boinc/client/client_state.C

1041 lines
32 KiB
C

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
#include "cpp.h"
#if HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_SYS_SIGNAL_H
#include <sys/signal.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "parse.h"
#include "util.h"
#include "error_numbers.h"
#include "filesys.h"
#include "file_names.h"
#include "hostinfo.h"
#include "http.h"
#include "log_flags.h"
#include "client_state.h"
CLIENT_STATE gstate;
CLIENT_STATE::CLIENT_STATE() {
net_xfers = new NET_XFER_SET;
http_ops = new HTTP_OP_SET(net_xfers);
file_xfers = new FILE_XFER_SET(http_ops);
pers_file_xfers = new PERS_FILE_XFER_SET(file_xfers);
scheduler_op = new SCHEDULER_OP(http_ops);
client_state_dirty = false;
exit_when_idle = false;
return_results_immediately = false;
run_cpu_benchmarks = false;
skip_cpu_benchmarks = false;
file_xfer_giveup_period = PERS_GIVEUP;
contacted_sched_server = false;
activities_suspended = false;
previous_activities_suspended = false;
core_client_major_version = MAJOR_VERSION;
core_client_minor_version = MINOR_VERSION;
platform_name = HOSTTYPE;
exit_after_app_start_secs = 0;
app_started = 0;
exit_before_upload = false;
user_idle = true;
use_http_proxy = false;
use_socks_proxy = false;
show_projects = false;
strcpy(detach_project_url, "");
strcpy(proxy_server_name, "");
proxy_server_port = 80;
strcpy(socks_user_name, "");
strcpy(socks_user_passwd, "");
strcpy(host_venue, "");
user_run_request = USER_RUN_REQUEST_AUTO;
started_by_screensaver = false;
requested_exit = false;
#ifdef _WIN32
cpu_benchmarks_handle = NULL;
#endif
cpu_benchmarks_id = 0;
master_fetch_period = MASTER_FETCH_PERIOD;
retry_base_period = RETRY_BASE_PERIOD;
retry_cap = RETRY_CAP;
master_fetch_retry_cap = MASTER_FETCH_RETRY_CAP;
master_fetch_interval = MASTER_FETCH_INTERVAL;
sched_retry_delay_min = SCHED_RETRY_DELAY_MIN;
sched_retry_delay_max = SCHED_RETRY_DELAY_MAX;
pers_retry_delay_min = PERS_RETRY_DELAY_MIN;
pers_retry_delay_max = PERS_RETRY_DELAY_MAX;
pers_giveup = PERS_GIVEUP;
}
#if 0
// Deallocate memory to prevent unneeded reporting of memory leaks
//
void CLIENT_STATE::free_mem() {
vector<PROJECT*>::iterator proj_iter;
vector<APP*>::iterator app_iter;
vector<FILE_INFO*>::iterator fi_iter;
vector<APP_VERSION*>::iterator av_iter;
vector<WORKUNIT*>::iterator wu_iter;
vector<RESULT*>::iterator res_iter;
PROJECT *proj;
APP *app;
FILE_INFO *fi;
APP_VERSION *av;
WORKUNIT *wu;
RESULT *res;
proj_iter = projects.begin();
while (proj_iter != projects.end()) {
proj = projects[0];
proj_iter = projects.erase(proj_iter);
delete proj;
}
app_iter = apps.begin();
while (app_iter != apps.end()) {
app = apps[0];
app_iter = apps.erase(app_iter);
delete app;
}
fi_iter = file_infos.begin();
while (fi_iter != file_infos.end()) {
fi = file_infos[0];
fi_iter = file_infos.erase(fi_iter);
delete fi;
}
av_iter = app_versions.begin();
while (av_iter != app_versions.end()) {
av = app_versions[0];
av_iter = app_versions.erase(av_iter);
delete av;
}
wu_iter = workunits.begin();
while (wu_iter != workunits.end()) {
wu = workunits[0];
wu_iter = workunits.erase(wu_iter);
delete wu;
}
res_iter = results.begin();
while (res_iter != results.end()) {
res = results[0];
res_iter = results.erase(res_iter);
delete res;
}
active_tasks.free_mem();
}
#endif
int CLIENT_STATE::init() {
int retval;
unsigned int i;
srand(time(NULL));
language.read_language_file(LANGUAGE_FILE_NAME);
// printing the platform name here helps bug reports because users often
// give us this line but don't say what platform they have
//
msg_printf(
NULL, MSG_INFO, "Starting BOINC client version %d.%02d (%s)",
core_client_major_version, core_client_minor_version, platform_name
);
// we need the host venue while parsing account files.
// Get it from the client state file
//
parse_venue();
// parse account files.
// If there are none, prompt user for project URL and create file
//
retval = parse_account_files();
if (projects.size() == 0) {
retval = add_new_project();
if (retval) {
printf("can't get initial project\n");
return retval;
}
retval = parse_account_files();
if (projects.size() == 0) {
if (retval) {
printf("can't get initial project\n");
return retval;
}
}
}
// Parse the client state file,
// ignoring any <project> tags (and associated stuff)
// for projects with no account file
//
clear_host_info(host_info);
parse_state_file();
print_summary();
do_cmdline_actions();
if (core_client_major_version != old_major_version) {
msg_printf(NULL, MSG_INFO,
"State file has different major version (%d.%02d); resetting projects\n",
old_major_version, old_minor_version
);
for (i=0; i<projects.size(); i++) {
reset_project(projects[i]);
}
}
// Read the global preferences file, if it exists.
// Do this after reading the state file so we know our venue
//
retval = global_prefs.parse_file(host_venue);
if (retval) {
msg_printf(NULL, MSG_INFO, "Using default preferences");
}
install_global_prefs();
// Getting host info is very fast, so we can do it anytime
//
get_host_info(host_info);
// running CPU benchmarks is slow, so do it infrequently
//
if (should_run_cpu_benchmarks()) {
fork_run_cpu_benchmarks();
}
set_nslots();
// set up the project and slot directories
//
retval = make_project_dirs();
if (retval) return retval;
// Restart any tasks that were running when we last quit the client
//
restart_tasks();
return 0;
}
// sleep up to x seconds,
// but if network I/O becomes possible,
// wake up and do as much as limits allow.
// If suspended, just sleep x seconds.
// This gets called from the Win GUI to allow high network throughput.
// NOTE: when a socket is connecting, this gets called repeatedly,
// because the NetActivity messages seems to get sent repeatedly.
// This is inefficient but not a problem (I guess)
//
int CLIENT_STATE::net_sleep(double x) {
ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_NET_XFER);
scope_messages.printf("CLIENT_STATE::net_sleep(%f)\n", x);
if (activities_suspended) {
boinc_sleep(x);
return 0;
} else {
return net_xfers->net_sleep(x);
}
}
#define POLL_ACTION(name, func) \
do { if (func()) { \
++actions; \
scope_messages.printf("CLIENT_STATE::do_something(): active task: " #name "\n"); \
} } while(0)
// do_something polls each of the client's finite-state machine layers,
// possibly triggering state transitions.
// Returns true if something happened
// (in which case should call this again immediately)
//
bool CLIENT_STATE::do_something() {
int actions = 0, reason;
ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_POLL);
check_suspend_activities(reason);
if (reason) {
if (!activities_suspended) {
suspend_activities(reason);
}
} else {
if (activities_suspended) {
resume_activities();
}
}
previous_activities_suspended = activities_suspended;
activities_suspended = (reason != 0);
// if we're doing CPU benchmarks, don't do anything else
//
if (reason & SUSPEND_REASON_BENCHMARKS) return false;
scope_messages.printf("CLIENT_STATE::do_something(): Begin poll:\n");
++scope_messages;
ss_logic.poll();
if (activities_suspended) {
scope_messages.printf("CLIENT_STATE::do_something(): No active tasks! (suspended)\n");
POLL_ACTION(net_xfers , net_xfers->poll );
POLL_ACTION(http_ops , http_ops->poll );
POLL_ACTION(scheduler_rpc , scheduler_rpc_poll );
POLL_ACTION(garbage_collect , garbage_collect );
POLL_ACTION(update_results , update_results );
} else {
net_stats.poll(*net_xfers);
// Call these functions in bottom to top order with
// respect to the FSM hierarchy
//
POLL_ACTION(net_xfers , net_xfers->poll );
POLL_ACTION(http_ops , http_ops->poll );
POLL_ACTION(file_xfers , file_xfers->poll );
POLL_ACTION(active_tasks , active_tasks.poll );
POLL_ACTION(scheduler_rpc , scheduler_rpc_poll );
POLL_ACTION(start_apps , start_apps );
POLL_ACTION(pers_file_xfers , pers_file_xfers->poll );
POLL_ACTION(handle_finished_apps , handle_finished_apps );
POLL_ACTION(handle_pers_file_xfers , handle_pers_file_xfers );
POLL_ACTION(garbage_collect , garbage_collect );
POLL_ACTION(update_results , update_results );
}
if (write_state_file_if_needed()) {
msg_printf(NULL, MSG_ERROR, "Couldn't write state file");
}
--log_messages;
scope_messages.printf(
"CLIENT_STATE::do_something(): End poll: %d tasks active\n", actions
);
if (actions > 0) {
return true;
} else {
time_stats.update(true, !activities_suspended);
return false;
}
}
// See if the project specified by master_url already exists
// in the client state record. Ignore any trailing "/" characters
//
PROJECT* CLIENT_STATE::lookup_project(char* master_url) {
int len1, len2;
char *mu;
len1 = strlen(master_url);
if (master_url[strlen(master_url)-1] == '/') len1--;
for (unsigned int i=0; i<projects.size(); i++) {
mu = projects[i]->master_url;
len2 = strlen(mu);
if (mu[strlen(mu)-1] == '/') len2--;
if (!strncmp(master_url, projects[i]->master_url, max(len1,len2))) {
return projects[i];
}
}
return 0;
}
APP* CLIENT_STATE::lookup_app(PROJECT* p, char* name) {
for (unsigned int i=0; i<apps.size(); i++) {
APP* app = apps[i];
if (app->project == p && !strcmp(name, app->name)) return app;
}
return 0;
}
RESULT* CLIENT_STATE::lookup_result(PROJECT* p, char* name) {
for (unsigned int i=0; i<results.size(); i++) {
RESULT* rp = results[i];
if (rp->project == p && !strcmp(name, rp->name)) return rp;
}
return 0;
}
WORKUNIT* CLIENT_STATE::lookup_workunit(PROJECT* p, char* name) {
for (unsigned int i=0; i<workunits.size(); i++) {
WORKUNIT* wup = workunits[i];
if (wup->project == p && !strcmp(name, wup->name)) return wup;
}
return 0;
}
APP_VERSION* CLIENT_STATE::lookup_app_version(APP* app, int version_num) {
for (unsigned int i=0; i<app_versions.size(); i++) {
APP_VERSION* avp = app_versions[i];
if (avp->app == app && version_num==avp->version_num) {
return avp;
}
}
return 0;
}
FILE_INFO* CLIENT_STATE::lookup_file_info(PROJECT* p, char* name) {
for (unsigned int i=0; i<file_infos.size(); i++) {
FILE_INFO* fip = file_infos[i];
if (fip->project == p && !strcmp(fip->name, name)) {
return fip;
}
}
return 0;
}
// Find the active task for a given result
//
ACTIVE_TASK* CLIENT_STATE::lookup_active_task_by_result(RESULT* rep) {
for (unsigned int i = 0; i < active_tasks.active_tasks.size(); i ++) {
if (active_tasks.active_tasks[i]->result == rep) {
return active_tasks.active_tasks[i];
}
}
return NULL;
}
// functions to create links between state objects
// (which, in their XML form, reference one another by name)
//
int CLIENT_STATE::link_app(PROJECT* p, APP* app) {
app->project = p;
return 0;
}
int CLIENT_STATE::link_file_info(PROJECT* p, FILE_INFO* fip) {
fip->project = p;
return 0;
}
int CLIENT_STATE::link_app_version(PROJECT* p, APP_VERSION* avp) {
APP* app;
FILE_INFO* fip;
FILE_REF file_ref;
unsigned int i;
avp->project = p;
app = lookup_app(p, avp->app_name);
if (!app) {
msg_printf(0, MSG_ERROR, "app_version refers to nonexistent app: %s\n", avp->app_name);
return ERR_NULL;
}
avp->app = app;
for (i=0; i<avp->app_files.size(); i++) {
file_ref = avp->app_files[i];
fip = lookup_file_info(p, file_ref.file_name);
if (!fip) {
msg_printf(0, MSG_ERROR,
"app_version refers to nonexistent file: %s\n",
file_ref.file_name
);
return ERR_NULL;
}
// any executable file associated with an app version must be signed
//
if (fip->executable) {
fip->signature_required = true;
}
avp->app_files[i].file_info = fip;
}
return 0;
}
int CLIENT_STATE::link_file_ref(PROJECT* p, FILE_REF* file_refp) {
FILE_INFO* fip;
fip = lookup_file_info(p, file_refp->file_name);
if (!fip) {
msg_printf(0, MSG_ERROR, "File ref refers to nonexistent file: %s\n", file_refp->file_name);
return ERR_NULL;
}
file_refp->file_info = fip;
return 0;
}
int CLIENT_STATE::link_workunit(PROJECT* p, WORKUNIT* wup) {
APP* app;
APP_VERSION* avp;
unsigned int i;
int retval;
app = lookup_app(p, wup->app_name);
if (!app) {
msg_printf(0, MSG_ERROR, "WU refers to nonexistent app: %s\n", wup->app_name);
return ERR_NULL;
}
avp = lookup_app_version(app, wup->version_num);
if (!avp) {
msg_printf(0, MSG_ERROR,
"WU refers to nonexistent app_version: %s %d\n",
wup->app_name, wup->version_num
);
return ERR_NULL;
}
wup->project = p;
wup->app = app;
wup->avp = avp;
for (i=0; i<wup->input_files.size(); i++) {
retval = link_file_ref(p, &wup->input_files[i]);
if (retval) return retval;
}
return 0;
}
int CLIENT_STATE::link_result(PROJECT* p, RESULT* rp) {
WORKUNIT* wup;
unsigned int i;
int retval;
wup = lookup_workunit(p, rp->wu_name);
if (!wup) {
fprintf(stderr, "result refers to nonexistent WU: %s\n", rp->wu_name);
return ERR_NULL;
}
rp->project = p;
rp->wup = wup;
rp->app = wup->app;
for (i=0; i<rp->output_files.size(); i++) {
retval = link_file_ref(p, &rp->output_files[i]);
if (retval) {
msg_printf(0, MSG_ERROR, "link_result: link_file_ref failed\n");
return retval;
}
}
return 0;
}
// Print debugging information about how many projects/files/etc
// are currently in the client state record
//
void CLIENT_STATE::print_summary() {
unsigned int i;
int t;
if (!log_flags.state_debug) return;
ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_STATE);
scope_messages.printf("CLIENT_STATE::print_summary(): Client state summary:\n");
++log_messages;
scope_messages.printf("%d projects:\n", (int)projects.size());
for (i=0; i<projects.size(); i++) {
t = projects[i]->min_rpc_time;
if (t) {
scope_messages.printf(" %s min RPC %d seconds from now\n", projects[i]->master_url, (int)(t-time(0)));
} else {
scope_messages.printf(" %s\n", projects[i]->master_url);
}
}
scope_messages.printf("%d file_infos:\n", (int)file_infos.size());
for (i=0; i<file_infos.size(); i++) {
scope_messages.printf(" %s status:%d %s\n", file_infos[i]->name, file_infos[i]->status, file_infos[i]->pers_file_xfer?"active":"inactive");
}
scope_messages.printf("%d app_versions\n", (int)app_versions.size());
for (i=0; i<app_versions.size(); i++) {
scope_messages.printf(" %s %d\n", app_versions[i]->app_name, app_versions[i]->version_num);
}
scope_messages.printf("%d workunits\n", (int)workunits.size());
for (i=0; i<workunits.size(); i++) {
scope_messages.printf(" %s\n", workunits[i]->name);
}
scope_messages.printf("%d results\n", (int)results.size());
for (i=0; i<results.size(); i++) {
scope_messages.printf(" %s state:%d\n", results[i]->name, results[i]->state);
}
scope_messages.printf("%d persistent file xfers\n", (int)pers_file_xfers->pers_file_xfers.size());
for (i=0; i<pers_file_xfers->pers_file_xfers.size(); i++) {
scope_messages.printf(" %s http op state: %d\n", pers_file_xfers->pers_file_xfers[i]->fip->name, (pers_file_xfers->pers_file_xfers[i]->fxp?pers_file_xfers->pers_file_xfers[i]->fxp->http_op_state:-1));
}
scope_messages.printf("%d active tasks\n", (int)active_tasks.active_tasks.size());
for (i=0; i<active_tasks.active_tasks.size(); i++) {
scope_messages.printf(" %s\n", active_tasks.active_tasks[i]->result->name);
}
--log_messages;
}
// delete unneeded records and files
//
bool CLIENT_STATE::garbage_collect() {
unsigned int i, j;
int failnum;
FILE_INFO* fip;
RESULT* rp;
WORKUNIT* wup;
APP_VERSION* avp, *avp2;
vector<RESULT*>::iterator result_iter;
vector<WORKUNIT*>::iterator wu_iter;
vector<FILE_INFO*>::iterator fi_iter;
vector<APP_VERSION*>::iterator avp_iter;
bool action = false, found;
string error_msgs;
ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_STATE);
// zero references counts on WUs, FILE_INFOs and APP_VERSIONs
for (i=0; i<workunits.size(); i++) {
wup = workunits[i];
wup->ref_cnt = 0;
}
for (i=0; i<file_infos.size(); i++) {
fip = file_infos[i];
fip->ref_cnt = 0;
}
for (i=0; i<app_versions.size(); i++) {
avp = app_versions[i];
avp->ref_cnt = 0;
}
// Scan through RESULTs.
// delete RESULTs that have been reported and acked.
// Check for results whose WUs had download failures
// Check for resultw that had upload failures
// Reference-count output files
// Reference-count WUs
//
result_iter = results.begin();
while (result_iter != results.end()) {
rp = *result_iter;
if (rp->got_server_ack) {
scope_messages.printf("CLIENT_STATE::garbage_collect(): deleting result %s\n", rp->name);
delete rp;
result_iter = results.erase(result_iter);
action = true;
continue;
}
// See if the files for this result's workunit had
// any errors (download failure, MD5, RSA, etc)
// and we don't already have an error for this file
//
if (!rp->ready_to_report && rp->wup->had_failure(failnum)) {
rp->wup->get_file_errors(error_msgs);
report_result_error(*rp, 0, error_msgs.c_str());
}
for (i=0; i<rp->output_files.size(); i++) {
// If one of the output files had an upload failure,
// mark the result as done and report the error.
// The result, workunits, and file infos
// will be cleaned up after the server is notified
//
if (rp->output_files[i].file_info->had_failure(failnum)) {
if (!rp->ready_to_report) {
// had an error uploading a file for this result
//
switch(failnum) {
case ERR_FILE_TOO_BIG:
report_result_error(*rp, 0, "Output file exceeded size limit");
break;
default:
report_result_error(*rp, 0, "Couldn't upload files or other output file error");
}
}
}
rp->output_files[i].file_info->ref_cnt++;
}
rp->wup->ref_cnt++;
result_iter++;
}
// delete WORKUNITs not referenced by any in-progress result;
// reference-count files and APP_VERSIONs referred to by other WUs
//
wu_iter = workunits.begin();
while (wu_iter != workunits.end()) {
wup = *wu_iter;
if (wup->ref_cnt == 0) {
scope_messages.printf("CLIENT_STATE::garbage_collect(): deleting workunit %s\n", wup->name);
delete wup;
wu_iter = workunits.erase(wu_iter);
action = true;
} else {
for (i=0; i<wup->input_files.size(); i++) {
wup->input_files[i].file_info->ref_cnt++;
}
wup->avp->ref_cnt++;
wu_iter++;
}
}
// go through APP_VERSIONs;
// delete any not referenced by any WORKUNIT
// and having a more recent version.
//
avp_iter = app_versions.begin();
while (avp_iter != app_versions.end()) {
avp = *avp_iter;
if (avp->ref_cnt == 0) {
found = false;
for (j=0; j<app_versions.size(); j++) {
avp2 = app_versions[j];
if (avp2->app==avp->app && avp2->version_num>avp->version_num) {
found = true;
break;
}
}
if (found) {
delete avp;
avp_iter = app_versions.erase(avp_iter);
action = true;
} else {
avp_iter++;
}
} else {
avp_iter++;
}
}
// Then go through remaining APP_VERSIONs,
// bumping refcnt of associated files.
//
for (i=0; i<app_versions.size(); i++) {
avp = app_versions[i];
for (j=0; j<avp->app_files.size(); j++) {
avp->app_files[j].file_info->ref_cnt++;
}
}
// delete FILE_INFOs (and corresponding files) that are not sticky
// and are not referenced by any WORKUNIT, RESULT or APP_VERSION
//
fi_iter = file_infos.begin();
while (fi_iter != file_infos.end()) {
fip = *fi_iter;
if (fip->ref_cnt==0 && fip->pers_file_xfer==NULL && !fip->sticky) {
fip->delete_file();
scope_messages.printf(
"CLIENT_STATE::garbage_collect(): deleting file %s\n",
fip->name
);
delete fip;
fi_iter = file_infos.erase(fi_iter);
action = true;
} else {
fi_iter++;
}
}
if (action) {
print_summary();
}
return action;
}
// update the state of results
//
bool CLIENT_STATE::update_results() {
RESULT* rp;
vector<RESULT*>::iterator result_iter;
bool action = false;
// delete RESULTs that have been finished and reported;
// reference-count files referred to by other results
//
result_iter = results.begin();
while (result_iter != results.end()) {
rp = *result_iter;
// The result has been acked by the scheduling server.
// It will be deleted on the next garbage collection,
// which we trigger by setting action to true
if (rp->got_server_ack) {
action = true;
}
switch (rp->state) {
case RESULT_NEW:
rp->state = RESULT_FILES_DOWNLOADING;
action = true;
break;
case RESULT_FILES_DOWNLOADING:
if (input_files_available(rp)) {
rp->state = RESULT_FILES_DOWNLOADED;
action = true;
}
break;
// app_finished() transitions to either RESULT_COMPUTE_DONE or
// RESULT_FILES_UPLOADING. RESULT_COMPUTE_DONE is a dead-end state
// indicating we had an error at the end of computation.
// case RESULT_FILES_DOWNLOADED:
// break;
// case RESULT_COMPUTE_DONE:
// rp->state = RESULT_FILES_UPLOADING;
// action = true;
// break;
case RESULT_FILES_UPLOADING:
// Once the computation has been done, check that the necessary
// files have been uploaded before moving on
//
if (rp->is_upload_done()) {
rp->ready_to_report = true;
rp->state = RESULT_FILES_UPLOADED;
action = true;
}
break;
case RESULT_FILES_UPLOADED:
break;
}
result_iter++;
}
return action;
}
// Returns true if client should exit because of debugging criteria
// (timeout or idle)
//
bool CLIENT_STATE::time_to_exit() {
if (!exit_when_idle && !exit_after_app_start_secs) return false;
if (exit_after_app_start_secs
&& app_started
&& (difftime(time(0), app_started) >= exit_after_app_start_secs)
) {
msg_printf(NULL, MSG_INFO, "exiting because time is up: %d\n", exit_after_app_start_secs);
return true;
}
if (exit_when_idle && (results.size() == 0) && contacted_sched_server) {
msg_printf(NULL, MSG_INFO, "exiting because no more results\n");
return true;
}
return false;
}
void CLIENT_STATE::set_client_state_dirty(char* source) {
log_messages.printf(ClientMessages::DEBUG_STATE, "set dirty: %s\n", source);
client_state_dirty = true;
}
// Call this when a result has a nonrecoverable error.
// Append a description of the error to the stderr_out field of the result.
//
// Go through the input and output files for this result
// and generates error messages for upload/download failures.
//
// This function is called in the following situations:
// 1. When the active_task could not start or restart,
// in which case err_num is set to an OS-specific error_code.
// and err_msg has an OS-supplied string.
// 2. when we fail in downloading an input file or uploading an output file,
// in which case err_num and err_msg are zero.
// 3. When the active_task exits with a non_zero error code
// or it gets signaled.
//
int CLIENT_STATE::report_result_error(
RESULT& res, int err_num, const char *err_msg
) {
char buf[MAX_BLOB_LEN];
unsigned int i;
int failnum;
// only do this once per result
//
if (res.ready_to_report) {
return 0;
}
res.ready_to_report = true;
sprintf(buf, "Unrecoverable error for result %s (%s)", res.name, err_msg);
scheduler_op->backoff(res.project, buf);
sprintf(
buf,
"<message>%s\n</message>\n"
"<active_task_state>%d</active_task_state>\n"
"<exit_status>%d</exit_status>\n"
"<signal>%d</signal>\n",
err_msg,
res.active_task_state,
res.exit_status,
res.signal
);
res.stderr_out.append(buf);
if ((res.state == RESULT_FILES_DOWNLOADED) && err_num) {
sprintf(buf,"<couldnt_start>%d</couldnt_start>\n", err_num);
res.stderr_out.append(buf);
}
if (res.state == RESULT_NEW) {
for (i=0;i<res.wup->input_files.size();i++) {
if (res.wup->input_files[i].file_info->had_failure(failnum)) {
sprintf(buf,
"<download_error>\n"
" <file_name>%s</file_name>\n"
" <error_code>%d</error_code>\n"
"</download_error>\n",
res.wup->input_files[i].file_info->name, failnum
);
res.stderr_out.append(buf);
}
}
}
if (res.state == RESULT_COMPUTE_DONE) {
for (i=0; i<res.output_files.size(); i++) {
if (res.output_files[i].file_info->had_failure(failnum)) {
sprintf(buf,
"<upload_error>\n"
" <file_name>%s</file_name>\n"
" <error_code>%d</error_code>\n"
"</upload_error>\n",
res.output_files[i].file_info->name, failnum
);
res.stderr_out.append(buf);
}
}
}
res.stderr_out = res.stderr_out.substr(0,MAX_BLOB_LEN-1);
return 0;
}
// "Reset" a project: (clear error conditions)
// - stop all active tasks
// - stop all file transfers
// - stop scheduler RPC if any
// - delete all workunits and results
// - delete all apps and app_versions
// - garbage collect to delete unneeded files
//
// Note: does NOT delete persistent files or delete project dir
//
int CLIENT_STATE::reset_project(PROJECT* project) {
unsigned int i;
APP_VERSION* avp;
APP* app;
vector<APP*>::iterator app_iter;
vector<APP_VERSION*>::iterator avp_iter;
RESULT* rp;
PERS_FILE_XFER* pxp;
msg_printf(project, MSG_INFO, "Resetting project");
active_tasks.abort_project(project);
for (i=0; i<pers_file_xfers->pers_file_xfers.size(); i++) {
pxp = pers_file_xfers->pers_file_xfers[i];
if (pxp->fip->project == project) {
if (pxp->fxp) {
file_xfers->remove(pxp->fxp);
}
pers_file_xfers->remove(pxp);
i--;
}
}
// if we're in the middle of a scheduler op to the project, abort it
//
if (scheduler_op->state != SCHEDULER_OP_STATE_IDLE
&& scheduler_op->project == project
) {
http_ops->remove(&scheduler_op->http_op);
}
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->project == project) {
rp->got_server_ack = true;
}
}
avp_iter = app_versions.begin();
while (avp_iter != app_versions.end()) {
avp = *avp_iter;
if (avp->project == project) {
avp_iter = app_versions.erase(avp_iter);
} else {
avp_iter++;
}
}
app_iter = apps.begin();
while (app_iter != apps.end()) {
app = *app_iter;
if (app->project == project) {
app_iter = apps.erase(app_iter);
} else {
app_iter++;
}
}
garbage_collect();
write_state_file();
return 0;
}
// "Detach" a project:
// - Reset (see above)
// - delete all file infos
// - delete account file
// - delete account directory
//
int CLIENT_STATE::detach_project(PROJECT* project) {
vector<PROJECT*>::iterator iter;
PROJECT* p;
char path[256];
int retval;
reset_project(project);
msg_printf(project, MSG_INFO, "Detaching from project");
// find project and remove it from the vector
//
for (iter = projects.begin(); iter != projects.end(); iter++) {
p = *iter;
if (p == project) {
projects.erase(iter);
break;
}
}
// delete account file
//
get_account_filename(project->master_url, path);
retval = file_delete(path);
// remove project directory and its contents
//
remove_project_dir(*project);
delete project;
write_state_file();
return 0;
}