boinc/client/rr_sim.cpp

522 lines
17 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Simulate the processing of the current workload
// (include jobs that are downloading)
// with weighted round-robin (WRR) scheduling.
//
// Outputs are changes to global state:
// - deadline misses (per-project count, per-result flag)
// Deadline misses are not counted for tasks
// that are too large to run in RAM right now.
// - resource shortfalls (per-project and total)
// - counts of resources idle now
//
// For coprocessors, we saturate the resource if possible;
// i.e. with 2 GPUs, we'd let a 1-GPU app and a 2-GPU app run together.
// Otherwise, there'd be the possibility of computing
// a nonzero shortfall inappropriately.
//
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#else
#include "config.h"
#endif
#include "client_msgs.h"
#include "client_state.h"
#include "coproc.h"
#include "project.h"
#include "result.h"
using std::vector;
inline void rsc_string(RESULT* rp, char* buf) {
APP_VERSION* avp = rp->avp;
if (avp->gpu_usage.rsc_type) {
sprintf(buf, "%.2f CPU + %.2f %s",
avp->avg_ncpus, avp->gpu_usage.usage,
rsc_name(avp->gpu_usage.rsc_type)
);
} else {
sprintf(buf, "%.2f CPU", avp->avg_ncpus);
}
}
// this is here (rather than rr_sim.h) because its inline functions
// refer to RESULT
//
struct RR_SIM {
vector<RESULT*> active;
inline void activate(RESULT* rp) {
PROJECT* p = rp->project;
active.push_back(rp);
rsc_work_fetch[0].sim_nused += rp->avp->avg_ncpus;
p->rsc_pwf[0].sim_nused += rp->avp->avg_ncpus;
int rt = rp->avp->gpu_usage.rsc_type;
if (rt) {
rsc_work_fetch[rt].sim_nused += rp->avp->gpu_usage.usage;
rsc_work_fetch[rt].sim_used_instances |= rp->app->non_excluded_instances[rt];
p->rsc_pwf[rt].sim_nused += rp->avp->gpu_usage.usage;
}
}
void init_pending_lists();
void pick_jobs_to_run(double reltime);
void simulate();
RR_SIM() {}
~RR_SIM() {}
};
// estimate the long-term FLOPS that this job will get
// (counting unavailability)
//
void set_rrsim_flops(RESULT* rp) {
// For coproc jobs, use app version estimate
//
if (rp->uses_coprocs()) {
rp->rrsim_flops = rp->avp->flops * gstate.overall_gpu_frac();
} else if (rp->avp->needs_network) {
rp->rrsim_flops = rp->avp->flops * gstate.overall_cpu_and_network_frac();
} else {
rp->rrsim_flops = rp->avp->flops * gstate.overall_cpu_frac();
}
if (rp->rrsim_flops == 0) {
rp->rrsim_flops = 1e6; // just in case
}
}
void print_deadline_misses() {
unsigned int i;
RESULT* rp;
PROJECT* p;
for (i=0; i<gstate.results.size(); i++){
rp = gstate.results[i];
if (rp->rr_sim_misses_deadline) {
msg_printf(rp->project, MSG_INFO,
"[rr_sim] Result %s projected to miss deadline.",
rp->name
);
}
}
for (i=0; i<gstate.projects.size(); i++) {
p = gstate.projects[i];
for (int j=0; j<coprocs.n_rsc; j++) {
if (p->rsc_pwf[j].deadlines_missed) {
msg_printf(p, MSG_INFO,
"[rr_sim] Project has %d projected %s deadline misses",
p->rsc_pwf[j].deadlines_missed,
rsc_name(j)
);
}
}
}
}
// Decide what jobs to include in the simulation;
// build the "pending" lists for each (project, processor type) pair.
// NOTE: "results" is sorted by increasing arrival time.
//
void RR_SIM::init_pending_lists() {
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
for (int j=0; j<coprocs.n_rsc; j++) {
p->rsc_pwf[j].pending.clear();
p->rsc_pwf[j].queue_est = 0;
}
}
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
rp->rr_sim_misses_deadline = false;
if (!rp->nearly_runnable()) continue;
if (rp->some_download_stalled()) continue;
if (rp->project->non_cpu_intensive) continue;
rp->rrsim_flops_left = rp->estimated_flops_remaining();
//if (rp->rrsim_flops_left <= 0) continue;
// job may have fraction_done=1 but not be done;
// if it's past its deadline, we need to mark it as such
PROJECT* p = rp->project;
p->pwf.n_runnable_jobs++;
p->rsc_pwf[0].nused_total += rp->avp->avg_ncpus;
set_rrsim_flops(rp);
int rt = rp->avp->gpu_usage.rsc_type;
if (rt) {
p->rsc_pwf[rt].nused_total += rp->avp->gpu_usage.usage;
p->rsc_pwf[rt].n_runnable_jobs++;
p->rsc_pwf[rt].queue_est += rp->rrsim_flops_left/rp->rrsim_flops;
}
p->rsc_pwf[rt].pending.push_back(rp);
rp->rrsim_done = false;
}
}
// Pick jobs to run, putting them in "active" list.
// Simulate what the job scheduler would do:
// pick a job from the project P with highest scheduling priority,
// then adjust P's scheduling priority.
//
// This is called at the start of the simulation,
// and again each time a job finishes.
// In the latter case, some resources may be saturated.
//
void RR_SIM::pick_jobs_to_run(double reltime) {
active.clear();
// save and restore rec_temp
//
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
p->pwf.rec_temp_save = p->pwf.rec_temp;
}
// loop over resource types; do the GPUs first
//
for (int rt=coprocs.n_rsc-1; rt>=0; rt--) {
vector<PROJECT*> project_heap;
// Make a heap of projects with runnable jobs for this resource,
// ordered by scheduling priority.
// Clear usage counts.
// Initialize iterators to the pending list of each project.
//
rsc_work_fetch[rt].sim_nused = 0;
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
RSC_PROJECT_WORK_FETCH& rsc_pwf = p->rsc_pwf[rt];
if (rsc_pwf.pending.size() ==0) continue;
rsc_pwf.pending_iter = rsc_pwf.pending.begin();
rsc_pwf.sim_nused = 0;
p->pwf.rec_temp = p->pwf.rec;
p->compute_sched_priority();
project_heap.push_back(p);
}
make_heap(project_heap.begin(), project_heap.end());
// Loop over jobs.
// Keep going until the resource is saturated or there are no more jobs.
//
while (1) {
if (project_heap.empty()) break;
// p is the highest-priority project with work for this resource
//
PROJECT* p = project_heap.front();
RSC_PROJECT_WORK_FETCH& rsc_pwf = p->rsc_pwf[rt];
RESULT* rp = *rsc_pwf.pending_iter;
// garbage-collect jobs that already completed in our simulation
// (this is just a handy place to do this)
//
if (rp->rrsim_done) {
rsc_pwf.pending_iter = rsc_pwf.pending.erase(rsc_pwf.pending_iter);
} else {
// add job to active list, and adjust project priority
//
activate(rp);
adjust_rec_sched(rp);
if (log_flags.rrsim_detail) {
char buf[256];
rsc_string(rp, buf);
msg_printf(rp->project, MSG_INFO,
"[rr_sim_detail] %.2f: starting %s (%s)",
reltime, rp->name, buf
);
}
// check whether resource is saturated
//
if (rt) {
if (rsc_work_fetch[rt].sim_nused >= coprocs.coprocs[rt].count) {
break;
}
// if a GPU isn't saturated but this project is using
// its max given exclusions, remove it from project heap
//
if (rsc_pwf.sim_nused >= coprocs.coprocs[rt].count - p->rsc_pwf[rt].ncoprocs_excluded) {
pop_heap(project_heap.begin(), project_heap.end());
project_heap.pop_back();
continue;
}
} else {
if (rsc_work_fetch[rt].sim_nused >= gstate.ncpus) break;
}
rsc_pwf.pending_iter++;
}
if (rsc_pwf.pending_iter == rsc_pwf.pending.end()) {
// if this project now has no more jobs for the resource,
// remove it from the project heap
//
pop_heap(project_heap.begin(), project_heap.end());
project_heap.pop_back();
} else if (!rp->rrsim_done) {
// Otherwise reshuffle the project heap
//
make_heap(project_heap.begin(), project_heap.end());
}
}
}
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
p->pwf.rec_temp = p->pwf.rec_temp_save;
}
}
static void record_nidle_now() {
// note the number of idle instances
//
rsc_work_fetch[0].nidle_now = gstate.ncpus - rsc_work_fetch[0].sim_nused;
if (rsc_work_fetch[0].nidle_now < 0) rsc_work_fetch[0].nidle_now = 0;
for (int i=1; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].nidle_now = coprocs.coprocs[i].count - rsc_work_fetch[i].sim_nused;
if (rsc_work_fetch[i].nidle_now < 0) rsc_work_fetch[i].nidle_now = 0;
}
}
static void handle_missed_deadline(RESULT* rpbest, double diff, double ar) {
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rpbest);
PROJECT* pbest = rpbest->project;
if (atp) {
atp->last_deadline_miss_time = gstate.now;
}
if (atp && atp->procinfo.working_set_size_smoothed > ar) {
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %s misses deadline but too large to run",
rpbest->name
);
}
} else {
rpbest->rr_sim_misses_deadline = true;
int rt = rpbest->avp->gpu_usage.rsc_type;
if (rt) {
pbest->rsc_pwf[rt].deadlines_missed++;
rsc_work_fetch[rt].deadline_missed_instances += rpbest->avp->gpu_usage.usage;
} else {
pbest->rsc_pwf[0].deadlines_missed++;
rsc_work_fetch[0].deadline_missed_instances += rpbest->avp->avg_ncpus;
}
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %s misses deadline by %.2f",
rpbest->name, diff
);
}
}
}
void RR_SIM::simulate() {
PROJECT* pbest;
RESULT* rp, *rpbest;
unsigned int u;
double ar = gstate.available_ram();
work_fetch.rr_init();
if (log_flags.rr_simulation) {
msg_printf(0, MSG_INFO,
"[rr_sim] start: work_buf min %.0f additional %.0f total %.0f on_frac %.3f active_frac %.3f",
gstate.work_buf_min(),
gstate.work_buf_additional(),
gstate.work_buf_total(),
gstate.time_stats.on_frac,
gstate.time_stats.active_frac
);
}
project_priority_init(false);
init_pending_lists();
// Simulation loop. Keep going until all jobs done
//
double buf_end = gstate.now + gstate.work_buf_total();
double sim_now = gstate.now;
bool first = true;
while (1) {
pick_jobs_to_run(sim_now-gstate.now);
if (first) {
record_nidle_now();
first = false;
}
if (!active.size()) break;
// compute finish times and see which job finishes first
//
rpbest = NULL;
for (u=0; u<active.size(); u++) {
rp = active[u];
rp->rrsim_finish_delay = rp->rrsim_flops_left/rp->rrsim_flops;
if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) {
rpbest = rp;
}
}
// see if we finish a time slice before first job ends
//
double delta_t = rpbest->rrsim_finish_delay;
if (delta_t > 3600) {
rpbest = 0;
// limit the granularity
//
if (delta_t > 36000) {
delta_t /= 10;
} else {
delta_t = 3600;
}
} else {
rpbest->rrsim_done = true;
pbest = rpbest->project;
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %.2f: %s finishes (%.2fG/%.2fG)",
sim_now - gstate.now,
rpbest->name,
rpbest->estimated_flops_remaining()/1e9, rpbest->rrsim_flops/1e9
);
}
// Does it miss its deadline?
//
double diff = (sim_now + rpbest->rrsim_finish_delay) - rpbest->computation_deadline();
if (diff > 0) {
handle_missed_deadline(rpbest, diff, ar);
// update busy time of relevant processor types
//
double frac = rpbest->uses_coprocs()?gstate.overall_gpu_frac():gstate.overall_cpu_frac();
double dur = rpbest->estimated_runtime_remaining() / frac;
rsc_work_fetch[0].update_busy_time(dur, rpbest->avp->avg_ncpus);
int rt = rpbest->avp->gpu_usage.rsc_type;
if (rt) {
rsc_work_fetch[rt].update_busy_time(dur, rpbest->avp->gpu_usage.usage);
}
}
}
// adjust FLOPS left of other active jobs
//
for (unsigned int i=0; i<active.size(); i++) {
rp = active[i];
rp->rrsim_flops_left -= rp->rrsim_flops*delta_t;
// can be slightly less than 0 due to roundoff
//
if (rp->rrsim_flops_left < -1e6) {
if (log_flags.rr_simulation) {
msg_printf(rp->project, MSG_INTERNAL_ERROR,
"%s: negative FLOPs left %f", rp->name, rp->rrsim_flops_left
);
}
}
if (rp->rrsim_flops_left < 0) {
rp->rrsim_flops_left = 0;
}
}
#if 1
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].update_stats(sim_now, delta_t, buf_end);
}
#else
// update saturated time
//
double end_time = sim_now + delta_t;
double x = end_time - gstate.now;
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].update_saturated_time(x);
}
// increment resource shortfalls
//
if (sim_now < buf_end) {
if (end_time > buf_end) end_time = buf_end;
double d_time = end_time - sim_now;
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].accumulate_shortfall(d_time);
}
}
#endif
// update project REC
//
double f = gstate.host_info.p_fpops;
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
double dtemp = sim_now;
double x = 0;
for (int j=0; j<coprocs.n_rsc; j++) {
x += p->rsc_pwf[j].sim_nused * delta_t * f * rsc_work_fetch[j].relative_speed;
}
x *= COBBLESTONE_SCALE;
update_average(
sim_now+delta_t,
sim_now,
x,
config.rec_half_life,
p->pwf.rec_temp,
dtemp
);
p->compute_sched_priority();
}
sim_now += delta_t;
}
// identify GPU instances starved because of exclusions
//
for (int i=1; i<coprocs.n_rsc; i++) {
RSC_WORK_FETCH& rwf = rsc_work_fetch[i];
COPROC& cp = coprocs.coprocs[i];
int mask = (1<<cp.count)-1;
rwf.sim_excluded_instances = ~(rwf.sim_used_instances) & mask;
if (log_flags.rrsim_detail) {
msg_printf(0, MSG_INFO,
"[rrsim_detail] rsc %d: sim_used_inst %d mask %d sim_excluded_instances %d",
i, rwf.sim_used_instances, mask, rwf.sim_excluded_instances
);
}
}
// if simulation ends before end of buffer, take the tail into account
//
if (sim_now < buf_end) {
double d_time = buf_end - sim_now;
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].update_stats(sim_now, d_time, buf_end);
}
}
}
void rr_simulation() {
RR_SIM rr_sim;
rr_sim.simulate();
}