boinc/vda/ssim.cpp

503 lines
14 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2011 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// ssim - simulator for distributed storage
//
// Simulates the storage of files on a dynamic set of hosts.
// usage: ssim
// [--policy filename]
// [--host_life_mean x]
// [--connect_interval x]
// [--mean_xfer_rate x]
// [--file_size x]
//
// outputs:
// stdout: log info
// summary.txt: format
// fault tolerance min
// disk_usage mean
// upload_mean
// download_mean
#include <set>
#include <limits.h>
#include "des.h"
#include "vda_lib.h"
using std::set;
// We simulate policies based on coding and replication.
//
// Coding means that data is divided into M = N+K units,
// of which any N are sufficient to reconstruct the original data.
// When we need to reconstruct an encoded unit on the server,
// we try to upload N_UPLOAD subunits,
// where N <= N_UPLOAD <= M
// The units in an encoding can themselves be encoded.
//
// The bottom-level data units ("chunks") are stored on hosts,
// possibly with replication
struct PARAMS {
// The model of the host population is:
// - the population is unbounded
// - host lifetime is exponentially distributed
// - the time needed to transfer n bytes of data to/from a host is
// U1*connect_interval + (U2+.5)*n/mean_xfer_rate;
// where U1 and U2 are uniform random vars
// (U1 is per-transfer, U2 is per-host)
//
double host_life_mean;
double connect_interval;
double mean_xfer_rate;
double file_size;
double sim_duration;
PARAMS() {
// default parameters
//
host_life_mean = 100.*86400;
connect_interval = 86400.;
mean_xfer_rate = .2e6;
file_size = 1e12;
sim_duration = 1000.*86400;
}
} params;
// Terminology:
//
// A data unit is "recoverable" if it can be recovered on the server
// by uploading data from hosts.
// A chunk is recoverable if it's present on the server or on at least 1 host.
// (note: if it's downloading, it's still present on the server)
// An encoded data unit is recoverable if at least N
// of its subunits are recoverable.
// Figures of merit
//
// for each file, we compute:
// - the average and peak server network rate, up and down
// - the average and peak disk usage
// - the average and min fault tolerance level
// (i.e. number of simultaneous host failures needed to lose the file)
//
// These are measured starting from the time when the file's
// initial downloads have all succeeded or failed
#define EVENT_DEBUG
#define SAMPLE_DEBUG
//#define RECOVERY_DEBUG
SIMULATOR sim;
int next_file_id=0;
int next_host_id=0;
inline double drand() {
return (double)rand()/(double)RAND_MAX;
}
double ran_exp(double mean) {
return -log(drand())*mean;
}
char* now_str() {
return time_str(sim.now);
}
struct CHUNK;
struct CHUNK_ON_HOST;
struct META_CHUNK;
struct SIM_HOST;
set<SIM_HOST*> hosts;
// Represents a host.
// The associated EVENT is the disappearance of the host
//
struct SIM_HOST : EVENT {
int id;
double transfer_rate;
set<CHUNK_ON_HOST*> chunks; // chunks present or downloading
virtual void handle();
SIM_HOST() {
t = sim.now + ran_exp(params.host_life_mean);
id = next_host_id++;
transfer_rate = params.mean_xfer_rate*(drand() + .5);
hosts.insert(this);
}
};
#if 0
// The host arrival process.
// The associated EVENT is the arrival of a host
//
struct HOST_ARRIVAL : EVENT {
virtual void handle() {
sim.insert(new SIM_HOST);
t += ran_exp(86400./HOSTS_PER_DAY);
sim.insert(this);
}
};
#endif
void die(const char* msg) {
printf("%s: %s\n", now_str(), msg);
exit(1);
}
// The status of a chunk on a particular host.
// The associated event is the completion of an upload or download
//
struct CHUNK_ON_HOST : VDA_CHUNK_HOST, EVENT {
SIM_HOST* host;
CHUNK* chunk;
virtual void handle();
void start_upload();
void start_download();
void remove();
};
// represents a file to be stored.
// The associated EVENT is the arrival of the file
//
struct SIM_FILE : VDA_FILE_AUX, EVENT {
double size;
int id;
#if 0
set<SIM_HOST*> unused_hosts;
// hosts that don't have any chunks of this file
#endif
SIM_FILE(double s) {
id = next_file_id++;
#if 0
unused_hosts = hosts;
#endif
size = s;
disk_usage.init("Disk usage", "disk.dat", DISK);
upload_rate.init("Upload rate", "upload.dat", NETWORK);
download_rate.init("Download rate", "download.dat", NETWORK);
fault_tolerance.init("Fault tolerance", "fault_tol.dat", FAULT_TOLERANCE);
}
// the creation of a file
//
virtual void handle() {
meta_chunk = new META_CHUNK(this, NULL, size, 0, id);
#ifdef EVENT_DEBUG
printf("created file %d: size %f encoded size %f\n",
id, size, disk_usage.value
);
#endif
meta_chunk->recovery_plan();
meta_chunk->recovery_action(sim.now);
}
void recover() {
meta_chunk->recovery_plan();
meta_chunk->recovery_action(sim.now);
fault_tolerance.sample(
meta_chunk->min_failures-1, collecting_stats(), sim.now
);
}
void print_stats(double now) {
printf("Statistics for file %d\n", id);
printf(" Server disk usage:\n");
disk_usage.print(now);
printf(" Upload rate:\n");
upload_rate.print(now);
printf(" Download rate:\n");
download_rate.print(now);
printf(" Fault tolerance level:\n");
fault_tolerance.print(now);
FILE* f = fopen("summary.txt", "w");
fault_tolerance.print_summary(f, now);
disk_usage.print_summary(f, now);
upload_rate.print_summary(f, now);
download_rate.print_summary(f, now);
fclose(f);
}
};
//////////////////// method defs ////////////////////
void CHUNK_ON_HOST::start_upload() {
transfer_in_progress = true;
transfer_wait = true;
t = sim.now + drand()*params.connect_interval;
#ifdef EVENT_DEBUG
printf("%s: waiting to start upload of %s\n", now_str(), name);
#endif
sim.insert(this);
}
void CHUNK_ON_HOST::start_download() {
transfer_in_progress = true;
transfer_wait = true;
t = sim.now + drand()*params.connect_interval;
#ifdef EVENT_DEBUG
printf("%s: waiting to start download of %s\n", now_str(), name);
#endif
sim.insert(this);
}
// transfer or transfer wait has finished
//
void CHUNK_ON_HOST::handle() {
if (transfer_wait) {
transfer_wait = false;
if (present_on_host) {
#ifdef EVENT_DEBUG
printf("%s: starting upload of %s\n", now_str(), name);
#endif
chunk->parent->dfile->upload_rate.sample_inc(
host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
} else {
#ifdef EVENT_DEBUG
printf("%s: starting download of %s\n", now_str(), name);
#endif
chunk->parent->dfile->download_rate.sample_inc(
host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
}
t = sim.now + chunk->size/host->transfer_rate;
sim.insert(this);
return;
}
transfer_in_progress = false;
if (present_on_host) {
// it was an upload
#ifdef EVENT_DEBUG
printf("%s: upload of %s completed\n", now_str(), name);
#endif
chunk->parent->dfile->upload_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
chunk->upload_complete();
} else {
present_on_host = true;
#ifdef EVENT_DEBUG
printf("%s: download of %s completed\n", now_str(), name);
#endif
chunk->parent->dfile->download_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
chunk->download_complete();
}
}
void CHUNK_ON_HOST::remove() {
if (transfer_in_progress) {
sim.remove(this);
if (!transfer_wait) {
if (present_on_host) {
chunk->parent->dfile->upload_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
} else {
chunk->parent->dfile->download_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
}
}
}
}
// the host has failed
//
void SIM_HOST::handle() {
set<SIM_HOST*>::iterator i = hosts.find(this);
hosts.erase(i);
#ifdef EVENT_DEBUG
printf("%s: host %d failed\n", now_str(), id);
#endif
set<CHUNK_ON_HOST*>::iterator p;
for (p = chunks.begin(); p != chunks.end(); p++) {
CHUNK_ON_HOST* c = *p;
c->chunk->host_failed(c);
c->remove();
delete c;
}
}
CHUNK::CHUNK(META_CHUNK* mc, double s, int index) {
parent = mc;
present_on_server = true;
size = s;
sprintf(name, "%s.%d", parent->name, index);
VDA_FILE_AUX* fp = parent->dfile;
fp->pending_init_downloads += fp->policy.replication;
fp->disk_usage.sample_inc(size, false, sim.now);
}
// if there aren't enough replicas of this chunk,
// pick new hosts and start downloads
//
int CHUNK::assign() {
if (!present_on_server) return 0;
VDA_FILE_AUX* fp = parent->dfile;
while ((int)(hosts.size()) < fp->policy.replication) {
#if 0
if (parent->dfile->unused_hosts.size() == 0) {
die("no more hosts!\n");
}
set<SIM_HOST*>::iterator i = fp->unused_hosts.begin();
SIM_HOST* h = *i;
fp->unused_hosts.erase(i);
#else
SIM_HOST* h = new SIM_HOST;
sim.insert(h);
#endif
CHUNK_ON_HOST *c = new CHUNK_ON_HOST();
sprintf(c->name, "chunk %s on host %d", name, h->id);
#ifdef EVENT_DEBUG
printf("%s: assigning chunk %s to host %d\n", now_str(), name, h->id);
#endif
c->host = h;
c->chunk = this;
h->chunks.insert(c);
hosts.insert(c);
c->start_download();
}
return 0;
}
int CHUNK::start_upload() {
// if no upload of this chunk is in progress, start one.
// NOTE: all instances are inherently present_on_host,
// since this is only called if chunk is not present on server
//
set<VDA_CHUNK_HOST*>::iterator i;
for (i=hosts.begin(); i!=hosts.end(); i++) {
CHUNK_ON_HOST* c = (CHUNK_ON_HOST*)*i;
if (c->transfer_in_progress) return 0;
}
CHUNK_ON_HOST* c = (CHUNK_ON_HOST*)*(hosts.begin());
c->start_upload();
return 0;
}
void CHUNK::host_failed(VDA_CHUNK_HOST* p) {
set<VDA_CHUNK_HOST*>::iterator i = hosts.find(p);
hosts.erase(i);
#ifdef EVENT_DEBUG
printf("%s: handling loss of %s\n", now_str(), p->name);
#endif
SIM_FILE* sfp = (SIM_FILE*)parent->dfile;
sfp->recover();
}
void CHUNK::upload_complete() {
if (!present_on_server) {
present_on_server = true;
parent->dfile->disk_usage.sample_inc(
size,
parent->dfile->collecting_stats(),
sim.now
);
}
SIM_FILE* sfp = (SIM_FILE*)parent->dfile;
sfp->recover();
}
void CHUNK::download_complete() {
if (parent->dfile->pending_init_downloads) {
parent->dfile->pending_init_downloads--;
}
SIM_FILE* sfp = (SIM_FILE*)parent->dfile;
sfp->recover();
}
const char* status_str(int status) {
switch (status) {
case PRESENT: return "present";
case RECOVERABLE: return "recoverable";
case UNRECOVERABLE: return "unrecoverable";
}
return "unknown";
}
set<SIM_FILE*> dfiles;
int main(int argc, char** argv) {
POLICY policy;
// default policy
//
policy.replication = 2;
policy.coding_levels = 1;
policy.codings[0].n = 10;
policy.codings[0].k = 6;
policy.codings[0].m = 16;
policy.codings[0].n_upload = 12;
for (int i=1; i<argc; i++) {
if (!strcmp(argv[i], "--policy")) {
int retval = policy.parse(argv[++i]);
if (retval) exit(1);
} else if (!strcmp(argv[i], "--host_life_mean")) {
params.host_life_mean = atof(argv[++i]);
} else if (!strcmp(argv[i], "--connect_interval")) {
params.connect_interval = atof(argv[++i]);
} else if (!strcmp(argv[i], "--mean_xfer_rate")) {
params.mean_xfer_rate = atof(argv[++i]);
} else if (!strcmp(argv[i], "--file_size")) {
params.file_size = atof(argv[++i]);
} else {
fprintf(stderr, "bad arg %s\n", argv[i]);
exit(1);
}
}
#if 0
HOST_ARRIVAL *h = new HOST_ARRIVAL;
h->t = 0;
sim.insert(h);
#endif
#if 0
for (int i=0; i<500; i++) {
sim.insert(new SIM_HOST);
}
#endif
SIM_FILE* dfile = new SIM_FILE(params.file_size);
dfile->policy = policy;
sim.insert(dfile);
sim.simulate(params.sim_duration);
printf("%s: simulation finished\n", now_str());
dfile->print_stats(sim.now);
}