mirror of https://github.com/BOINC/boinc.git
438 lines
12 KiB
C++
438 lines
12 KiB
C++
// This file is part of BOINC.
|
|
// http://boinc.berkeley.edu
|
|
// Copyright (C) 2012 University of California
|
|
//
|
|
// BOINC is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU Lesser General Public License
|
|
// as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// BOINC is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <vector>
|
|
#include <set>
|
|
#include <algorithm>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
using std::vector;
|
|
using std::set;
|
|
|
|
#include "vda_lib.h"
|
|
|
|
char* time_str(double t) {
|
|
static char buf[256];
|
|
int n = (int)t;
|
|
int nsec = n % 60;
|
|
n /= 60;
|
|
int nmin = n % 60;
|
|
n /= 60;
|
|
int nhour = n % 24;
|
|
n /= 24;
|
|
sprintf(buf, "%4d days %02d:%02d:%02d", n, nhour, nmin, nsec);
|
|
return buf;
|
|
}
|
|
|
|
void STATS_ITEM::init(const char* n, const char* filename, STATS_KIND k) {
|
|
f = fopen(filename, "w");
|
|
strcpy(name, n);
|
|
kind = k;
|
|
value = 0;
|
|
integral = 0;
|
|
switch (kind) {
|
|
case DISK:
|
|
case NETWORK:
|
|
extreme_val = 0;
|
|
break;
|
|
case FAULT_TOLERANCE:
|
|
extreme_val = INT_MAX;
|
|
break;
|
|
}
|
|
extreme_val_time = 0;
|
|
first = true;
|
|
}
|
|
|
|
void STATS_ITEM::sample(double v, bool collecting_stats, double now) {
|
|
#ifdef SAMPLE_DEBUG
|
|
switch (kind) {
|
|
case DISK:
|
|
printf("%s: %s: %fGB -> %fGB\n", now_str(), name, value/1e9, v/1e9);
|
|
break;
|
|
case NETWORK:
|
|
printf("%s: %s: %fMbps -> %fMbps\n", now_str(), name, value/1e6, v/1e6);
|
|
break;
|
|
case FAULT_TOLERANCE:
|
|
printf("%s: %s: %.0f -> %.0f\n", now_str(), name, value, v);
|
|
break;
|
|
}
|
|
#endif
|
|
double old_val = value;
|
|
value = v;
|
|
if (!collecting_stats) return;
|
|
if (first) {
|
|
first = false;
|
|
prev_t = now;
|
|
return;
|
|
}
|
|
double dt = now - prev_t;
|
|
prev_t = now;
|
|
integral += dt*old_val;
|
|
switch (kind) {
|
|
case DISK:
|
|
case NETWORK:
|
|
if (v > extreme_val) {
|
|
extreme_val = v;
|
|
extreme_val_time = now;
|
|
}
|
|
break;
|
|
case FAULT_TOLERANCE:
|
|
if (v < extreme_val) {
|
|
extreme_val = v;
|
|
extreme_val_time = now;
|
|
}
|
|
break;
|
|
}
|
|
|
|
fprintf(f, "%f %f\n", now, old_val);
|
|
fprintf(f, "%f %f\n", now, v);
|
|
}
|
|
|
|
void STATS_ITEM::sample_inc(double inc, bool collecting_stats, double now) {
|
|
sample(value+inc, collecting_stats, now);
|
|
}
|
|
|
|
void STATS_ITEM::print(double now) {
|
|
sample_inc(0, true, now);
|
|
double dt = now - start_time;
|
|
switch (kind) {
|
|
case DISK:
|
|
printf(" mean: %fGB. Max: %fGB at %s\n",
|
|
(integral/dt)/1e9, extreme_val/1e9, time_str(extreme_val_time)
|
|
);
|
|
break;
|
|
case NETWORK:
|
|
printf(" mean: %fMbps. Max: %fMbps at %s\n",
|
|
(integral/dt)/1e6, extreme_val/1e6, time_str(extreme_val_time)
|
|
);
|
|
break;
|
|
case FAULT_TOLERANCE:
|
|
printf(" mean: %.2f. Min: %.0f at %s\n",
|
|
integral/dt, extreme_val, time_str(extreme_val_time)
|
|
);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void STATS_ITEM::print_summary(FILE* fout, double now) {
|
|
double dt = now - start_time;
|
|
switch (kind) {
|
|
case DISK:
|
|
fprintf(fout, "%f\n", integral/dt);
|
|
break;
|
|
case NETWORK:
|
|
fprintf(fout, "%f\n", integral/dt);
|
|
break;
|
|
case FAULT_TOLERANCE:
|
|
fprintf(fout, "%f\n", extreme_val);
|
|
break;
|
|
}
|
|
}
|
|
|
|
META_CHUNK::META_CHUNK(
|
|
VDA_FILE_AUX* d, META_CHUNK* par, double size,
|
|
int coding_level, int index
|
|
) {
|
|
dfile = d;
|
|
parent = par;
|
|
coding = d->policy.codings[coding_level];
|
|
if (parent) {
|
|
sprintf(name, "%s.%d", parent->name, index);
|
|
} else {
|
|
sprintf(name, "%d", index);
|
|
}
|
|
if (coding_level<d->policy.coding_levels-1) {
|
|
for (int j=0; j<coding.m; j++) {
|
|
children.push_back(new META_CHUNK(
|
|
d,
|
|
this,
|
|
size/coding.n,
|
|
coding_level+1,
|
|
j
|
|
));
|
|
}
|
|
} else {
|
|
for (int j=0; j<coding.m; j++) {
|
|
children.push_back(
|
|
new CHUNK(this, size/coding.n, j)
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
// sort by increasing cost
|
|
//
|
|
bool compare_cost(const DATA_UNIT* d1, const DATA_UNIT* d2) {
|
|
return d1->cost < d2->cost;
|
|
}
|
|
|
|
// sort by increase min_failures
|
|
//
|
|
bool compare_min_failures(const DATA_UNIT* d1, const DATA_UNIT* d2) {
|
|
return d1->min_failures < d2->min_failures;
|
|
}
|
|
|
|
// Recovery logic: decide what to do in response to
|
|
// host failures and upload/download completions.
|
|
//
|
|
// One way to do this would be to store a bunch of state info
|
|
// with each node in the file's tree,
|
|
// and do things by local tree traversal.
|
|
//
|
|
// However, it's a lot simpler (for me, the programmer)
|
|
// to store minimal state info,
|
|
// and to reconstruct state info using
|
|
// a top-down tree traversal in response to each event.
|
|
// Actually we do 2 traversals:
|
|
// 1) plan phase:
|
|
// We see whether every node recoverable,
|
|
// and if so compute its "recovery set":
|
|
// the set of children from which it can be recovered
|
|
// with minimal cost (i.e. network traffic).
|
|
// Decide whether each chunk currently on the server needs to remain.
|
|
// 2) action phase
|
|
// Based on the results of phase 1,
|
|
// decide whether to start upload/download of chunks,
|
|
// and whether to delete data currently on server
|
|
//
|
|
int META_CHUNK::recovery_plan() {
|
|
vector<DATA_UNIT*> recoverable;
|
|
vector<DATA_UNIT*> present;
|
|
|
|
unsigned int i;
|
|
have_unrecoverable_children = false;
|
|
|
|
// make lists of children in various states
|
|
//
|
|
for (i=0; i<children.size(); i++) {
|
|
DATA_UNIT* c = children[i];
|
|
c->in_recovery_set = false;
|
|
c->data_needed = false;
|
|
c->data_now_present = false;
|
|
int retval = c->recovery_plan();
|
|
if (retval) return retval;
|
|
switch (c->status) {
|
|
case PRESENT:
|
|
present.push_back(c);
|
|
break;
|
|
case RECOVERABLE:
|
|
recoverable.push_back(c);
|
|
break;
|
|
case UNRECOVERABLE:
|
|
have_unrecoverable_children = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// based on states of children, decide what state we're in
|
|
//
|
|
if ((int)(present.size()) >= coding.n) {
|
|
status = PRESENT;
|
|
sort(present.begin(), present.end(), compare_cost);
|
|
present.resize(coding.n);
|
|
cost = 0;
|
|
for (i=0; i<present.size(); i++) {
|
|
DATA_UNIT* c= present[i];
|
|
cost += c->cost;
|
|
c->in_recovery_set = true;
|
|
}
|
|
} else if ((int)(present.size() + recoverable.size()) >= coding.n) {
|
|
status = RECOVERABLE;
|
|
unsigned int j = coding.n - present.size();
|
|
sort(recoverable.begin(), recoverable.end(), compare_cost);
|
|
cost = 0;
|
|
for (i=0; i<present.size(); i++) {
|
|
DATA_UNIT* c= present[i];
|
|
c->in_recovery_set = true;
|
|
}
|
|
for (i=0; i<j; i++) {
|
|
DATA_UNIT* c= recoverable[i];
|
|
c->in_recovery_set = true;
|
|
cost += c->cost;
|
|
}
|
|
|
|
} else {
|
|
status = UNRECOVERABLE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int CHUNK::recovery_plan() {
|
|
if (present_on_server) {
|
|
status = PRESENT;
|
|
cost = 0;
|
|
min_failures = INT_MAX;
|
|
} else if (hosts.size() > 0) {
|
|
status = RECOVERABLE;
|
|
cost = size;
|
|
if ((int)(hosts.size()) < parent->dfile->policy.replication) {
|
|
data_needed = true;
|
|
}
|
|
min_failures = hosts.size();
|
|
} else {
|
|
status = UNRECOVERABLE;
|
|
min_failures = 0;
|
|
}
|
|
#ifdef DEBUG_RECOVERY
|
|
printf("chunk plan %s: status %s\n", name, status_str(status));
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int META_CHUNK::recovery_action(double now) {
|
|
unsigned int i;
|
|
int retval;
|
|
|
|
if (data_now_present) {
|
|
status = PRESENT;
|
|
}
|
|
#ifdef DEBUG_RECOVERY
|
|
printf("meta chunk action %s state %s unrec children %d\n",
|
|
name, status_str(status), have_unrecoverable_children
|
|
);
|
|
#endif
|
|
for (i=0; i<children.size(); i++) {
|
|
DATA_UNIT* c = children[i];
|
|
#ifdef DEBUG_RECOVERY
|
|
printf(" child %s status %s in rec set %d\n",
|
|
c->name, status_str(c->status), c->in_recovery_set
|
|
);
|
|
#endif
|
|
switch (status) {
|
|
case PRESENT:
|
|
if (c->status == UNRECOVERABLE) {
|
|
c->data_now_present = true;
|
|
}
|
|
break;
|
|
case RECOVERABLE:
|
|
if (c->in_recovery_set && have_unrecoverable_children) {
|
|
c->data_needed = true;
|
|
}
|
|
break;
|
|
case UNRECOVERABLE:
|
|
break;
|
|
}
|
|
retval = c->recovery_action(now);
|
|
if (retval) return retval;
|
|
}
|
|
|
|
// because of recovery action, some of our children may have changed
|
|
// status and fault tolerance, source may have changed too.
|
|
// Recompute them.
|
|
//
|
|
vector<DATA_UNIT*> recoverable;
|
|
vector<DATA_UNIT*> present;
|
|
for (i=0; i<children.size(); i++) {
|
|
DATA_UNIT* c = children[i];
|
|
switch (c->status) {
|
|
case PRESENT:
|
|
present.push_back(c);
|
|
break;
|
|
case RECOVERABLE:
|
|
recoverable.push_back(c);
|
|
break;
|
|
}
|
|
}
|
|
if ((int)(present.size()) >= coding.n) {
|
|
status = PRESENT;
|
|
min_failures = INT_MAX;
|
|
} else if ((int)(present.size() + recoverable.size()) >= coding.n) {
|
|
status = RECOVERABLE;
|
|
|
|
// our min_failures is the least X such that some X host failures
|
|
// would make this node unrecoverable
|
|
//
|
|
sort(recoverable.begin(), recoverable.end(), compare_min_failures);
|
|
min_failures = 0;
|
|
unsigned int k = coding.n - present.size();
|
|
// we'd need to recover K recoverable children
|
|
unsigned int j = recoverable.size() - k + 1;
|
|
// a loss of J recoverable children would make this impossible
|
|
|
|
// the loss of J recoverable children would make us unrecoverable
|
|
// Sum the min_failures of the J children with smallest min_failures
|
|
//
|
|
for (i=0; i<j; i++) {
|
|
DATA_UNIT* c = recoverable[i];
|
|
printf(" Min failures of %s: %d\n", c->name, c->min_failures);
|
|
min_failures += c->min_failures;
|
|
}
|
|
printf(" our min failures: %d\n", min_failures);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool CHUNK::download_in_progress() {
|
|
set<VDA_CHUNK_HOST*>::iterator i;
|
|
for (i=hosts.begin(); i!=hosts.end(); i++) {
|
|
VDA_CHUNK_HOST* ch = *i;
|
|
if (ch->download_in_progress()) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int CHUNK::recovery_action(double now) {
|
|
int retval;
|
|
VDA_FILE_AUX* fp = parent->dfile;
|
|
if (data_now_present) {
|
|
present_on_server = true;
|
|
fp->disk_usage.sample_inc(
|
|
size,
|
|
fp->collecting_stats(),
|
|
now
|
|
);
|
|
status = PRESENT;
|
|
}
|
|
if (status == PRESENT && (int)(hosts.size()) < fp->policy.replication) {
|
|
retval = assign();
|
|
if (retval) return retval;
|
|
}
|
|
if (download_in_progress()) {
|
|
data_needed = true;
|
|
}
|
|
#ifdef DEBUG_RECOVERY
|
|
printf("chunk action: %s data_needed %d present_on_server %d\n",
|
|
name, data_needed, present_on_server
|
|
);
|
|
#endif
|
|
if (data_needed) {
|
|
if (!present_on_server) {
|
|
retval = start_upload();
|
|
if (retval) return retval;
|
|
}
|
|
} else {
|
|
if (present_on_server) {
|
|
present_on_server = false;
|
|
status = RECOVERABLE;
|
|
min_failures = fp->policy.replication;
|
|
#ifdef EVENT_DEBUG
|
|
printf("%s: %s replicated, removing from server\n", now_str(), name);
|
|
#endif
|
|
parent->dfile->disk_usage.sample_inc(
|
|
-size,
|
|
fp->collecting_stats(),
|
|
now
|
|
);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|