boinc/client/cs_scheduler.C

1343 lines
42 KiB
C

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2005 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// High-level logic for communicating with scheduling servers,
// and for merging the result of a scheduler RPC into the client state
// The scheduler RPC mechanism is in scheduler_op.C
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifndef _WIN32
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <strings.h>
#include <map>
#include <set>
#endif
#include "crypt.h"
#include "error_numbers.h"
#include "file_names.h"
#include "filesys.h"
#include "parse.h"
#include "util.h"
#include "client_msgs.h"
#include "scheduler_op.h"
#include "client_state.h"
using std::max;
using std::vector;
using std::string;
// quantities like avg CPU time decay by a factor of e every week
//
#define EXP_DECAY_RATE (1./(SECONDS_PER_DAY*7))
// how often to show user "backing off" messages
//
const int SECONDS_BEFORE_REPORTING_MIN_RPC_TIME_AGAIN = 60*60;
// try to report results this much before their deadline
//
#define REPORT_DEADLINE_CUSHION SECONDS_PER_DAY
// assume actual CPU utilization will be this multiple
// of what we've actually measured recently
//
#define CPU_PESSIMISM_FACTOR 0.8
// how many CPUs should this project occupy on average,
// based on its resource share relative to a given set
//
int CLIENT_STATE::proj_min_results(PROJECT* p, double subset_resource_share) {
if (p->non_cpu_intensive) {
return 1;
}
return (int)(ceil(ncpus*p->resource_share/subset_resource_share));
}
void PROJECT::set_min_rpc_time(double future_time) {
if (future_time > min_rpc_time) {
min_rpc_time = future_time;
}
min_report_min_rpc_time = 0;
}
// Return true iff we should not contact the project yet.
// Print a message to the user if we haven't recently
//
bool PROJECT::waiting_until_min_rpc_time() {
if (min_rpc_time > gstate.now ) {
if (gstate.now >= min_report_min_rpc_time) {
min_report_min_rpc_time = gstate.now + SECONDS_BEFORE_REPORTING_MIN_RPC_TIME_AGAIN;
msg_printf(
this, MSG_ERROR,
"Deferring communication with project for %s\n",
timediff_format(min_rpc_time - gstate.now).c_str()
);
}
return true;
}
return false;
}
// find a project that needs to have its master file fetched
//
PROJECT* CLIENT_STATE::next_project_master_pending() {
unsigned int i;
PROJECT* p;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->waiting_until_min_rpc_time()) continue;
if (p->suspended_via_gui) continue;
if (p->master_url_fetch_pending) {
return p;
}
}
return 0;
}
// find a project for which the user has requested a scheduler RPC
//
PROJECT* CLIENT_STATE::next_project_sched_rpc_pending() {
unsigned int i;
PROJECT* p;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->waiting_until_min_rpc_time()) continue;
if (p->suspended_via_gui) continue;
if (p->sched_rpc_pending) {
return p;
}
}
return 0;
}
// Return the best project to fetch work from, NULL if none
//
// Basically, pick the one with largest long term debt - amount of current work
//
// PRECONDITIONS:
// - work_request_urgency and work_request set for all projects
// - CLIENT_STATE::overall_work_fetch_urgency is set
// (by previous call to compute_work_requests())
//
PROJECT* CLIENT_STATE::next_project_need_work() {
PROJECT *p, *p_prospect = NULL;
double work_on_prospect=0;
unsigned int i;
double prrs = potentially_runnable_resource_share();
for (i=0; i<projects.size(); ++i) {
p = projects[i];
if (p->work_request_urgency == WORK_FETCH_DONT_NEED) continue;
if (p->work_request == 0) continue;
if (!p->contactable()) continue;
// if we don't really need work,
// and we don't really need work from this project, pass.
//
if (overall_work_fetch_urgency <= WORK_FETCH_OK) {
if (p->work_request_urgency <= WORK_FETCH_OK) {
continue;
}
}
double work_on_current = time_until_work_done (p, 0, prrs);
if (p_prospect) {
if (p->work_request_urgency == WORK_FETCH_OK &&
p_prospect->work_request_urgency > WORK_FETCH_OK
) {
continue;
}
if (p->long_term_debt - work_on_current < p_prospect->long_term_debt - work_on_prospect
&& !p->non_cpu_intensive
) {
continue;
}
}
p_prospect = p;
work_on_prospect = work_on_current;
}
if (p_prospect && (p_prospect->work_request <= 0)) {
p_prospect->work_request = 1.0;
}
return p_prospect;
}
// Write a scheduler request to a disk file
// (later sent to the scheduling server)
//
int CLIENT_STATE::make_scheduler_request(PROJECT* p) {
char buf[1024];
get_sched_request_filename(*p, buf);
FILE* f = boinc_fopen(buf, "wb");
MIOFILE mf;
unsigned int i;
RESULT* rp;
int retval;
#if 0
double free, possible;
#endif
double prrs = potentially_runnable_resource_share();
if (!f) return ERR_FOPEN;
mf.init_file(f);
fprintf(f,
"<scheduler_request>\n"
" <authenticator>%s</authenticator>\n"
" <hostid>%d</hostid>\n"
" <rpc_seqno>%d</rpc_seqno>\n"
" <platform_name>%s</platform_name>\n"
" <core_client_major_version>%d</core_client_major_version>\n"
" <core_client_minor_version>%d</core_client_minor_version>\n"
" <work_req_seconds>%f</work_req_seconds>\n"
" <resource_share_fraction>%f</resource_share_fraction>\n"
" <estimated_delay>%f</estimated_delay>\n"
" <duration_correction_factor>%f</duration_correction_factor>\n",
p->authenticator,
p->hostid,
p->rpc_seqno,
p->anonymous_platform?"anonymous":platform_name,
core_client_major_version,
core_client_minor_version,
p->work_request,
p->resource_share / prrs,
time_until_work_done(p, proj_min_results(p, prrs)-1, prrs),
p->duration_correction_factor
);
if (p->anonymous_platform) {
fprintf(f, " <app_versions>\n");
for (i=0; i<app_versions.size(); i++) {
APP_VERSION* avp = app_versions[i];
if (avp->project != p) continue;
avp->write(mf);
}
fprintf(f, " </app_versions>\n");
}
#if 0
anything_free(free);
fprintf(f, " <project_disk_free>%f</project_disk_free>\n", free);
total_potential_offender(p, possible);
fprintf(f, " <potentially_free_offender>%f</potentially_free_offender>\n", possible);
total_potential_self(p, possible);
fprintf(f, " <potentially_free_self>%f</potentially_free_self>\n", possible);
#endif
if (strlen(p->code_sign_key)) {
fprintf(f, " <code_sign_key>\n%s</code_sign_key>\n", p->code_sign_key);
}
// insert global preferences if present
//
if (boinc_file_exists(GLOBAL_PREFS_FILE_NAME)) {
FILE* fprefs = fopen(GLOBAL_PREFS_FILE_NAME, "r");
if (fprefs) {
copy_stream(fprefs, f);
fclose(fprefs);
}
PROJECT* pp = lookup_project(global_prefs.source_project);
if (pp && strlen(pp->email_hash)) {
fprintf(f,
"<global_prefs_source_email_hash>%s</global_prefs_source_email_hash>\n",
pp->email_hash
);
}
}
// Of the projects with same email hash as this one,
// send the oldest cross-project ID.
// Use project URL as tie-breaker.
//
PROJECT* winner = p;
for (i=0; i<projects.size(); i++ ) {
PROJECT* project = projects[i];
if (project == p) continue;
if (strcmp(project->email_hash, p->email_hash)) continue;
if (project->user_create_time < winner->user_create_time) {
winner = project;
} else if (project->user_create_time == winner->user_create_time) {
if (strcmp(project->master_url, winner->master_url) < 0) {
winner = project;
}
}
}
fprintf(f,
"<cross_project_id>%s</cross_project_id>\n",
winner->cross_project_id
);
retval = time_stats.write(mf, true);
if (retval) return retval;
retval = net_stats.write(mf);
if (retval) return retval;
retval = host_info.write(mf);
if (retval) return retval;
p->nresults_returned = 0;
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->project == p && rp->ready_to_report) {
p->nresults_returned++;
rp->write(mf, true);
}
}
read_trickle_files(p, f);
// report sticky files as needed
//
for (i=0; i<file_infos.size(); i++) {
FILE_INFO* fip = file_infos[i];
if (fip->project != p) continue;
if (!fip->report_on_rpc) continue;
if (fip->marked_for_delete) continue;
fprintf(f,
" <file_info>\n"
" <name>%s</name>\n"
" <nbytes>%f</nbytes>\n"
" <status>%d</status>\n"
" <report_on_rpc/>\n"
" </file_info>\n",
fip->name, fip->nbytes, fip->status
);
}
// send names of results in progress for this project
//
fprintf(f, "<other_results>\n");
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->project == p && !rp->ready_to_report) {
fprintf(f,
" <other_result>\n"
" <name>%s</name>\n"
" </other_result>\n",
rp->name
);
}
}
fprintf(f, "</other_results>\n");
// send summary of in-progress results
// to give scheduler info on our CPU commitment
//
fprintf(f, "<in_progress_results>\n");
for (i=0; i<results.size(); i++) {
rp = results[i];
double x = rp->estimated_cpu_time_remaining();
if (x == 0) continue;
fprintf(f,
" <ip_result>\n"
" <report_deadline>%f</report_deadline>\n"
" <cpu_time_remaining>%f</cpu_time_remaining>\n"
" </ip_result>\n",
rp->report_deadline,
x
);
}
fprintf(f, "</in_progress_results>\n");
fprintf(f, "</scheduler_request>\n");
fclose(f);
return 0;
}
// find a project with finished results that should be reported.
// This means:
// - we're not backing off contacting the project
// - the result is ready_to_report (compute done; files uploaded)
// - we're either within a day of the report deadline,
// or at least work_buf_min_days time has elapsed since
// result was completed.
//
PROJECT* CLIENT_STATE::find_project_with_overdue_results() {
unsigned int i;
RESULT* r;
for (i=0; i<results.size(); i++) {
r = results[i];
// return the project for this result to report if:
//
PROJECT* p = r->project;
if (p->waiting_until_min_rpc_time()) continue;
if (p->suspended_via_gui) continue;
if (!r->ready_to_report) continue;
if (gstate.now > r->report_deadline - REPORT_DEADLINE_CUSHION) {
return p;
}
if (gstate.now > r->completed_time + global_prefs.work_buf_min_days*SECONDS_PER_DAY) {
return p;
}
}
return 0;
}
#if 0
// return true if we're allowed to do a scheduler RPC to at least one project
//
bool CLIENT_STATE::some_project_rpc_ok() {
unsigned int i;
for (i=0; i<projects.size(); i++) {
if (projects[i]->min_rpc_time < gstate.now) return true;
}
return false;
}
#endif
// return the expected number of CPU seconds completed by the client
// in a second of wall-clock time.
// May be > 1 on a multiprocessor.
//
double CLIENT_STATE::avg_proc_rate() {
double running_frac = time_stats.on_frac * time_stats.active_frac;
if (running_frac < 0.1) running_frac = 0.1;
if (running_frac > 1) running_frac = 1;
return ncpus*running_frac*time_stats.cpu_efficiency;
}
// estimate wall-clock time until the number of uncompleted results
// for project p will reach k,
// given the total resource share of a set of competing projects
//
double CLIENT_STATE::time_until_work_done(
PROJECT *p, int k, double subset_resource_share
) {
int num_results_to_skip = k;
double est = 0;
// total up the estimated time for this project's unstarted
// and partially completed results,
// omitting the last k
//
for (vector<RESULT*>::reverse_iterator iter = results.rbegin();
iter != results.rend(); iter++
) {
RESULT *rp = *iter;
if (rp->project != p
|| rp->state > RESULT_FILES_DOWNLOADED
|| rp->ready_to_report
) continue;
if (num_results_to_skip > 0) {
--num_results_to_skip;
continue;
}
if (rp->project->non_cpu_intensive) {
// if it is a non_cpu intensive project,
// it needs only one at a time.
//
est = max(rp->estimated_cpu_time_remaining(), global_prefs.work_buf_min_days * SECONDS_PER_DAY);
} else {
est += rp->estimated_cpu_time_remaining();
}
}
double apr = avg_proc_rate()*p->resource_share/subset_resource_share;
return est/apr;
}
// Compute:
// - work_request and work_request_urgency for all projects.
// - overall_work_fetch_urgency
//
// Only set non-zero work requests for projects that are contactable
//
int CLIENT_STATE::compute_work_requests() {
unsigned int i;
double work_min_period = global_prefs.work_buf_min_days * SECONDS_PER_DAY;
double global_work_need = work_needed_secs();
double prrs;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_SCHED_CPU);
overall_work_fetch_urgency = WORK_FETCH_DONT_NEED;
for (i = 0; i < projects.size(); ++i) {
projects[i]->work_request_urgency = WORK_FETCH_DONT_NEED;
projects[i]->work_request = 0;
}
if (!should_get_work()) {
scope_messages.printf("compute_work_requests(): we don't need any work\n");
overall_work_fetch_urgency = WORK_FETCH_DONT_NEED;
return 0;
} else if (no_work_for_a_cpu()) {
scope_messages.printf("compute_work_requests(): CPU is idle\n");
overall_work_fetch_urgency = WORK_FETCH_NEED_IMMEDIATELY;
} else if (global_work_need > 0) {
scope_messages.printf("compute_work_requests(): global work needed is greater than zero\n");
overall_work_fetch_urgency = WORK_FETCH_NEED;
} else {
overall_work_fetch_urgency = WORK_FETCH_OK;
}
double max_fetch = work_min_period;
// it is possible to have a work fetch policy of no new work and also have
// a CPU idle or not enough to fill the cache.
// In this case, we get work, but in small increments
// as we are already in trouble and we need to minimize the damage.
//
if (work_fetch_no_new_work) {
max_fetch = 1.0;
}
prrs = potentially_runnable_resource_share();
// for each project, compute
// min_results = min # of results for project needed by CPU scheduling,
// to avoid "starvation".
// Then estimate how long it's going to be until we have fewer
// than this # of results remaining.
//
for (i=0; i<projects.size(); ++i) {
PROJECT *p = projects[i];
p->work_request = 0;
p->work_request_urgency = WORK_FETCH_DONT_NEED;
if (!p->contactable()) continue;
// ??? explain the following
//
if ((p->long_term_debt < -global_prefs.cpu_scheduling_period_minutes * 60) && (overall_work_fetch_urgency != WORK_FETCH_NEED_IMMEDIATELY)) continue;
int min_results = proj_min_results(p, prrs);
double estimated_time_to_starvation = time_until_work_done(p, min_results-1, prrs);
// determine project urgency
//
if (estimated_time_to_starvation < work_min_period) {
if (estimated_time_to_starvation == 0) {
scope_messages.printf(
"CLIENT_STATE::compute_work_requests(): project '%s' is starved\n",
p->project_name
);
p->work_request_urgency = WORK_FETCH_NEED_IMMEDIATELY;
} else {
scope_messages.printf(
"CLIENT_STATE::compute_work_requests(): project '%s' will starve in %.2f sec\n",
p->project_name, estimated_time_to_starvation
);
p->work_request_urgency = WORK_FETCH_NEED;
}
// determine work requests for each project
// NOTE: don't need to divide by active_frac etc.;
// the scheduler does that (see sched/sched_send.C)
//
p->work_request = max(0.0,
//(2*work_min_period - estimated_time_to_starvation)
(work_min_period - estimated_time_to_starvation)
* ncpus
);
} else if (overall_work_fetch_urgency > WORK_FETCH_OK) {
p->work_request_urgency = WORK_FETCH_OK;
p->work_request = max(global_work_need, 1.0);
//In the case of an idle CPU, we need at least one second.
}
scope_messages.printf(
"CLIENT_STATE::compute_work_requests(): project %s work req: %f sec urgency: %d\n",
p->project_name, p->work_request, p->work_request_urgency
);
}
scope_messages.printf(
"CLIENT_STATE::compute_work_requests(): client work need: %f sec, urgency %d\n",
global_work_need, overall_work_fetch_urgency
);
return 0;
}
// called from the client's polling loop.
// initiate scheduler RPC activity if needed and possible
//
bool CLIENT_STATE::scheduler_rpc_poll() {
overall_work_fetch_urgency = WORK_FETCH_DONT_NEED;
PROJECT *p;
bool action=false;
static double last_time=0;
static double work_need_inform_time = 0;
if (gstate.now - last_time < 1.0) return false;
last_time = gstate.now;
switch(scheduler_op->state) {
case SCHEDULER_OP_STATE_IDLE:
if (scheduler_op->check_master_fetch_start()) {
action = true;
break;
}
if (should_get_work()) {
compute_work_requests();
}
// contact project requested by user
//
p = next_project_sched_rpc_pending();
if (p) {
scheduler_op->init_return_results(p);
action = true;
break;
}
if (network_suspended || activities_suspended) break;
// report overdue results
//
p = find_project_with_overdue_results();
if (p) {
scheduler_op->init_return_results(p);
action = true;
break;
}
if (!(exit_when_idle && contacted_sched_server) && overall_work_fetch_urgency != WORK_FETCH_DONT_NEED) {
if (work_need_inform_time < gstate.now) {
if (overall_work_fetch_urgency == WORK_FETCH_NEED) {
msg_printf(NULL, MSG_INFO,
"May run out of work in %.2f days; requesting more",
global_prefs.work_buf_min_days
);
} else if (overall_work_fetch_urgency == WORK_FETCH_NEED_IMMEDIATELY) {
msg_printf(NULL, MSG_INFO,
"Insufficient work; requesting more"
);
}
work_need_inform_time = gstate.now + 3600;
}
scheduler_op->init_get_work();
if (scheduler_op->state != SCHEDULER_OP_STATE_IDLE) {
break;
}
}
break;
default:
scheduler_op->poll();
if (scheduler_op->state == SCHEDULER_OP_STATE_IDLE) {
action = true;
}
break;
}
return action;
}
// Handle the reply from a scheduler
//
int CLIENT_STATE::handle_scheduler_reply(
PROJECT* project, char* scheduler_url, int& nresults
) {
SCHEDULER_REPLY sr;
FILE* f;
int retval;
unsigned int i;
bool signature_valid, update_global_prefs=false, update_project_prefs=false;
char buf[256], filename[256];
nresults = 0;
contacted_sched_server = true;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_SCHED_OP);
get_sched_reply_filename(*project, filename);
scope_messages.printf_file(filename, "reply: ");
f = fopen(filename, "r");
if (!f) return ERR_FOPEN;
retval = sr.parse(f, project);
fclose(f);
if (retval) return retval;
for (i=0; i<sr.messages.size(); i++) {
USER_MESSAGE& um = sr.messages[i];
sprintf(buf, "Message from server: %s", um.message.c_str());
int prio = (!strcmp(um.priority.c_str(), "high"))?MSG_ERROR:MSG_INFO;
show_message(project, buf, prio);
}
// if project is down, return error (so that we back off)
// and don't do anything else
//
if (sr.project_is_down) {
return ERR_PROJECT_DOWN;
}
// The project returns a hostid only if it has created a new host record.
// In that case we should reset RPC seqno
//
if (sr.hostid) {
project->hostid = sr.hostid;
project->rpc_seqno = 0;
}
// see if we have a new venue from this project
//
if (strlen(sr.host_venue) && strcmp(project->host_venue, sr.host_venue)) {
safe_strcpy(project->host_venue, sr.host_venue);
msg_printf(project, MSG_INFO, "New host venue: %s", sr.host_venue);
update_project_prefs = true;
if (project == global_prefs_source_project()) {
strcpy(main_host_venue, sr.host_venue);
update_global_prefs = true;
}
}
// if the scheduler reply includes global preferences,
// insert extra elements, write to disk, and parse
//
if (sr.global_prefs_xml) {
f = boinc_fopen(GLOBAL_PREFS_FILE_NAME, "w");
if (!f) return ERR_FOPEN;
fprintf(f,
"<global_preferences>\n"
);
// tag with the project and scheduler URL,
// but only if not already tagged
//
if (!strstr(sr.global_prefs_xml, "<source_project>")) {
fprintf(f,
" <source_project>%s</source_project>\n"
" <source_scheduler>%s</source_scheduler>\n",
project->master_url,
scheduler_url
);
}
fprintf(f,
"%s"
"</global_preferences>\n",
sr.global_prefs_xml
);
fclose(f);
update_global_prefs = true;
}
if (update_global_prefs) {
bool found_venue;
retval = global_prefs.parse_file(
GLOBAL_PREFS_FILE_NAME, project->host_venue, found_venue
);
if (retval) {
msg_printf(project, MSG_ERROR, "Can't parse general preferences");
} else {
show_global_prefs_source(found_venue);
int ncpus_old = ncpus;
install_global_prefs();
if (ncpus != ncpus_old) {
msg_printf(0, MSG_INFO,
"Number of usable CPUs has changed. Running benchmarks."
);
run_cpu_benchmarks = true;
}
}
}
// deal with project preferences (should always be there)
// If they've changed, write to account file,
// then parse to get our venue, and pass to running apps
//
if (sr.project_prefs_xml) {
if (strcmp(project->project_prefs.c_str(), sr.project_prefs_xml)) {
project->project_prefs = string(sr.project_prefs_xml);
update_project_prefs = true;
}
}
if (update_project_prefs) {
retval = project->write_account_file();
if (retval) {
msg_printf(project, MSG_ERROR, "Can't write account file: %d", retval);
return retval;
}
project->parse_account_file();
project->parse_preferences_for_user_files();
active_tasks.request_reread_prefs(project);
}
// if the scheduler reply includes a code-signing key,
// accept it if we don't already have one from the project.
// Otherwise verify its signature, using the key we already have.
//
if (sr.code_sign_key) {
if (!strlen(project->code_sign_key)) {
safe_strcpy(project->code_sign_key, sr.code_sign_key);
} else {
if (sr.code_sign_key_signature) {
retval = verify_string2(
sr.code_sign_key, sr.code_sign_key_signature,
project->code_sign_key, signature_valid
);
if (!retval && signature_valid) {
safe_strcpy(project->code_sign_key, sr.code_sign_key);
} else {
msg_printf(project, MSG_ERROR, "New code signing key doesn't validate");
}
} else {
msg_printf(project, MSG_ERROR, "Missing code sign key signature");
}
}
}
// copy new entities to client state
//
for (i=0; i<sr.apps.size(); i++) {
APP* app = lookup_app(project, sr.apps[i].name);
if (!app) {
app = new APP;
*app = sr.apps[i];
retval = link_app(project, app);
if (retval) {
msg_printf(project, MSG_ERROR,
"Can't link app %s in sched reply", app->name
);
delete app;
} else {
apps.push_back(app);
}
}
}
FILE_INFO* fip;
for (i=0; i<sr.file_infos.size(); i++) {
fip = lookup_file_info(project, sr.file_infos[i].name);
if (fip) {
fip->merge_info(sr.file_infos[i]);
} else {
fip = new FILE_INFO;
*fip = sr.file_infos[i];
retval = link_file_info(project, fip);
if (retval) {
msg_printf(project, MSG_ERROR,
"Can't link file_info %s in sched reply", fip->name
);
delete fip;
} else {
file_infos.push_back(fip);
}
}
}
for (i=0; i<sr.file_deletes.size(); i++) {
fip = lookup_file_info(project, sr.file_deletes[i].c_str());
if (fip) {
msg_printf(project, MSG_INFO, "Got server request to delete file %s\n", fip->name);
fip->marked_for_delete = true;
}
}
for (i=0; i<sr.app_versions.size(); i++) {
APP* app = lookup_app(project, sr.app_versions[i].app_name);
APP_VERSION* avp = lookup_app_version(app, sr.app_versions[i].version_num);
if (avp) {
// if we had download failures, clear them
//
avp->clear_errors();
continue;
}
avp = new APP_VERSION;
*avp = sr.app_versions[i];
retval = link_app_version(project, avp);
if (retval) {
msg_printf(project, MSG_ERROR,
"Can't link app version %s %d in sched reply",
avp->app_name, avp->version_num
);
delete avp;
continue;
}
app_versions.push_back(avp);
}
for (i=0; i<sr.workunits.size(); i++) {
if (lookup_workunit(project, sr.workunits[i].name)) continue;
WORKUNIT* wup = new WORKUNIT;
*wup = sr.workunits[i];
int vnum = choose_version_num(wup->app_name, sr);
if (vnum < 0) {
msg_printf(project, MSG_ERROR,
"Can't find app version for WU %s", wup->name
);
delete wup;
continue;
}
wup->version_num = vnum;
retval = link_workunit(project, wup);
if (retval) {
msg_printf(project, MSG_ERROR,
"Can't link workunit %s in sched reply", wup->name
);
delete wup;
continue;
}
wup->clear_errors();
workunits.push_back(wup);
}
for (i=0; i<sr.results.size(); i++) {
if (lookup_result(project, sr.results[i].name)) {
msg_printf(project, MSG_ERROR,
"Already have result %s\n", sr.results[i].name
);
continue;
}
RESULT* rp = new RESULT;
*rp = sr.results[i];
retval = link_result(project, rp);
if (retval) {
msg_printf(project, MSG_ERROR,
"Can't link result %s in sched reply", rp->name
);
delete rp;
continue;
}
results.push_back(rp);
rp->state = RESULT_NEW;
nresults++;
}
// update records for ack'ed results
//
for (i=0; i<sr.result_acks.size(); i++) {
RESULT* rp = lookup_result(project, sr.result_acks[i].name);
scope_messages.printf(
"CLIENT_STATE::handle_scheduler_reply(): got ack for result %s\n",
sr.result_acks[i].name
);
if (rp) {
rp->got_server_ack = true;
} else {
msg_printf(project, MSG_ERROR,
"Got ack for result %s, can't find", sr.result_acks[i].name
);
}
}
// remove acked trickle files
//
if (sr.message_ack) {
remove_trickle_files(project);
}
if (sr.send_file_list) {
project->send_file_list = true;
}
project->sched_rpc_pending = false;
// handle delay request
//
if (sr.request_delay) {
double x = gstate.now + sr.request_delay;
if (x > project->min_rpc_time) project->min_rpc_time = x;
} else {
project->min_rpc_time = 0;
}
set_client_state_dirty("handle_scheduler_reply");
scope_messages.printf("CLIENT_STATE::handle_scheduler_reply(): State after handle_scheduler_reply():\n");
print_summary();
return 0;
}
bool CLIENT_STATE::should_get_work() {
// if there are fewer wus available then CPUS, then we need more work.
if (no_work_for_a_cpu()) return true;
double tot_cpu_time_remaining = 0;
for (unsigned int i = 0; i < results.size();++i) {
tot_cpu_time_remaining += results[i]->estimated_cpu_time_remaining();
}
if (tot_cpu_time_remaining < global_prefs.work_buf_min_days * SECONDS_PER_DAY) return true;
// if the CPU started this time period overloaded,
// let it process for a while to get out of the CPU overload state.
//
if (!work_fetch_no_new_work) {
set_scheduler_modes();
}
bool ret = !work_fetch_no_new_work;
return ret;
}
void PROJECT::set_rrsim_proc_rate(double per_cpu_proc_rate, double rrs) {
int nactive = (int)active.size();
if (nactive == 0) return;
double x = resource_share/rrs;
// if this project has fewer active results than CPUs,
// scale up its share to reflect this
//
if (nactive < gstate.ncpus) {
x *= ((double)gstate.ncpus)/nactive;
}
// But its rate on a given CPU can't exceed the CPU speed
//
if (x>1) {
x = 1;
}
rrsim_proc_rate = x*per_cpu_proc_rate;
}
// return true if we don't have enough runnable tasks to keep all CPUs busy
//
bool CLIENT_STATE::no_work_for_a_cpu() {
unsigned int i;
int count = 0;
for (i=0; i< results.size(); i++){
RESULT* rp = results[i];
if (!rp->runnable_soon()) continue;
count++;
}
return ncpus > count;
}
// more detailed variant
bool CLIENT_STATE::rr_misses_deadline(double per_cpu_proc_rate, double rrs) {
PROJECT* p, *pbest;
RESULT* rp, *rpbest;
vector<RESULT*> active;
unsigned int i;
double x;
vector<RESULT*>::iterator it;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_SCHED_CPU);
// Initilize the "active" and "pending" lists for each project.
// These keep track of that project's results
//
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->active.clear();
p->pending.clear();
}
for (i=0; i<results.size(); i++) {
rp = results[i];
if (!rp->runnable()) continue;
if (rp->project->non_cpu_intensive) continue;
rp->rrsim_cpu_left = rp->estimated_cpu_time_remaining();
p = rp->project;
if (p->active.size() < (unsigned int)ncpus) {
active.push_back(rp);
p->active.push_back(rp);
} else {
p->pending.push_back(rp);
}
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->set_rrsim_proc_rate(per_cpu_proc_rate, rrs);
}
// Simulation loop. Keep going until work done
//
double sim_now = now;
while (active.size()) {
// compute finish times and see which result finishes first
//
rpbest = NULL;
for (i=0; i<active.size(); i++) {
rp = active[i];
p = rp->project;
rp->rrsim_finish_delay = rp->rrsim_cpu_left/p->rrsim_proc_rate;
if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) {
rpbest = rp;
}
}
// "rpbest" is first result to finish. Does it miss its deadline?
//
double diff = sim_now + rpbest->rrsim_finish_delay - rpbest->report_deadline;
if (diff > 0) {
scope_messages.printf(
"rr_sim: result %s misses deadline by %f\n", rpbest->name, diff
);
return true;
}
// remove *rpbest from active set,
// and adjust CPU time left for other results
//
it = active.begin();
while (it != active.end()) {
rp = *it;
if (rp == rpbest) {
it = active.erase(it);
} else {
x = rp->project->rrsim_proc_rate*rpbest->rrsim_finish_delay;
rp->rrsim_cpu_left -= x;
it++;
}
}
pbest = rpbest->project;
// remove *rpbest from its project's active set
//
it = pbest->active.begin();
while (it != pbest->active.end()) {
rp = *it;
if (rp == rpbest) {
it = pbest->active.erase(it);
} else {
it++;
}
}
// If project has more results, add one to active set.
//
if (pbest->pending.size()) {
rp = pbest->pending[0];
pbest->pending.erase(pbest->pending.begin());
active.push_back(rp);
pbest->active.push_back(rp);
}
// If all work done for a project, subtract that project's share
// and recompute processing rates
//
if (pbest->active.size() == 0) {
rrs -= pbest->resource_share;
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->set_rrsim_proc_rate(per_cpu_proc_rate, rrs);
}
}
sim_now += rpbest->rrsim_finish_delay;
}
scope_messages.printf( "rr_sim: deadlines met\n");
return false;
}
#if 0
// simulate weighted round-robin scheduling,
// and see if any result misses its deadline.
//
bool CLIENT_STATE::round_robin_misses_deadline(
double per_cpu_proc_rate, double rrs
) {
std::vector <double> booked_to;
int k;
unsigned int i, j;
RESULT* rp;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_SCHED_CPU);
for (k=0; k<ncpus; k++) {
booked_to.push_back(now);
}
for (i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (!p->runnable()) continue;
double project_proc_rate = per_cpu_proc_rate * (p->resource_share/rrs);
for (j=0; j<results.size(); j++) {
rp = results[j];
if (rp->project != p) continue;
if (!rp->runnable()) continue;
double first = booked_to[0];
int ifirst = 0;
for (k=1; k<ncpus; k++) {
if (booked_to[k] < first) {
first = booked_to[k];
ifirst = k;
}
}
booked_to[ifirst] += rp->estimated_cpu_time_remaining()/project_proc_rate;
scope_messages.printf("set_scheduler_modes() result %s: est %f, deadline %f\n",
rp->name, booked_to[ifirst], rp->report_deadline
);
if (booked_to[ifirst] > rp->report_deadline) {
return true;
}
}
}
return false;
}
#endif
#if 0
// Simulate what will happen if we do EDF schedule starting now.
// Go through non-done results in EDF order,
// keeping track in "booked_to" of how long each CPU is occupied
//
bool CLIENT_STATE::edf_misses_deadline(double per_cpu_proc_rate) {
std::map<double, RESULT*>::iterator it;
std::map<double, RESULT*> results_by_deadline;
std::vector <double> booked_to;
unsigned int i;
int j;
RESULT* rp;
for (j=0; j<ncpus; j++) {
booked_to.push_back(now);
}
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->computing_done()) continue;
if (rp->project->non_cpu_intensive) continue;
results_by_deadline[rp->report_deadline] = rp;
}
for (
it = results_by_deadline.begin();
it != results_by_deadline.end();
it++
) {
rp = (*it).second;
// find the CPU that will be free first
//
double lowest_book = booked_to[0];
int lowest_booked_cpu = 0;
for (j=1; j<ncpus; j++) {
if (booked_to[j] < lowest_book) {
lowest_book = booked_to[j];
lowest_booked_cpu = j;
}
}
booked_to[lowest_booked_cpu] += rp->estimated_cpu_time_remaining()
/(per_cpu_proc_rate*CPU_PESSIMISM_FACTOR);
if (booked_to[lowest_booked_cpu] > rp->report_deadline) {
return true;
}
}
return false;
}
#endif
// Decide on modes for work-fetch and CPU sched policies.
// Namely, set the variables
// - work_fetch_no_new_work
// - cpu_earliest_deadline_first
// and print a message if we're changing their value
//
void CLIENT_STATE::set_scheduler_modes() {
RESULT* rp;
unsigned int i;
bool should_not_fetch_work = false;
bool use_earliest_deadline_first = false;
double total_proc_rate = avg_proc_rate();
double per_cpu_proc_rate = total_proc_rate/ncpus;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_SCHED_CPU);
double rrs = runnable_resource_share();
if (rr_misses_deadline(per_cpu_proc_rate, rrs)) {
// if round robin would miss a deadline, use EDF
//
use_earliest_deadline_first = true;
if (!no_work_for_a_cpu()) {
should_not_fetch_work = true;
}
} else {
// if fetching more work would cause round-robin to
// miss a deadline, don't fetch more work
//
PROJECT* p = next_project_need_work();
if (p && !p->runnable()) {
rrs += p->resource_share;
if (rr_misses_deadline(per_cpu_proc_rate, rrs)) {
should_not_fetch_work = true;
}
}
}
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->computing_done()) continue;
if (rp->project->non_cpu_intensive) continue;
// Is the nearest deadline within a day?
//
if (rp->report_deadline - gstate.now < 60 * 60 * 24) {
use_earliest_deadline_first = true;
scope_messages.printf(
"set_scheduler_modes(): Less than 1 day until deadline.\n"
);
}
// is there a deadline < twice the users connect period?
//
if (rp->report_deadline - gstate.now < global_prefs.work_buf_min_days * SECONDS_PER_DAY * 2) {
use_earliest_deadline_first = true;
scope_messages.printf(
"set_scheduler_modes(): Deadline is before reconnect time.\n"
);
}
}
// display only when the policy changes to avoid once per second
//
if (work_fetch_no_new_work && !should_not_fetch_work) {
msg_printf(NULL, MSG_INFO,
"Allowing work fetch again."
);
}
if (!work_fetch_no_new_work && should_not_fetch_work) {
msg_printf(NULL, MSG_INFO,
"Suspending work fetch because computer is overcommitted."
);
}
if (cpu_earliest_deadline_first && !use_earliest_deadline_first) {
msg_printf(NULL, MSG_INFO,
"Resuming round-robin CPU scheduling."
);
}
if (!cpu_earliest_deadline_first && use_earliest_deadline_first) {
msg_printf(NULL, MSG_INFO,
"Using earliest-deadline-first scheduling because computer is overcommitted."
);
}
work_fetch_no_new_work = should_not_fetch_work;
cpu_earliest_deadline_first = use_earliest_deadline_first;
}
double CLIENT_STATE::work_needed_secs() {
double total_work = 0;
for( unsigned int i = 0; i < results.size(); ++i) {
if (results[i]->project->non_cpu_intensive) continue;
total_work += results[i]->estimated_cpu_time_remaining();
}
double x = global_prefs.work_buf_min_days*SECONDS_PER_DAY*avg_proc_rate() - total_work;
if (x < 0) {
return 0;
}
return x;
}
const char *BOINC_RCSID_d35a4a7711 = "$Id$";