boinc/api/boinc_api.C

520 lines
16 KiB
C

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// Code that's in the BOINC app library (but NOT in the core client)
// graphics-related code goes in graphics_api.C, not here
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifdef _WIN32
#include <io.h>
#include <sys/stat.h>
#include <afxwin.h>
#include <winuser.h>
#include <mmsystem.h> // for timing
MMRESULT timer_id;
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include <signal.h>
#include <fcntl.h>
#include <sys/types.h>
#include "parse.h"
#include "shmem.h"
#include "util.h"
#include "error_numbers.h"
#include "app_ipc.h"
#include "boinc_api.h"
#ifdef _WIN32
HANDLE hQuitRequest, hSharedMem;
LONG CALLBACK boinc_catch_signal(EXCEPTION_POINTERS *ExceptionInfo);
#else
extern void boinc_catch_signal(int signal);
extern void boinc_quit(int sig);
#endif
static APP_INIT_DATA aid;
static double timer_period = 1.0/50.0; // 50 Hz timer
static double time_until_checkpoint;
static double time_until_fraction_done_update;
static double fraction_done;
static double last_checkpoint_cpu_time;
static bool ready_to_checkpoint = false;
static bool write_frac_done = false;
static bool this_process_active;
static bool time_to_quit = false;
bool using_opengl = false;
bool standalone = false;
APP_CLIENT_SHM *app_client_shm;
bool boinc_is_standalone() {
return standalone;
}
// read the INIT_DATA and FD_INIT files
//
int boinc_init(bool standalone_ /* = false */) {
FILE* f;
int retval;
#ifdef _WIN32
freopen(STDERR_FILE, "a", stderr);
#endif
standalone = standalone_;
// If in standalone mode, use init files if they're there,
// but don't demand that they exist
//
f = fopen(INIT_DATA_FILE, "r");
if (!f) {
if (standalone) {
safe_strncpy(aid.app_preferences, "", sizeof(aid.app_preferences));
safe_strncpy(aid.user_name, "Unknown user", sizeof(aid.user_name));
safe_strncpy(aid.team_name, "Unknown team", sizeof(aid.team_name));
aid.wu_cpu_time = 1000;
aid.user_total_credit = 1000;
aid.user_expavg_credit = 500;
aid.host_total_credit = 1000;
aid.host_expavg_credit = 500;
aid.checkpoint_period = DEFAULT_CHECKPOINT_PERIOD;
aid.fraction_done_update_period = DEFAULT_FRACTION_DONE_UPDATE_PERIOD;
} else {
fprintf(stderr, "boinc_init(): can't open init data file\n");
return ERR_FOPEN;
}
} else {
retval = parse_init_data_file(f, aid);
fclose(f);
if (retval) {
fprintf(stderr, "boinc_init(): can't parse init data file\n");
return retval;
}
}
f = fopen(FD_INIT_FILE, "r");
if (f) {
parse_fd_init_file(f);
fclose(f);
}
time_until_checkpoint = aid.checkpoint_period;
time_until_fraction_done_update = aid.fraction_done_update_period;
this_process_active = true;
boinc_install_signal_handlers();
set_timer(timer_period);
setup_shared_mem();
return 0;
}
// Install signal handlers to aid in debugging
// TODO: write Windows equivalent error handlers?
//
int boinc_install_signal_handlers() {
#ifdef HAVE_SIGNAL_H
signal(SIGHUP, boinc_catch_signal); // terminal line hangup
signal(SIGINT, boinc_catch_signal); // interrupt program
signal(SIGQUIT, boinc_quit); // quit program
signal(SIGILL, boinc_catch_signal); // illegal instruction
signal(SIGABRT, boinc_catch_signal); // abort(2) call
signal(SIGBUS, boinc_catch_signal); // bus error
signal(SIGSEGV, boinc_catch_signal); // segmentation violation
signal(SIGSYS, boinc_catch_signal); // system call given invalid argument
signal(SIGPIPE, boinc_catch_signal); // write on a pipe with no reader
#endif
#ifdef _WIN32
//SetUnhandledExceptionFilter(boinc_catch_signal);
#endif
return 0;
}
#ifdef _WIN32
LONG CALLBACK boinc_catch_signal(EXCEPTION_POINTERS *ExceptionInfo) {
PVOID exceptionAddr = ExceptionInfo->ExceptionRecord->ExceptionAddress;
DWORD exceptionCode = ExceptionInfo->ExceptionRecord->ExceptionCode;
char status[256];
static int already_caught_signal = 0;
// If we've been in this procedure before, something went wrong so we immediately exit
if (already_caught_signal) _exit(ERR_SIGNAL_CATCH);
already_caught_signal = 1;
switch (exceptionCode) {
case STATUS_WAIT_0: safe_strncpy(status,"Wait 0",sizeof(status)); break;
case STATUS_ABANDONED_WAIT_0: safe_strncpy(status,"Abandoned Wait 0",sizeof(status)); break;
case STATUS_USER_APC: safe_strncpy(status,"User APC",sizeof(status)); break;
case STATUS_TIMEOUT: safe_strncpy(status,"Timeout",sizeof(status)); break;
case STATUS_PENDING: safe_strncpy(status,"Pending",sizeof(status)); break;
case STATUS_SEGMENT_NOTIFICATION: return DBG_EXCEPTION_NOT_HANDLED;
case STATUS_GUARD_PAGE_VIOLATION: safe_strncpy(status,"Guard Page Violation",sizeof(status)); break;
case STATUS_DATATYPE_MISALIGNMENT: safe_strncpy(status,"Data Type Misalignment",sizeof(status)); break;
case STATUS_BREAKPOINT: return DBG_EXCEPTION_NOT_HANDLED;
case STATUS_SINGLE_STEP: return DBG_EXCEPTION_NOT_HANDLED;
case STATUS_ACCESS_VIOLATION: safe_strncpy(status,"Access Violation",sizeof(status)); break;
case STATUS_IN_PAGE_ERROR: safe_strncpy(status,"In Page Error",sizeof(status)); break;
case STATUS_NO_MEMORY: safe_strncpy(status,"No Memory",sizeof(status)); break;
case STATUS_ILLEGAL_INSTRUCTION: safe_strncpy(status,"Illegal Instruction",sizeof(status)); break;
case STATUS_NONCONTINUABLE_EXCEPTION: safe_strncpy(status,"Noncontinuable Exception",sizeof(status)); break;
case STATUS_INVALID_DISPOSITION: safe_strncpy(status,"Invalid Disposition",sizeof(status)); break;
case STATUS_ARRAY_BOUNDS_EXCEEDED: safe_strncpy(status,"Array Bounds Exceeded",sizeof(status)); break;
case STATUS_FLOAT_DENORMAL_OPERAND: safe_strncpy(status,"Float Denormal Operand",sizeof(status)); break;
case STATUS_FLOAT_DIVIDE_BY_ZERO: safe_strncpy(status,"Divide by Zero",sizeof(status)); break;
case STATUS_FLOAT_INEXACT_RESULT: safe_strncpy(status,"Float Inexact Result",sizeof(status)); break;
case STATUS_FLOAT_INVALID_OPERATION: safe_strncpy(status,"Float Invalid Operation",sizeof(status)); break;
case STATUS_FLOAT_OVERFLOW: safe_strncpy(status,"Float Overflow",sizeof(status)); break;
case STATUS_FLOAT_STACK_CHECK: safe_strncpy(status,"Float Stack Check",sizeof(status)); break;
case STATUS_FLOAT_UNDERFLOW: safe_strncpy(status,"Float Underflow",sizeof(status)); break;
case STATUS_INTEGER_DIVIDE_BY_ZERO: safe_strncpy(status,"Integer Divide by Zero",sizeof(status)); break;
case STATUS_INTEGER_OVERFLOW: safe_strncpy(status,"Integer Overflow",sizeof(status)); break;
case STATUS_PRIVILEGED_INSTRUCTION: safe_strncpy(status,"Privileged Instruction",sizeof(status)); break;
case STATUS_STACK_OVERFLOW: safe_strncpy(status,"Stack Overflow",sizeof(status)); break;
case STATUS_CONTROL_C_EXIT: safe_strncpy(status,"Ctrl+C Exit",sizeof(status)); break;
default: safe_strncpy(status,"Unknown exception",sizeof(status)); break;
}
// TODO: also output info in CONTEXT structure?
fprintf(stderr, "\n***UNHANDLED EXCEPTION****\n");
fprintf(stderr, "Reason: %s at address 0x%p\n",status,exceptionAddr);
fprintf(stderr, "Exiting...\n");
fflush(stderr);
_exit(ERR_SIGNAL_CATCH);
return(EXCEPTION_EXECUTE_HANDLER);
}
#endif
#ifdef HAVE_SIGNAL_H
void boinc_catch_signal(int signal) {
switch(signal) {
case SIGHUP: fprintf(stderr, "SIGHUP: terminal line hangup"); break;
case SIGINT: fprintf(stderr, "SIGINT: interrupt program"); break;
case SIGILL: fprintf(stderr, "SIGILL: illegal instruction"); break;
case SIGABRT: fprintf(stderr, "SIGABRT: abort called"); break;
case SIGBUS: fprintf(stderr, "SIGBUS: bus error"); break;
case SIGSEGV: fprintf(stderr, "SIGSEGV: segmentation violation"); break;
case SIGSYS: fprintf(stderr, "SIGSYS: system call given invalid argument"); break;
case SIGPIPE: fprintf(stderr, "SIGPIPE: write on a pipe with no reader"); break;
default: fprintf(stderr, "unknown signal %d", signal); break;
}
fprintf(stderr, "\nExiting...\n");
exit(ERR_SIGNAL_CATCH);
}
void boinc_quit(int sig) {
signal(SIGQUIT, boinc_quit); // reset signal
time_to_quit = true;
}
#endif
int boinc_finish(int status) {
double cur_mem;
boinc_cpu_time(last_checkpoint_cpu_time, cur_mem);
update_app_progress(fraction_done, last_checkpoint_cpu_time, last_checkpoint_cpu_time, cur_mem);
#ifdef _WIN32
// Stop the timer
timeKillEvent(timer_id);
#endif
cleanup_shared_mem();
exit(status);
return 0;
}
int boinc_get_init_data(APP_INIT_DATA& app_init_data) {
app_init_data = aid;
return 0;
}
bool boinc_time_to_checkpoint() {
#ifdef _WIN32
DWORD eventState;
// Check if core client has requested us to exit
eventState = WaitForSingleObject(hQuitRequest, 0L);
switch (eventState) {
case WAIT_OBJECT_0:
case WAIT_ABANDONED:
time_to_quit = true;
break;
}
#endif
if (write_frac_done) {
double cur_cpu;
double cur_mem;
boinc_cpu_time(cur_cpu, cur_mem);
update_app_progress(fraction_done, cur_cpu, last_checkpoint_cpu_time, cur_mem);
time_until_fraction_done_update = aid.fraction_done_update_period;
write_frac_done = false;
}
// If the application has received a quit request it should checkpoint
//
if (time_to_quit) {
return true;
}
return ready_to_checkpoint;
}
int boinc_checkpoint_completed() {
double cur_mem;
boinc_cpu_time(last_checkpoint_cpu_time, cur_mem);
update_app_progress(fraction_done, last_checkpoint_cpu_time, last_checkpoint_cpu_time, cur_mem);
ready_to_checkpoint = false;
time_until_checkpoint = aid.checkpoint_period;
// If it's time to quit, call boinc_finish which will exit the app properly
//
if (time_to_quit) {
boinc_finish(ERR_QUIT_REQUEST);
}
return 0;
}
int boinc_fraction_done(double x) {
fraction_done = x;
return 0;
}
int boinc_child_start() {
this_process_active = false;
return 0;
}
int boinc_child_done(double cpu) {
this_process_active = true;
return 0;
}
int boinc_cpu_time(double &cpu_t, double &ws_t) {
double cpu_secs;
// Start with the CPU time from previous runs,
// then add the CPU time of the current run
cpu_secs = aid.wu_cpu_time;
#ifdef HAVE_SYS_RESOURCE_H
int retval;
struct rusage ru;
retval = getrusage(RUSAGE_SELF, &ru);
if (retval) {
fprintf(stderr, "error: could not get CPU time\n");
return ERR_GETRUSAGE;
}
// Sum the user and system time spent in this process
cpu_secs += (double)ru.ru_utime.tv_sec + (((double)ru.ru_utime.tv_usec) / ((double)1000000.0));
cpu_secs += (double)ru.ru_stime.tv_sec + (((double)ru.ru_stime.tv_usec) / ((double)1000000.0));
cpu_t = cpu_secs;
ws_t = ru.ru_idrss; // TODO: fix this (mult by page size)
return 0;
#else
#ifdef _WIN32
HANDLE hProcess;
FILETIME creationTime,exitTime,kernelTime,userTime;
// TODO: Could we speed this up by retaining the process handle?
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, 0, GetCurrentProcessId());
if (GetProcessTimes(
hProcess, &creationTime, &exitTime, &kernelTime, &userTime)
) {
ULARGE_INTEGER tKernel, tUser;
LONGLONG totTime;
CloseHandle(hProcess);
tKernel.LowPart = kernelTime.dwLowDateTime;
tKernel.HighPart = kernelTime.dwHighDateTime;
tUser.LowPart = userTime.dwLowDateTime;
tUser.HighPart = userTime.dwHighDateTime;
totTime = tKernel.QuadPart + tUser.QuadPart;
// Runtimes in 100-nanosecond units
cpu_secs += totTime / 1.e7;
// Convert to seconds and return
cpu_t = cpu_secs;
ws_t = 0;
return 0;
}
CloseHandle(hProcess);
// TODO: Handle timer wraparound
static bool first=true;
static DWORD first_count = 0;
if (first) {
first_count = GetTickCount();
first = false;
}
DWORD cur = GetTickCount();
cpu_t = cpu_secs + ((cur - first_count)/1000.);
ws_t = 0;
return 0;
#endif // _WIN32
#endif
fprintf(stderr, "boinc_cpu_time(): not implemented\n");
return -1;
}
// This function should be as fast as possible,
// and shouldn't make any system calls
//
#ifdef _WIN32
void CALLBACK on_timer(UINT uTimerID, UINT uMsg, DWORD dwUser, DWORD dw1, DWORD dw2) {
#else
void on_timer(int a) {
#endif
if (!ready_to_checkpoint) {
time_until_checkpoint -= timer_period;
if (time_until_checkpoint <= 0) {
ready_to_checkpoint = true;
}
}
if (!write_frac_done && this_process_active) {
time_until_fraction_done_update -= timer_period;
if (time_until_fraction_done_update <= 0) {
write_frac_done = true;
}
}
}
int set_timer(double period) {
int retval=0;
#ifdef _WIN32
char buf[256];
// Use Windows multimedia timer, since it is more accurate
// than SetTimer and doesn't require an associated event loop
timer_id = timeSetEvent(
(int)(period*1000), // uDelay
(int)(period*1000), // uResolution
on_timer, // lpTimeProc
NULL, // dwUser
TIME_PERIODIC // fuEvent
);
sprintf(buf, "%s%s", QUIT_PREFIX, aid.comm_obj_name);
hQuitRequest = OpenEvent(EVENT_ALL_ACCESS, FALSE, buf);
#endif
#if HAVE_SIGNAL_H
#if HAVE_SYS_TIME_H
struct sigaction sa;
itimerval value;
sa.sa_handler = on_timer;
sa.sa_flags = SA_RESTART;
retval = sigaction(SIGALRM, &sa, NULL);
if (retval) {
perror("boinc set_timer() sigaction");
return retval;
}
value.it_value.tv_sec = (int)period;
value.it_value.tv_usec = ((int)(period*1000000))%1000000;
value.it_interval = value.it_value;
retval = setitimer(ITIMER_REAL, &value, NULL);
if (retval) {
perror("boinc set_timer() setitimer");
}
#endif
#endif
return retval;
}
void setup_shared_mem() {
app_client_shm = new APP_CLIENT_SHM;
if (standalone) {
app_client_shm->shm = NULL;
fprintf(stderr, "Standalone mode, so not attaching to shared memory.\n");
return;
}
#ifdef _WIN32
char buf[256];
sprintf(buf, "%s%s", SHM_PREFIX, aid.comm_obj_name);
hSharedMem = attach_shmem(buf, (void**)&app_client_shm->shm);
if (hSharedMem == NULL) {
app_client_shm = NULL;
}
#endif
#ifdef HAVE_SYS_SHM_H
#ifdef HAVE_SYS_IPC_H
if (attach_shmem(aid.shm_key, (void**)&app_client_shm->shm)) {
app_client_shm = NULL;
}
#endif
#endif
}
void cleanup_shared_mem() {
if (!app_client_shm) return;
#ifdef _WIN32
if (app_client_shm->shm != NULL) {
detach_shmem(hSharedMem, app_client_shm->shm);
}
#endif
#ifdef HAVE_SYS_SHM_H
#ifdef HAVE_SYS_IPC_H
if (app_client_shm->shm != NULL) {
detach_shmem(app_client_shm->shm);
}
#endif
#endif
}
// communicate to the core client (via shared mem)
// the current CPU time and fraction done
//
int update_app_progress(
double frac_done, double cpu_t, double cp_cpu_t, double ws_t
) {
char msg_buf[SHM_SEG_SIZE];
if (!app_client_shm) return 0;
sprintf(msg_buf,
"<fraction_done>%2.8f</fraction_done>\n"
"<current_cpu_time>%10.4f</current_cpu_time>\n"
"<checkpoint_cpu_time>%10.4f</checkpoint_cpu_time>\n"
"<working_set_size>%f</working_set_size>\n",
frac_done, cpu_t, cp_cpu_t, ws_t
);
return app_client_shm->send_msg(msg_buf, APP_CORE_WORKER_SEG);
}