boinc/api/boinc_api.cpp

1525 lines
44 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// The BOINC API and runtime system.
//
// Notes:
// 1) Thread structure:
// Sequential apps
// Unix
// getting CPU time and suspend/resume have to be done
// in the worker thread, so we use a SIGALRM signal handler.
// However, many library functions and system calls
// are not "asynch signal safe": see, e.g.
// http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03
// (e.g. sprintf() in a signal handler hangs Mac OS X)
// so we do as little as possible in the signal handler,
// and do the rest in a separate "timer thread".
// Win
// the timer thread does everything
// Multi-thread apps:
// Unix:
// fork
// original process runs timer loop:
// handle suspend/resume/quit, heartbeat (use signals)
// new process call boinc_init_options() with flags to
// send status messages and handle checkpoint stuff,
// and returns from boinc_init_parallel()
// NOTE: THIS DOESN'T RESPECT CRITICAL SECTIONS.
// NEED TO MASK SIGNALS IN CHILD DURING CRITICAL SECTIONS
// Win:
// like sequential case, except suspend/resume must enumerate
// all threads (except timer) and suspend/resume them all
//
// 2) All variables that are accessed by two threads (i.e. worker and timer)
// MUST be declared volatile.
//
// 3) For compatibility with C, we use int instead of bool various places
//
// 4) We must periodically check that the client is still alive and exit if not.
// Originally this was done using heartbeat msgs from client.
// This is unreliable, e.g. if the client is blocked for a long time.
// As of Oct 11 2012 we use a different mechanism:
// the client passes its PID and we periodically check whether it exists.
// But we need to support the heartbeat mechanism also for compatibility.
//
// Terminology:
// The processing of a result can be divided
// into multiple "episodes" (executions of the app),
// each of which resumes from the checkpointed state of the previous episode.
// Unless otherwise noted, "CPU time" refers to the sum over all episodes
// (not counting the part after the last checkpoint in an episode).
#if defined(_WIN32) && !defined(__STDWX_H__) && !defined(_BOINC_WIN_) && !defined(_AFX_STDAFX_H_)
#include "boinc_win.h"
#endif
#ifdef _WIN32
#include "version.h"
#include "win_util.h"
#else
#include "config.h"
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cstdarg>
#include <sys/types.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <pthread.h>
#include <vector>
#ifndef __EMX__
#include <sched.h>
#endif
#endif
#include "app_ipc.h"
#include "common_defs.h"
#include "diagnostics.h"
#include "error_numbers.h"
#include "filesys.h"
#include "mem_usage.h"
#include "parse.h"
#include "proc_control.h"
#include "shmem.h"
#include "str_replace.h"
#include "str_util.h"
#include "util.h"
#include "boinc_api.h"
using std::vector;
//#define DEBUG_BOINC_API
#ifdef __APPLE__
#include "mac_backtrace.h"
#define GETRUSAGE_IN_TIMER_THREAD
// call getrusage() in the timer thread,
// rather than in the worker thread's signal handler
// (which can cause crashes on Mac)
// If you want, you can set this for Linux too:
// CPPFLAGS=-DGETRUSAGE_IN_TIMER_THREAD
#endif
const char* api_version = "API_VERSION_" PACKAGE_VERSION;
static APP_INIT_DATA aid;
static FILE_LOCK file_lock;
APP_CLIENT_SHM* app_client_shm = 0;
static volatile int time_until_checkpoint;
// time until enable checkpoint
static volatile double fraction_done;
static volatile double last_checkpoint_cpu_time;
static volatile bool ready_to_checkpoint = false;
static volatile int in_critical_section = 0;
static volatile double last_wu_cpu_time;
static volatile bool standalone = false;
static volatile double initial_wu_cpu_time;
static volatile bool have_new_trickle_up = false;
static volatile bool have_trickle_down = true;
// on first call, scan slot dir for msgs
static volatile int heartbeat_giveup_count;
// interrupt count value at which to give up on core client
#ifdef _WIN32
static volatile int nrunning_ticks = 0;
#endif
static volatile int interrupt_count = 0;
// number of timer interrupts
// used to measure elapsed time in a way that's
// not affected by user changing system clock,
// and doesn't have big jump after hibernation
static volatile int running_interrupt_count = 0;
// number of timer interrupts while not suspended.
// Used to compute elapsed time
static volatile bool finishing;
// used for worker/timer synch during boinc_finish();
static int want_network = 0;
static int have_network = 1;
static double bytes_sent = 0;
static double bytes_received = 0;
bool boinc_disable_timer_thread = false;
// simulate unresponsive app by setting to true (debugging)
static FUNC_PTR timer_callback = 0;
char web_graphics_url[256];
bool send_web_graphics_url = false;
char remote_desktop_addr[256];
bool send_remote_desktop_addr = false;
int app_min_checkpoint_period = 0;
// min checkpoint period requested by app
#define TIMER_PERIOD 0.1
// Sleep interval for timer thread;
// determines max rate of handling messages from client.
// Unix: period of worker-thread timer interrupts.
#define TIMERS_PER_SEC 10
// reciprocal of TIMER_PERIOD
// This determines the resolution of fraction done and CPU time reporting
// to the client, and of checkpoint enabling.
#define HEARTBEAT_GIVEUP_SECS 30
#define HEARTBEAT_GIVEUP_COUNT ((int)(HEARTBEAT_GIVEUP_SECS/TIMER_PERIOD))
// quit if no heartbeat from core in this #interrupts
#define LOCKFILE_TIMEOUT_PERIOD 35
// quit if we cannot aquire slot lock file in this #secs after startup
#ifdef _WIN32
static HANDLE hSharedMem;
HANDLE worker_thread_handle;
// used to suspend worker thread, and to measure its CPU time
DWORD timer_thread_id;
#else
static volatile bool worker_thread_exit_flag = false;
static volatile int worker_thread_exit_status;
// the above are used by the timer thread to tell
// the worker thread to exit
static pthread_t worker_thread_handle;
static pthread_t timer_thread_handle;
#ifndef GETRUSAGE_IN_TIMER_THREAD
static struct rusage worker_thread_ru;
#endif
#endif
static BOINC_OPTIONS options;
volatile BOINC_STATUS boinc_status;
// vars related to intermediate file upload
struct UPLOAD_FILE_STATUS {
std::string name;
int status;
};
static bool have_new_upload_file;
static std::vector<UPLOAD_FILE_STATUS> upload_file_status;
static int resume_activities();
static void boinc_exit(int);
static void block_sigalrm();
static int start_worker_signals();
char* boinc_msg_prefix(char* sbuf, int len) {
char buf[256];
struct tm tm;
struct tm *tmp = &tm;
int n;
time_t x = time(0);
if (x == -1) {
strlcpy(sbuf, "time() failed", len);
return sbuf;
}
#ifdef _WIN32
#ifdef __MINGW32__
if ((tmp = localtime(&x)) == NULL) {
#else
if (localtime_s(&tm, &x) == EINVAL) {
#endif
#else
if (localtime_r(&x, &tm) == NULL) {
#endif
strlcpy(sbuf, "localtime() failed", len);
return sbuf;
}
if (strftime(buf, sizeof(buf)-1, "%H:%M:%S", tmp) == 0) {
strlcpy(sbuf, "strftime() failed", len);
return sbuf;
}
#ifdef _WIN32
n = _snprintf(sbuf, len, "%s (%d):", buf, GetCurrentProcessId());
#else
n = snprintf(sbuf, len, "%s (%d):", buf, getpid());
#endif
if (n < 0) {
strlcpy(sbuf, "sprintf() failed", len);
return sbuf;
}
sbuf[len-1] = 0; // just in case
return sbuf;
}
static int setup_shared_mem() {
char buf[256];
if (standalone) {
fprintf(stderr,
"%s Standalone mode, so not using shared memory.\n",
boinc_msg_prefix(buf, sizeof(buf))
);
return 0;
}
app_client_shm = new APP_CLIENT_SHM;
#ifdef _WIN32
sprintf(buf, "%s%s", SHM_PREFIX, aid.shmem_seg_name);
hSharedMem = attach_shmem(buf, (void**)&app_client_shm->shm);
if (hSharedMem == NULL) {
delete app_client_shm;
app_client_shm = NULL;
}
#else
#ifdef __EMX__
if (attach_shmem(aid.shmem_seg_name, (void**)&app_client_shm->shm)) {
delete app_client_shm;
app_client_shm = NULL;
}
#else
if (aid.shmem_seg_name == -1) {
// Version 6 Unix/Linux/Mac client
if (attach_shmem_mmap(MMAPPED_FILE_NAME, (void**)&app_client_shm->shm)) {
delete app_client_shm;
app_client_shm = NULL;
}
} else {
// version 5 Unix/Linux/Mac client
if (attach_shmem(aid.shmem_seg_name, (void**)&app_client_shm->shm)) {
delete app_client_shm;
app_client_shm = NULL;
}
}
#endif
#endif // ! _WIN32
if (app_client_shm == NULL) return -1;
return 0;
}
// a mutex for data structures shared between time and worker threads
//
#ifdef _WIN32
static HANDLE mutex;
static void init_mutex() {
mutex = CreateMutex(NULL, FALSE, NULL);
}
static inline void acquire_mutex() {
WaitForSingleObject(mutex, INFINITE);
}
static inline void release_mutex() {
ReleaseMutex(mutex);
}
#else
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static void init_mutex() {}
static inline void acquire_mutex() {
#ifdef DEBUG_BOINC_API
char buf[256];
fprintf(stderr, "%s acquiring mutex\n",
boinc_msg_prefix(buf, sizeof(buf))
);
#endif
pthread_mutex_lock(&mutex);
}
static inline void release_mutex() {
#ifdef DEBUG_BOINC_API
char buf[256];
fprintf(stderr, "%s releasing mutex\n",
boinc_msg_prefix(buf, sizeof(buf))
);
#endif
pthread_mutex_unlock(&mutex);
}
#endif
// Return CPU time of process.
//
double boinc_worker_thread_cpu_time() {
double cpu;
#ifdef _WIN32
int retval;
retval = boinc_process_cpu_time(GetCurrentProcess(), cpu);
if (retval) {
cpu = nrunning_ticks * TIMER_PERIOD; // for Win9x
}
#else
#ifdef GETRUSAGE_IN_TIMER_THREAD
struct rusage worker_thread_ru;
getrusage(RUSAGE_SELF, &worker_thread_ru);
#endif
cpu = (double)worker_thread_ru.ru_utime.tv_sec
+ (((double)worker_thread_ru.ru_utime.tv_usec)/1000000.0);
cpu += (double)worker_thread_ru.ru_stime.tv_sec
+ (((double)worker_thread_ru.ru_stime.tv_usec)/1000000.0);
#endif
return cpu;
}
// Communicate to the core client (via shared mem)
// the current CPU time and fraction done.
// NOTE: various bugs could cause some of these FP numbers to be enormous,
// possibly overflowing the buffer.
// So use strlcat() instead of strcat()
//
// This is called only from the timer thread (so no need for synch)
//
static bool update_app_progress(double cpu_t, double cp_cpu_t) {
char msg_buf[MSG_CHANNEL_SIZE], buf[256];
if (standalone) return true;
sprintf(msg_buf,
"<current_cpu_time>%e</current_cpu_time>\n"
"<checkpoint_cpu_time>%e</checkpoint_cpu_time>\n",
cpu_t, cp_cpu_t
);
if (want_network) {
strlcat(msg_buf, "<want_network>1</want_network>\n", sizeof(msg_buf));
}
if (fraction_done >= 0) {
double range = aid.fraction_done_end - aid.fraction_done_start;
double fdone = aid.fraction_done_start + fraction_done*range;
sprintf(buf, "<fraction_done>%e</fraction_done>\n", fdone);
strlcat(msg_buf, buf, sizeof(msg_buf));
}
if (bytes_sent) {
sprintf(buf, "<bytes_sent>%f</bytes_sent>\n", bytes_sent);
strlcat(msg_buf, buf, sizeof(msg_buf));
}
if (bytes_received) {
sprintf(buf, "<bytes_received>%f</bytes_received>\n", bytes_received);
strlcat(msg_buf, buf, sizeof(msg_buf));
}
return app_client_shm->shm->app_status.send_msg(msg_buf);
}
static void handle_heartbeat_msg() {
char buf[MSG_CHANNEL_SIZE];
double dtemp;
bool btemp;
if (app_client_shm->shm->heartbeat.get_msg(buf)) {
boinc_status.network_suspended = false;
if (match_tag(buf, "<heartbeat/>")) {
heartbeat_giveup_count = interrupt_count + HEARTBEAT_GIVEUP_COUNT;
}
if (parse_double(buf, "<wss>", dtemp)) {
boinc_status.working_set_size = dtemp;
}
if (parse_double(buf, "<max_wss>", dtemp)) {
boinc_status.max_working_set_size = dtemp;
}
if (parse_bool(buf, "suspend_network", btemp)) {
boinc_status.network_suspended = btemp;
}
}
}
static bool client_dead() {
char buf[256];
bool dead;
if (aid.client_pid) {
// check every 10 sec
//
if (interrupt_count%(TIMERS_PER_SEC*10)) return false;
#ifdef _WIN32
HANDLE h = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, aid.client_pid);
// If the process exists but is running under a different user account (boinc_master)
// then the handle returned is NULL and GetLastError() returns ERROR_ACCESS_DENIED.
//
if ((h == NULL) && (GetLastError() != ERROR_ACCESS_DENIED)) {
dead = true;
} else {
if (h) CloseHandle(h);
dead = false;
}
#else
int retval = kill(aid.client_pid, 0);
dead = (retval == -1 && errno == ESRCH);
#endif
} else {
dead = (interrupt_count > heartbeat_giveup_count);
}
if (dead) {
boinc_msg_prefix(buf, sizeof(buf));
fputs(buf, stderr); // don't use fprintf() here
if (aid.client_pid) {
fputs(" BOINC client no longer exists - exiting\n", stderr);
} else {
fputs(" No heartbeat from client for 30 sec - exiting\n", stderr);
}
return true;
}
return false;
}
#ifndef _WIN32
// For multithread apps on Unix, the main process executes the following.
//
static void parallel_master(int child_pid) {
char buf[MSG_CHANNEL_SIZE];
int exit_status;
while (1) {
boinc_sleep(TIMER_PERIOD);
interrupt_count++;
if (app_client_shm) {
handle_heartbeat_msg();
if (app_client_shm->shm->process_control_request.get_msg(buf)) {
if (match_tag(buf, "<suspend/>")) {
kill(child_pid, SIGSTOP);
} else if (match_tag(buf, "<resume/>")) {
kill(child_pid, SIGCONT);
} else if (match_tag(buf, "<quit/>")) {
kill(child_pid, SIGKILL);
exit(0);
} else if (match_tag(buf, "<abort/>")) {
kill(child_pid, SIGKILL);
exit(EXIT_ABORTED_BY_CLIENT);
}
}
if (client_dead()) {
kill(child_pid, SIGKILL);
exit(0);
}
}
if (interrupt_count % TIMERS_PER_SEC) continue;
if (waitpid(child_pid, &exit_status, WNOHANG) == child_pid) break;
}
boinc_finish(exit_status);
}
#endif
int boinc_init() {
int retval;
if (!diagnostics_is_initialized()) {
retval = boinc_init_diagnostics(BOINC_DIAG_DEFAULTS);
if (retval) return retval;
}
boinc_options_defaults(options);
return boinc_init_options(&options);
}
int boinc_init_options(BOINC_OPTIONS* opt) {
int retval;
#ifndef _WIN32
if (options.multi_thread) {
int child_pid = fork();
if (child_pid) {
// original process - master
//
options.send_status_msgs = false;
retval = boinc_init_options_general(options);
if (retval) {
kill(child_pid, SIGKILL);
return retval;
}
parallel_master(child_pid);
}
// new process - slave
//
options.main_program = false;
options.check_heartbeat = false;
options.handle_process_control = false;
options.multi_thread = false;
options.multi_process = false;
return boinc_init_options(&options);
}
#endif
retval = boinc_init_options_general(*opt);
if (retval) return retval;
retval = start_timer_thread();
if (retval) return retval;
#ifndef _WIN32
retval = start_worker_signals();
if (retval) return retval;
#endif
return 0;
}
int boinc_init_parallel() {
BOINC_OPTIONS _options;
boinc_options_defaults(_options);
_options.multi_thread = true;
return boinc_init_options(&_options);
}
static int min_checkpoint_period() {
int x = (int)aid.checkpoint_period;
if (app_min_checkpoint_period > x) {
x = app_min_checkpoint_period;
}
if (x == 0) x = DEFAULT_CHECKPOINT_PERIOD;
return x;
}
int boinc_set_min_checkpoint_period(int x) {
app_min_checkpoint_period = x;
if (x > time_until_checkpoint) {
time_until_checkpoint = x;
}
return 0;
}
int boinc_init_options_general(BOINC_OPTIONS& opt) {
int retval;
char buf[256];
options = opt;
if (!diagnostics_is_initialized()) {
retval = boinc_init_diagnostics(BOINC_DIAG_DEFAULTS);
if (retval) return retval;
}
boinc_status.no_heartbeat = false;
boinc_status.suspended = false;
boinc_status.quit_request = false;
boinc_status.abort_request = false;
if (options.main_program) {
// make sure we're the only app running in this slot
//
retval = file_lock.lock(LOCKFILE);
if (retval) {
// give any previous occupant a chance to timeout and exit
//
fprintf(stderr, "%s Can't acquire lockfile (%d) - waiting %ds\n",
boinc_msg_prefix(buf, sizeof(buf)),
retval, LOCKFILE_TIMEOUT_PERIOD
);
boinc_sleep(LOCKFILE_TIMEOUT_PERIOD);
retval = file_lock.lock(LOCKFILE);
}
if (retval) {
fprintf(stderr, "%s Can't acquire lockfile (%d) - exiting\n",
boinc_msg_prefix(buf, sizeof(buf)),
retval
);
#ifdef _WIN32
char buf2[256];
windows_format_error_string(GetLastError(), buf2, 256);
fprintf(stderr, "%s Error: %s\n", boinc_msg_prefix(buf, sizeof(buf)), buf2);
#endif
// if we can't acquire the lock file there must be
// another app instance running in this slot.
// If we exit(0), the client will keep restarting us.
// Instead, tell the client not to restart us for 10 min.
//
boinc_temporary_exit(600, "Waiting to acquire lock");
}
}
retval = boinc_parse_init_data_file();
if (retval) {
standalone = true;
} else {
retval = setup_shared_mem();
if (retval) {
fprintf(stderr,
"%s Can't set up shared mem: %d. Will run in standalone mode.\n",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
standalone = true;
}
}
// copy the WU CPU time to a separate var,
// since we may reread the structure again later.
//
initial_wu_cpu_time = aid.wu_cpu_time;
fraction_done = -1;
time_until_checkpoint = min_checkpoint_period();
last_checkpoint_cpu_time = aid.wu_cpu_time;
last_wu_cpu_time = aid.wu_cpu_time;
if (standalone) {
options.check_heartbeat = false;
}
heartbeat_giveup_count = interrupt_count + HEARTBEAT_GIVEUP_COUNT;
init_mutex();
return 0;
}
int boinc_get_status(BOINC_STATUS *s) {
s->no_heartbeat = boinc_status.no_heartbeat;
s->suspended = boinc_status.suspended;
s->quit_request = boinc_status.quit_request;
s->reread_init_data_file = boinc_status.reread_init_data_file;
s->abort_request = boinc_status.abort_request;
s->working_set_size = boinc_status.working_set_size;
s->max_working_set_size = boinc_status.max_working_set_size;
s->network_suspended = boinc_status.network_suspended;
return 0;
}
// if we have any new trickle-ups or file upload requests,
// send a message describing them
//
static void send_trickle_up_msg() {
char buf[MSG_CHANNEL_SIZE];
BOINCINFO("Sending Trickle Up Message");
if (standalone) return;
strcpy(buf, "");
if (have_new_trickle_up) {
strcat(buf, "<have_new_trickle_up/>\n");
}
if (have_new_upload_file) {
strcat(buf, "<have_new_upload_file/>\n");
}
if (strlen(buf)) {
if (app_client_shm->shm->trickle_up.send_msg(buf)) {
have_new_trickle_up = false;
have_new_upload_file = false;
}
}
}
// NOTE: a non-zero status tells the core client that we're exiting with
// an "unrecoverable error", which will be reported back to server.
// A zero exit-status tells the client we've successfully finished the result.
//
int boinc_finish(int status) {
char buf[256];
fraction_done = 1;
fprintf(stderr,
"%s called boinc_finish\n",
boinc_msg_prefix(buf, sizeof(buf))
);
finishing = true;
boinc_sleep(2.0); // let the timer thread send final messages
boinc_disable_timer_thread = true; // then disable it
if (options.main_program && status==0) {
FILE* f = fopen(BOINC_FINISH_CALLED_FILE, "w");
if (f) fclose(f);
}
boinc_exit(status);
return 0; // never reached
}
int boinc_temporary_exit(int delay, const char* reason) {
FILE* f = fopen(TEMPORARY_EXIT_FILE, "w");
if (!f) {
return ERR_FOPEN;
}
fprintf(f, "%d\n", delay);
if (reason) {
fprintf(f, "%s\n", reason);
}
fclose(f);
boinc_exit(0);
return 0;
}
// unlock the lockfile and call the appropriate exit function
// Unix: called only from the worker thread.
// Win: called from the worker or timer thread.
//
// make static eventually
//
void boinc_exit(int status) {
int retval;
char buf[256];
if (options.main_program && file_lock.locked) {
retval = file_lock.unlock(LOCKFILE);
if (retval) {
#ifdef _WIN32
windows_format_error_string(GetLastError(), buf, 256);
fprintf(stderr,
"%s Can't unlock lockfile (%d): %s\n",
boinc_msg_prefix(buf, sizeof(buf)), retval, buf
);
#else
fprintf(stderr,
"%s Can't unlock lockfile (%d)\n",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
perror("file unlock failed");
#endif
}
}
// kill any processes the app may have created
//
if (options.multi_process) {
kill_descendants();
}
boinc_finish_diag();
// various platforms have problems shutting down a process
// while other threads are still executing,
// or triggering endless exit()/atexit() loops.
//
BOINCINFO("Exit Status: %d", status);
fflush(NULL);
#if defined(_WIN32)
// Halt all the threads and clean up.
TerminateProcess(GetCurrentProcess(), status);
// note: the above CAN return!
Sleep(1000);
DebugBreak();
#elif defined(__APPLE_CC__)
// stops endless exit()/atexit() loops.
_exit(status);
#else
// arrange to exit with given status even if errors happen
// in atexit() functions
//
set_signal_exit_code(status);
exit(status);
#endif
}
void boinc_network_usage(double sent, double received) {
bytes_sent = sent;
bytes_received = received;
}
int boinc_is_standalone() {
if (standalone) return 1;
return 0;
}
static void exit_from_timer_thread(int status) {
#ifdef DEBUG_BOINC_API
char buf[256];
fprintf(stderr, "%s exit_from_timer_thread(%d) called\n",
boinc_msg_prefix(buf, sizeof(buf)), status
);
#endif
#ifdef _WIN32
// TerminateProcess() doesn't work if there are suspended threads?
if (boinc_status.suspended) {
resume_activities();
}
// this seems to work OK on Windows
//
boinc_exit(status);
#else
// but on Unix there are synchronization problems;
// set a flag telling the worker thread to exit
//
worker_thread_exit_status = status;
worker_thread_exit_flag = true;
pthread_exit(NULL);
#endif
}
// parse the init data file.
// This is done at startup, and also if a "reread prefs" message is received
//
int boinc_parse_init_data_file() {
FILE* f;
int retval;
char buf[256];
if (aid.project_preferences) {
free(aid.project_preferences);
aid.project_preferences = NULL;
}
aid.clear();
aid.checkpoint_period = DEFAULT_CHECKPOINT_PERIOD;
if (!boinc_file_exists(INIT_DATA_FILE)) {
fprintf(stderr,
"%s Can't open init data file - running in standalone mode\n",
boinc_msg_prefix(buf, sizeof(buf))
);
return ERR_FOPEN;
}
f = boinc_fopen(INIT_DATA_FILE, "r");
retval = parse_init_data_file(f, aid);
fclose(f);
if (retval) {
fprintf(stderr,
"%s Can't parse init data file - running in standalone mode\n",
boinc_msg_prefix(buf, sizeof(buf))
);
return retval;
}
return 0;
}
int boinc_report_app_status_aux(
double cpu_time,
double checkpoint_cpu_time,
double _fraction_done,
int other_pid,
double _bytes_sent,
double _bytes_received
) {
char msg_buf[MSG_CHANNEL_SIZE], buf[1024];
if (standalone) return 0;
sprintf(msg_buf,
"<current_cpu_time>%e</current_cpu_time>\n"
"<checkpoint_cpu_time>%e</checkpoint_cpu_time>\n"
"<fraction_done>%e</fraction_done>\n",
cpu_time,
checkpoint_cpu_time,
_fraction_done
);
if (other_pid) {
sprintf(buf, "<other_pid>%d</other_pid>\n", other_pid);
strcat(msg_buf, buf);
}
if (_bytes_sent) {
sprintf(buf, "<bytes_sent>%f</bytes_sent>\n", _bytes_sent);
strcat(msg_buf, buf);
}
if (_bytes_received) {
sprintf(buf, "<bytes_received>%f</bytes_received>\n", _bytes_received);
strcat(msg_buf, buf);
}
if (app_client_shm->shm->app_status.send_msg(msg_buf)) {
return 0;
}
return ERR_WRITE;
}
int boinc_report_app_status(
double cpu_time,
double checkpoint_cpu_time,
double _fraction_done
){
return boinc_report_app_status_aux(
cpu_time, checkpoint_cpu_time, _fraction_done, 0, 0, 0
);
}
int boinc_get_init_data_p(APP_INIT_DATA* app_init_data) {
*app_init_data = aid;
return 0;
}
int boinc_get_init_data(APP_INIT_DATA& app_init_data) {
app_init_data = aid;
return 0;
}
int boinc_wu_cpu_time(double& cpu_t) {
cpu_t = last_wu_cpu_time;
return 0;
}
// Suspend this job.
// Can be called from either timer or worker thread.
//
static int suspend_activities(bool called_from_worker) {
#ifdef DEBUG_BOINC_API
char log_buf[256];
fprintf(stderr, "%s suspend_activities() called from %s\n",
boinc_msg_prefix(log_buf, sizeof(log_buf)),
called_from_worker?"worker thread":"timer thread"
);
#endif
#ifdef _WIN32
static vector<int> pids;
if (options.multi_thread) {
if (pids.size() == 0) {
pids.push_back(GetCurrentProcessId());
}
suspend_or_resume_threads(pids, timer_thread_id, false, true);
} else {
SuspendThread(worker_thread_handle);
}
#else
if (options.multi_process) {
suspend_or_resume_descendants(false);
}
// if called from worker thread, sleep until suspension is over
// if called from time thread, don't need to do anything;
// suspension is done by signal handler in worker thread
//
if (called_from_worker) {
while (boinc_status.suspended) {
sleep(1);
}
}
#endif
return 0;
}
int resume_activities() {
#ifdef DEBUG_BOINC_API
char log_buf[256];
fprintf(stderr, "%s resume_activities()\n",
boinc_msg_prefix(log_buf, sizeof(log_buf))
);
#endif
#ifdef _WIN32
static vector<int> pids;
if (options.multi_thread) {
if (pids.size() == 0) pids.push_back(GetCurrentProcessId());
suspend_or_resume_threads(pids, timer_thread_id, true, true);
} else {
ResumeThread(worker_thread_handle);
}
#else
if (options.multi_process) {
suspend_or_resume_descendants(true);
}
#endif
return 0;
}
static void handle_upload_file_status() {
char path[MAXPATHLEN], buf[256], log_name[256], *p, log_buf[256];
std::string filename;
int status;
relative_to_absolute("", path);
DirScanner dirscan(path);
while (dirscan.scan(filename)) {
strlcpy(buf, filename.c_str(), sizeof(buf));
if (strstr(buf, UPLOAD_FILE_STATUS_PREFIX) != buf) continue;
strlcpy(log_name, buf+strlen(UPLOAD_FILE_STATUS_PREFIX), sizeof(log_name));
FILE* f = boinc_fopen(filename.c_str(), "r");
if (!f) {
fprintf(stderr,
"%s handle_file_upload_status: can't open %s\n",
boinc_msg_prefix(buf, sizeof(buf)), filename.c_str()
);
continue;
}
p = fgets(buf, sizeof(buf), f);
fclose(f);
if (p && parse_int(buf, "<status>", status)) {
UPLOAD_FILE_STATUS uf;
uf.name = std::string(log_name);
uf.status = status;
upload_file_status.push_back(uf);
} else {
fprintf(stderr, "%s handle_upload_file_status: can't parse %s\n",
boinc_msg_prefix(log_buf, sizeof(log_buf)), buf
);
}
}
}
// handle trickle and file upload messages
//
static void handle_trickle_down_msg() {
char buf[MSG_CHANNEL_SIZE];
if (app_client_shm->shm->trickle_down.get_msg(buf)) {
BOINCINFO("Received Trickle Down Message");
if (match_tag(buf, "<have_trickle_down/>")) {
have_trickle_down = true;
}
if (match_tag(buf, "<upload_file_status/>")) {
handle_upload_file_status();
}
}
}
// This flag is set of we get a suspend request while in a critical section,
// and options.direct_process_action is set.
// As soon as we're not in the critical section we'll do the suspend.
//
static bool suspend_request = false;
// runs in timer thread
//
static void handle_process_control_msg() {
char buf[MSG_CHANNEL_SIZE];
if (app_client_shm->shm->process_control_request.get_msg(buf)) {
acquire_mutex();
#ifdef DEBUG_BOINC_API
char log_buf[256];
fprintf(stderr, "%s got process control msg %s\n",
boinc_msg_prefix(log_buf, sizeof(log_buf)), buf
);
#endif
if (match_tag(buf, "<suspend/>")) {
BOINCINFO("Received suspend message");
if (options.direct_process_action) {
if (in_critical_section) {
suspend_request = true;
} else {
boinc_status.suspended = true;
suspend_request = false;
suspend_activities(false);
}
} else {
boinc_status.suspended = true;
}
}
if (match_tag(buf, "<resume/>")) {
BOINCINFO("Received resume message");
if (options.direct_process_action) {
if (boinc_status.suspended) {
resume_activities();
} else if (suspend_request) {
suspend_request = false;
}
}
boinc_status.suspended = false;
}
if (boinc_status.quit_request || match_tag(buf, "<quit/>")) {
BOINCINFO("Received quit message");
boinc_status.quit_request = true;
if (!in_critical_section && options.direct_process_action) {
exit_from_timer_thread(0);
}
}
if (boinc_status.abort_request || match_tag(buf, "<abort/>")) {
BOINCINFO("Received abort message");
boinc_status.abort_request = true;
if (!in_critical_section && options.direct_process_action) {
diagnostics_set_aborted_via_gui();
#if defined(_WIN32)
// Cause a controlled assert and dump the callstacks.
DebugBreak();
#elif defined(__APPLE__)
PrintBacktrace();
#endif
release_mutex();
exit_from_timer_thread(EXIT_ABORTED_BY_CLIENT);
}
}
if (match_tag(buf, "<reread_app_info/>")) {
boinc_status.reread_init_data_file = true;
}
if (match_tag(buf, "<network_available/>")) {
have_network = 1;
}
release_mutex();
}
}
// timer handler; runs in the timer thread
//
static void timer_handler() {
char buf[512];
#ifdef DEBUG_BOINC_API
fprintf(stderr, "%s timer handler: disabled %s; in critical section %s; finishing %s\n",
boinc_msg_prefix(buf, sizeof(buf)),
boinc_disable_timer_thread?"yes":"no",
in_critical_section?"yes":"no",
finishing?"yes":"no"
);
#endif
if (boinc_disable_timer_thread) {
return;
}
if (finishing) {
if (options.send_status_msgs) {
double cur_cpu = boinc_worker_thread_cpu_time();
last_wu_cpu_time = cur_cpu + initial_wu_cpu_time;
update_app_progress(last_wu_cpu_time, last_checkpoint_cpu_time);
}
boinc_disable_timer_thread = true;
return;
}
interrupt_count++;
if (!boinc_status.suspended) {
running_interrupt_count++;
}
// handle messages from the core client
//
if (app_client_shm) {
if (options.check_heartbeat) {
handle_heartbeat_msg();
}
if (options.handle_trickle_downs) {
handle_trickle_down_msg();
}
if (options.handle_process_control) {
handle_process_control_msg();
}
}
if (interrupt_count % TIMERS_PER_SEC) return;
#ifdef DEBUG_BOINC_API
fprintf(stderr, "%s 1 sec elapsed - doing slow actions\n", boinc_msg_prefix(buf, sizeof(buf)));
#endif
// here if we're at a one-second boundary; do slow stuff
//
if (!ready_to_checkpoint) {
time_until_checkpoint -= 1;
if (time_until_checkpoint <= 0) {
ready_to_checkpoint = true;
}
}
// see if the core client has died, which means we need to die too
// (unless we're in a critical section)
//
if (in_critical_section==0 && options.check_heartbeat) {
if (client_dead()) {
fprintf(stderr, "%s timer handler: client dead, exiting\n",
boinc_msg_prefix(buf, sizeof(buf))
);
if (options.direct_process_action) {
exit_from_timer_thread(0);
} else {
boinc_status.no_heartbeat = true;
}
}
}
// don't bother reporting CPU time etc. if we're suspended
//
if (options.send_status_msgs && !boinc_status.suspended) {
double cur_cpu = boinc_worker_thread_cpu_time();
last_wu_cpu_time = cur_cpu + initial_wu_cpu_time;
update_app_progress(last_wu_cpu_time, last_checkpoint_cpu_time);
}
if (options.handle_trickle_ups) {
send_trickle_up_msg();
}
if (timer_callback) {
timer_callback();
}
// send graphics-related messages
//
if (send_web_graphics_url && !app_client_shm->shm->graphics_reply.has_msg()) {
sprintf(buf,
"<web_graphics_url>%s</web_graphics_url>",
web_graphics_url
);
app_client_shm->shm->graphics_reply.send_msg(buf);
send_web_graphics_url = false;
}
if (send_remote_desktop_addr && !app_client_shm->shm->graphics_reply.has_msg()) {
sprintf(buf,
"<remote_desktop_addr>%s</remote_desktop_addr>",
remote_desktop_addr
);
app_client_shm->shm->graphics_reply.send_msg(buf);
send_remote_desktop_addr = false;
}
}
#ifdef _WIN32
DWORD WINAPI timer_thread(void *) {
while (1) {
Sleep((int)(TIMER_PERIOD*1000));
timer_handler();
// poor man's CPU time accounting for Win9x
//
if (!boinc_status.suspended) {
nrunning_ticks++;
}
}
return 0;
}
#else
static void* timer_thread(void*) {
block_sigalrm();
while(1) {
boinc_sleep(TIMER_PERIOD);
timer_handler();
}
return 0;
}
// This SIGALRM handler gets handled only by the worker thread.
// It gets CPU time and implements sleeping.
// It must call only signal-safe functions, and must not do FP math
//
static void worker_signal_handler(int) {
#ifndef GETRUSAGE_IN_TIMER_THREAD
getrusage(RUSAGE_SELF, &worker_thread_ru);
#endif
if (worker_thread_exit_flag) {
boinc_exit(worker_thread_exit_status);
}
if (options.direct_process_action) {
while (boinc_status.suspended && in_critical_section==0) {
#ifdef ANDROID
// per-thread signal masking doesn't work
// on old (pre-4.1) versions of Android.
// If we're handling this signal in the timer thread,
// send signal explicitly to worker thread.
//
if (pthread_self() == timer_thread_handle) {
pthread_kill(worker_thread_handle, SIGALRM);
return;
}
#endif
sleep(1); // don't use boinc_sleep() because it does FP math
}
}
}
#endif
// Called from the worker thread; create the timer thread
//
int start_timer_thread() {
char buf[256];
#ifdef _WIN32
// get the worker thread handle
//
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&worker_thread_handle,
0,
FALSE,
DUPLICATE_SAME_ACCESS
);
// Create the timer thread
//
if (!CreateThread(NULL, 0, timer_thread, 0, 0, &timer_thread_id)) {
fprintf(stderr,
"%s start_timer_thread(): CreateThread() failed, errno %d\n",
boinc_msg_prefix(buf, sizeof(buf)), errno
);
return errno;
}
if (!options.normal_thread_priority) {
// lower our (worker thread) priority
//
SetThreadPriority(worker_thread_handle, THREAD_PRIORITY_IDLE);
}
#else
worker_thread_handle = pthread_self();
pthread_attr_t thread_attrs;
pthread_attr_init(&thread_attrs);
pthread_attr_setstacksize(&thread_attrs, 32768);
int retval = pthread_create(&timer_thread_handle, &thread_attrs, timer_thread, NULL);
if (retval) {
fprintf(stderr,
"%s start_timer_thread(): pthread_create(): %d",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
return retval;
}
#endif
return 0;
}
#ifndef _WIN32
// set up a periodic SIGALRM, to be handled by the worker thread
//
static int start_worker_signals() {
int retval;
struct sigaction sa;
itimerval value;
sa.sa_handler = worker_signal_handler;
sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);
retval = sigaction(SIGALRM, &sa, NULL);
if (retval) {
perror("boinc start_timer_thread() sigaction");
return retval;
}
value.it_value.tv_sec = 0;
value.it_value.tv_usec = (int)(TIMER_PERIOD*1e6);
value.it_interval = value.it_value;
retval = setitimer(ITIMER_REAL, &value, NULL);
if (retval) {
perror("boinc start_timer_thread() setitimer");
return retval;
}
return 0;
}
#endif
int boinc_send_trickle_up(char* variety, char* p) {
if (!options.handle_trickle_ups) return ERR_NO_OPTION;
FILE* f = boinc_fopen(TRICKLE_UP_FILENAME, "wb");
if (!f) return ERR_FOPEN;
fprintf(f, "<variety>%s</variety>\n", variety);
size_t n = fwrite(p, strlen(p), 1, f);
fclose(f);
if (n != 1) return ERR_WRITE;
have_new_trickle_up = true;
return 0;
}
int boinc_time_to_checkpoint() {
if (ready_to_checkpoint) {
boinc_begin_critical_section();
return 1;
}
return 0;
}
int boinc_checkpoint_completed() {
double cur_cpu;
cur_cpu = boinc_worker_thread_cpu_time();
last_wu_cpu_time = cur_cpu + aid.wu_cpu_time;
last_checkpoint_cpu_time = last_wu_cpu_time;
time_until_checkpoint = min_checkpoint_period();
boinc_end_critical_section();
ready_to_checkpoint = false;
return 0;
}
void boinc_begin_critical_section() {
#ifdef DEBUG_BOINC_API
char buf[256];
fprintf(stderr,
"%s begin_critical_section\n",
boinc_msg_prefix(buf, sizeof(buf))
);
#endif
in_critical_section++;
}
void boinc_end_critical_section() {
#ifdef DEBUG_BOINC_API
char buf[256];
fprintf(stderr,
"%s end_critical_section\n",
boinc_msg_prefix(buf, sizeof(buf))
);
#endif
in_critical_section--;
if (in_critical_section < 0) {
in_critical_section = 0; // just in case
}
if (in_critical_section) return;
// We're out of the critical section.
// See if we got suspend/quit/abort while in critical section,
// and handle them here.
//
if (boinc_status.quit_request) {
boinc_exit(0);
}
if (boinc_status.abort_request) {
boinc_exit(EXIT_ABORTED_BY_CLIENT);
}
if (options.direct_process_action) {
acquire_mutex();
if (suspend_request) {
suspend_request = false;
boinc_status.suspended = true;
release_mutex();
suspend_activities(true);
} else {
release_mutex();
}
}
}
int boinc_fraction_done(double x) {
fraction_done = x;
return 0;
}
int boinc_receive_trickle_down(char* buf, int len) {
std::string filename;
char path[MAXPATHLEN];
if (!options.handle_trickle_downs) return false;
if (have_trickle_down) {
relative_to_absolute("", path);
DirScanner dirscan(path);
while (dirscan.scan(filename)) {
if (strstr(filename.c_str(), "trickle_down")) {
strncpy(buf, filename.c_str(), len);
return true;
}
}
have_trickle_down = false;
}
return false;
}
int boinc_upload_file(std::string& name) {
char buf[256];
std::string pname;
int retval;
retval = boinc_resolve_filename_s(name.c_str(), pname);
if (retval) return retval;
sprintf(buf, "%s%s", UPLOAD_FILE_REQ_PREFIX, name.c_str());
FILE* f = boinc_fopen(buf, "w");
if (!f) return ERR_FOPEN;
have_new_upload_file = true;
fclose(f);
return 0;
}
int boinc_upload_status(std::string& name) {
for (unsigned int i=0; i<upload_file_status.size(); i++) {
UPLOAD_FILE_STATUS& ufs = upload_file_status[i];
if (ufs.name == name) {
return ufs.status;
}
}
return ERR_NOT_FOUND;
}
void boinc_need_network() {
want_network = 1;
have_network = 0;
}
int boinc_network_poll() {
return have_network?0:1;
}
void boinc_network_done() {
want_network = 0;
}
#ifndef _WIN32
// block SIGALRM, so that the worker thread will be forced to handle it
//
static void block_sigalrm() {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGALRM);
pthread_sigmask(SIG_BLOCK, &mask, NULL);
}
#endif
void boinc_register_timer_callback(FUNC_PTR p) {
timer_callback = p;
}
double boinc_get_fraction_done() {
return fraction_done;
}
double boinc_elapsed_time() {
return running_interrupt_count*TIMER_PERIOD;
}
void boinc_web_graphics_url(char* url) {
if (standalone) return;
strlcpy(web_graphics_url, url, sizeof(web_graphics_url));
send_web_graphics_url = true;
}
void boinc_remote_desktop_addr(char* addr) {
if (standalone) return;
strlcpy(remote_desktop_addr, addr, sizeof(remote_desktop_addr));
send_remote_desktop_addr = true;
}