matrixSize
size_t localThreads[1]; //1 matrixSize
cl_event events[2];
if (check_device_capability(globalThreads,localThreads) == 1) {
return 1;
}
/*
* the input array to the kernel. This array will eventually be modified
* to the inverted array.
*/
status = clSetKernelArg(GEStep2_kernel, 0, sizeof(cl_mem), (void *)&inputBuffer);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (AI)\n");
return 1;
}
/*diag*/
status = clSetKernelArg(GEStep2_kernel, 1, sizeof(cl_float), (void *)&diag);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (diag)\n");
return 1;
}
/*i*/
status = clSetKernelArg(GEStep2_kernel, 2, sizeof(int), (void *)&i);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (i)\n");
return 1;
}
/*n2*/
status = clSetKernelArg(GEStep2_kernel, 3, sizeof(int), (void *)&n2);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (n2)\n");
return 1;
}
/*lda2*/
status = clSetKernelArg(GEStep2_kernel, 4, sizeof(int), (void *)&lda2);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (lda2)\n");
return 1;
}
/*
* Enqueue a kernel run call.
*/
status = clEnqueueNDRangeKernel(commandQueue,
GEStep2_kernel,
1,
NULL,
globalThreads,
localThreads,
0,
NULL,
&events[0]);
if (status != CL_SUCCESS) {
printf("Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)\n");
return 1;
}
/* wait for the kernel call to finish execution */
status = clWaitForEvents(1, &events[0]);
if (status != CL_SUCCESS) {
printf("Error: Waiting for kernel run to finish. (clWaitForEvents)\n");
return 1;
}
status = clReleaseEvent(events[0]);
if (status != CL_SUCCESS) {
printf("Error: Release event object. (clReleaseEvent)\n");
return 1;
}
/* Enqueue readBuffer*/
//Note: we are reading back from inputBuffer since AI is modified directly in kernel
status = clEnqueueReadBuffer(commandQueue,
inputBuffer,
CL_TRUE,
0,
width * sizeof(cl_uint),
AI,
0,
NULL,
&events[1]);
if (status != CL_SUCCESS) {
printf("Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)\n");
return 1;
}
/* Wait for the read buffer to finish execution */
status = clWaitForEvents(1, &events[1]);
if (status != CL_SUCCESS) {
printf("Error: Waiting for read buffer call to finish. (clWaitForEvents)\n");
return 1;
}
status = clReleaseEvent(events[1]);
if (status != CL_SUCCESS) {
printf("Error: Release event object. (clReleaseEvent)\n");
return 1;
}
return 0;
}
int run_GEStep3_kernel(cl_float * AI, int i, int n2, int lda2) {
cl_int status;
size_t globalThreads[1]; //1 matrixSize
size_t localThreads[1]; //1 matrixSize
cl_event events[2];
if (check_device_capability(globalThreads,localThreads) == 1) {
return 1;
}
/*
* The input array to the kernel. This array will eventually be modified
* to the inverted array.
*/
status = clSetKernelArg(GEStep3_kernel, 0, sizeof(cl_mem), (void *)&inputBuffer);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (input)\n");
return 1;
}
/*i*/
status = clSetKernelArg(GEStep3_kernel, 1, sizeof(int), (void *)&i);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (i)\n");
return 1;
}
/*n2*/
status = clSetKernelArg(GEStep3_kernel, 2, sizeof(int), (void *)&n2);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (n2)\n");
return 1;
}
/*lda2*/
status = clSetKernelArg(GEStep3_kernel, 3, sizeof(int), (void *)&lda2);
if (status != CL_SUCCESS) {
printf("Error: Setting kernel argument. (lda2)\n");
return 1;
}
/*
* Enqueue a kernel run call.
*/
status = clEnqueueNDRangeKernel(commandQueue,
GEStep3_kernel,
1,
NULL,
globalThreads,
localThreads,
0,
NULL,
&events[0]);
if (status != CL_SUCCESS) {
printf("Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)\n");
return 1;
}
/* wait for the kernel call to finish execution */
status = clWaitForEvents(1, &events[0]);
if (status != CL_SUCCESS) {
printf("Error: Waiting for kernel run to finish. (clWaitForEvents)\n");
return 1;
}
status = clReleaseEvent(events[0]);
if (status != CL_SUCCESS) {
printf("Error: Release event object. (clReleaseEvent)\n");
return 1;
}
/* Enqueue readBuffer*/
//Note: we are reading back from inputBuffer since AI is modified directly in kernel
status = clEnqueueReadBuffer(commandQueue,
inputBuffer,
CL_TRUE,
0,
width * sizeof(cl_uint),
AI,
0,
NULL,
&events[1]);
if (status != CL_SUCCESS) {
printf("Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)\n");
return 1;
}
/* Wait for the read buffer to finish execution */
status = clWaitForEvents(1, &events[1]);
if (status != CL_SUCCESS) {
printf("Error: Waiting for read buffer call to finish. (clWaitForEvents)\n");
return 1;
}
status = clReleaseEvent(events[1]);
if(status != CL_SUCCESS) {
printf("Error: Release event object. (clReleaseEvent)\n");
return 1;
}
return 0;
}
void invertge(cl_float * AI_d, int lda, int n) {
int lda2 = lda * 2;
// perform elementary row operations till A in AI becomes identity matrix
for (int i = 0; i < n; i++) {
// execute kernel
run_GEStep1A_kernel(AI_d,i,n*2, lda2);
}
for (int i = n-1; i >= 0; i--) {
cl_float diag = 1.0;
diag=AI_d[i*lda2+i];
// execute kernels
run_GEStep2_kernel(AI_d,diag,i,n*2, lda2);
run_GEStep3_kernel(AI_d,i,n*2, lda2);
}
}
/* inverts nxn matrix input and stores the result in output */
void invert(cl_float * input, cl_float *output, int n) {
fprintf(stderr,"starting inversion n = %d ", n);
volatile clock_t gputime, gputime0;
gputime=clock();
int lda = ((n+15)&~15|16);
cl_float * AI_d = (cl_float *)malloc(sizeof(cl_float)*n*lda*2);
memset(AI_d,0,sizeof(cl_float)*n*lda*2);
for (int i = 0; i < n; i++) {
memcpy(&AI_d[lda*i*2], &input[n*i], sizeof(cl_float)*n);
AI_d[lda*i*2+n+i] = 1;
}
cl_int status;
/////////////////////////////////////////////////////////////////
// Create OpenCL memory buffer
/////////////////////////////////////////////////////////////////
inputBuffer = clCreateBuffer(context,
CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
sizeof(cl_uint) * width * height,
AI_d,
&status);
if (status != CL_SUCCESS) {
printf("Error: clCreateBuffer (inputBuffer)\n");
exit(0);
}
// Note: there's no output buffer. In kernel, AI_d is modified directly.
// Thus, we should read the result back to host from inputBuffer as well.
invertge(AI_d, lda, n);
gputime=clock()-gputime;fprintf(stderr, " %7.1f ms ",gputime/1.e3f);
fprintf(stderr, " %7.2f Gflops", 1e-3*(3.0)*n*n*n/3.0/gputime);
#ifdef VERIFY
// let's verify that
REAL error=0.0;
// multiply inverse*xcopy, should be Identity matrix
for (int k = 0; k < n; k++) {
for (int j = 0; j < n; j++) {
REAL sum = 0;
for (int i = 0; i < n; i++) {
sum += AI[j*lda*2+n+i]*A[i*n+k];
}
if (j!=k) {
error += sum * sum;
} else {
error += (1.0-sum) * (1.0-sum);
}
}
}
fprintf(stderr, " %6.2f SSE", error);
#endif
//copy the result to output
for (int i = 0; i < n; i++) {
memcpy(&output[n*i], &AI_d[lda*i*2+n], sizeof(cl_float)*n);
}
free(AI_d);
fprintf(stderr," done!\n");
}