boinc/client/cpu_sched.cpp

1927 lines
61 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// CPU scheduling logic.
//
// Terminology:
//
// Episode
// The execution of a task is divided into "episodes".
// An episode starts then the application is executed,
// and ends when it exits or dies
// (e.g., because it's preempted and not left in memory,
// or the user quits BOINC, or the host is turned off).
// A task may checkpoint now and then.
// Each episode begins with the state of the last checkpoint.
//
// Debt interval
// The interval between consecutive executions of adjust_debts()
//
// Run interval
// If an app is running (not suspended), the interval
// during which it's been running.
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#include "win_util.h"
#else
#include "config.h"
#include <string>
#include <cstring>
#include <list>
#endif
#include "coproc.h"
#include "error_numbers.h"
#include "filesys.h"
#include "str_util.h"
#include "util.h"
#include "client_msgs.h"
#include "log_flags.h"
#include "app.h"
#include "client_state.h"
using std::vector;
using std::list;
#define DEADLINE_CUSHION 0
// try to finish jobs this much in advance of their deadline
// used in schedule_cpus() to keep track of resources used
// by jobs tentatively scheduled so far
//
struct PROC_RESOURCES {
int ncpus;
double ncpus_used;
double ram_left;
COPROCS coprocs;
// should we stop scanning jobs?
//
inline bool stop_scan_cpu() {
return ncpus_used >= ncpus;
}
inline bool stop_scan_coproc(int rsc_type) {
if (rsc_type == RSC_TYPE_CUDA) {
return coprocs.cuda.used >= coprocs.cuda.count;
}
return coprocs.ati.used >= coprocs.ati.count;
}
// should we consider scheduling this job?
//
bool can_schedule(RESULT* rp) {
if (rp->schedule_backoff > gstate.now) return false;
if (rp->uses_coprocs()) {
if (gpu_suspend_reason) return false;
if (sufficient_coprocs(
*rp->avp, log_flags.cpu_sched_debug)
) {
return true;
} else {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] insufficient coprocessors for %s", rp->name
);
}
return false;
}
} else {
// otherwise, only if CPUs are available
//
return (ncpus_used < ncpus);
}
}
// we've decided to run this - update bookkeeping
//
void schedule(RESULT* rp) {
reserve_coprocs(
*rp->avp, log_flags.cpu_sched_debug, "cpu_sched_debug"
);
ncpus_used += rp->avp->avg_ncpus;
}
bool sufficient_coprocs(APP_VERSION& av, bool log_flag) {
double x;
COPROC* cp2;
if (av.ncudas) {
x = av.ncudas;
cp2 = &coprocs.cuda;
} else if (av.natis) {
x = av.natis;
cp2 = &coprocs.ati;
} else {
return true;
}
if (!cp2->count) {
msg_printf(NULL, MSG_INTERNAL_ERROR,
"Missing a %s coprocessor", cp2->type
);
return false;
}
if (cp2->used + x > cp2->count) {
if (log_flag) {
msg_printf(NULL, MSG_INFO,
"[cpu_sched] insufficient coproc %s (%f + %f > %d)",
cp2->type, cp2->used, x, cp2->count
);
}
return false;
}
return true;
}
void reserve_coprocs(
APP_VERSION& av, bool log_flag, const char* prefix
) {
double x;
COPROC* cp2;
if (av.ncudas) {
x = av.ncudas;
cp2 = &coprocs.cuda;
} else if (av.natis) {
x = av.natis;
cp2 = &coprocs.ati;
} else {
return;
}
if (!cp2) {
msg_printf(NULL, MSG_INTERNAL_ERROR,
"Coproc type %s not found", cp2->type
);
return;
}
if (log_flag) {
msg_printf(NULL, MSG_INFO,
"[%s] reserving %f of coproc %s", prefix, x, cp2->type
);
}
cp2->used += x;
}
};
bool gpus_usable = true;
#ifndef SIM
// see whether there's been a change in coproc usability;
// if so set or clear "coproc_missing" flags and return true.
//
bool check_coprocs_usable() {
#ifdef _WIN32
unsigned int i;
bool new_usable = !is_remote_desktop();
if (gpus_usable) {
if (!new_usable) {
gpus_usable = false;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->avp->ncudas || rp->avp->natis) {
rp->coproc_missing = true;
}
}
msg_printf(NULL, MSG_INFO,
"GPUs have become unusable; disabling tasks"
);
return true;
}
} else {
if (new_usable) {
gpus_usable = true;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->avp->ncudas || rp->avp->natis) {
rp->coproc_missing = false;
}
}
msg_printf(NULL, MSG_INFO,
"GPUs have become usable; enabling tasks"
);
return true;
}
}
#endif
return false;
}
#endif
// return true if the task has finished its time slice
// and has checkpointed in last 10 secs
//
static inline bool finished_time_slice(ACTIVE_TASK* atp) {
double time_running = gstate.now - atp->run_interval_start_wall_time;
bool running_beyond_sched_period = time_running >= gstate.global_prefs.cpu_scheduling_period();
double time_since_checkpoint = gstate.now - atp->checkpoint_wall_time;
bool checkpointed_recently = time_since_checkpoint < 10;
return (running_beyond_sched_period && checkpointed_recently);
}
// Choose a "best" runnable CPU job for each project
//
// Values are returned in project->next_runnable_result
// (skip projects for which this is already non-NULL)
//
// Don't choose results with already_selected == true;
// mark chosen results as already_selected.
//
// The preference order:
// 1. results with active tasks that are running
// 2. results with active tasks that are preempted (but have a process)
// 3. results with active tasks that have no process
// 4. results with no active task
//
// TODO: this is called in a loop over NCPUs, which is silly.
// Should call it once, and have it make an ordered list per project.
//
void CLIENT_STATE::assign_results_to_projects() {
unsigned int i;
RESULT* rp;
PROJECT* project;
// scan results with an ACTIVE_TASK
//
for (i=0; i<active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK *atp = active_tasks.active_tasks[i];
if (!atp->runnable()) continue;
rp = atp->result;
if (rp->already_selected) continue;
if (rp->uses_coprocs()) continue;
if (!rp->runnable()) continue;
project = rp->project;
if (!project->next_runnable_result) {
project->next_runnable_result = rp;
continue;
}
// see if this task is "better" than the one currently
// selected for this project
//
ACTIVE_TASK *next_atp = lookup_active_task_by_result(
project->next_runnable_result
);
if ((next_atp->task_state() == PROCESS_UNINITIALIZED && atp->process_exists())
|| (next_atp->scheduler_state == CPU_SCHED_PREEMPTED
&& atp->scheduler_state == CPU_SCHED_SCHEDULED)
) {
project->next_runnable_result = atp->result;
}
}
// Now consider results that don't have an active task
//
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->already_selected) continue;
if (rp->uses_coprocs()) continue;
if (lookup_active_task_by_result(rp)) continue;
if (!rp->runnable()) continue;
project = rp->project;
if (project->next_runnable_result) continue;
project->next_runnable_result = rp;
}
// mark selected results, so CPU scheduler won't try to consider
// a result more than once
//
for (i=0; i<projects.size(); i++) {
project = projects[i];
if (project->next_runnable_result) {
project->next_runnable_result->already_selected = true;
}
}
}
// Among projects with a "next runnable result",
// find the project P with the greatest anticipated debt,
// and return its next runnable result
//
RESULT* CLIENT_STATE::largest_debt_project_best_result() {
PROJECT *best_project = NULL;
double best_debt = -MAX_STD;
bool first = true;
unsigned int i;
for (i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (!p->next_runnable_result) continue;
if (p->non_cpu_intensive) continue;
if (first || p->cpu_pwf.anticipated_debt > best_debt) {
first = false;
best_project = p;
best_debt = p->cpu_pwf.anticipated_debt;
}
}
if (!best_project) return NULL;
if (log_flags.cpu_sched_debug) {
msg_printf(best_project, MSG_INFO,
"[cpu_sched] highest debt: %f %s",
best_project->cpu_pwf.anticipated_debt,
best_project->next_runnable_result->name
);
}
RESULT* rp = best_project->next_runnable_result;
best_project->next_runnable_result = 0;
return rp;
}
// Return a job of the given type according to the following criteria
// (desc priority):
// - from project with higher STD for that resource
// - already-started job
// - earlier received_time
// - lexicographically earlier name
//
// Give priority to already-started jobs because of the following scenario:
// - client gets several jobs in a sched reply and starts downloading files
// - a later job finishes downloading and starts
// - an earlier finishes downloading and preempts
//
RESULT* first_coproc_result(int rsc_type) {
unsigned int i;
RESULT* best = NULL;
double best_std=0;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->resource_type() != rsc_type) continue;
if (!rp->runnable()) continue;
if (rp->project->non_cpu_intensive) continue;
if (rp->already_selected) continue;
double std = rp->project->short_term_debt(rsc_type);
if (!best) {
best = rp;
best_std = std;
continue;
}
if (std < best_std) {
continue;
}
if (std > best_std) {
best = rp;
best_std = std;
continue;
}
bool bs = !best->not_started();
bool rs = !rp->not_started();
if (rs && !bs) {
best = rp;
best_std = std;
continue;
}
if (!rs && bs) {
continue;
}
if (rp->received_time < best->received_time) {
best = rp;
best_std = std;
} else if (rp->received_time == best->received_time) {
// make it deterministic by looking at name
//
if (strcmp(rp->name, best->name) > 0) {
best = rp;
best_std = std;
}
}
}
return best;
}
// Return earliest-deadline result for given resource type.
//
static RESULT* earliest_deadline_result(int rsc_type) {
RESULT *best_result = NULL;
ACTIVE_TASK* best_atp = NULL;
unsigned int i;
for (i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->resource_type() != rsc_type) continue;
if (rp->already_selected) continue;
if (!rp->runnable()) continue;
PROJECT* p = rp->project;
if (p->non_cpu_intensive) continue;
bool only_deadline_misses = true;
// treat projects with DCF>90 as if they had deadline misses
//
if (p->duration_correction_factor < 90.0) {
int d;
switch (rsc_type) {
case RSC_TYPE_CUDA:
d = p->cuda_pwf.deadlines_missed_copy;
break;
case RSC_TYPE_ATI:
d = p->ati_pwf.deadlines_missed_copy;
break;
default:
d = p->cpu_pwf.deadlines_missed_copy;
}
if (!d) {
continue;
}
} else {
only_deadline_misses = false;
}
if (only_deadline_misses && !rp->rr_sim_misses_deadline) {
continue;
}
bool new_best = false;
if (best_result) {
if (rp->report_deadline < best_result->report_deadline) {
new_best = true;
}
} else {
new_best = true;
}
if (new_best) {
best_result = rp;
best_atp = gstate.lookup_active_task_by_result(rp);
continue;
}
if (rp->report_deadline > best_result->report_deadline) {
continue;
}
// If there's a tie, pick the job with the least remaining time
// (but don't pick an unstarted job over one that's started)
//
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rp);
if (best_atp && !atp) continue;
if (rp->estimated_time_remaining(false)
< best_result->estimated_time_remaining(false)
|| (!best_atp && atp)
) {
best_result = rp;
best_atp = atp;
}
}
if (!best_result) return NULL;
if (log_flags.cpu_sched_debug) {
msg_printf(best_result->project, MSG_INFO,
"[cpu_sched] earliest deadline: %.0f %s",
best_result->report_deadline, best_result->name
);
}
return best_result;
}
void CLIENT_STATE::reset_debt_accounting() {
unsigned int i;
for (i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
p->cpu_pwf.reset_debt_accounting();
if (host_info.have_cuda()) {
p->cuda_pwf.reset_debt_accounting();
}
if (host_info.have_ati()) {
p->ati_pwf.reset_debt_accounting();
}
}
cpu_work_fetch.reset_debt_accounting();
if (host_info.have_cuda()) {
cuda_work_fetch.reset_debt_accounting();
}
if (host_info.have_ati()) {
ati_work_fetch.reset_debt_accounting();
}
debt_interval_start = now;
}
// adjust project debts (short, long-term)
//
void CLIENT_STATE::adjust_debts() {
unsigned int i;
double elapsed_time = now - debt_interval_start;
// If the elapsed time is more than 2*DEBT_ADJUST_PERIOD
// it must be because the host was suspended for a long time.
// In this case, ignore the last period
//
if (elapsed_time > 2*DEBT_ADJUST_PERIOD || elapsed_time < 0) {
if (log_flags.debt_debug) {
msg_printf(NULL, MSG_INFO,
"[debt] adjust_debt: elapsed time (%d) longer than sched enforce period(%d). Ignoring this period.",
(int)elapsed_time, (int)DEBT_ADJUST_PERIOD
);
}
reset_debt_accounting();
return;
}
// skip small intervals
//
if (elapsed_time < 1) {
return;
}
// total up how many instance-seconds projects got
//
for (i=0; i<active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks.active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
PROJECT* p = atp->result->project;
if (p->non_cpu_intensive) continue;
work_fetch.accumulate_inst_sec(atp, elapsed_time);
}
cpu_work_fetch.update_long_term_debts();
cpu_work_fetch.update_short_term_debts();
if (host_info.have_cuda()) {
cuda_work_fetch.update_long_term_debts();
cuda_work_fetch.update_short_term_debts();
}
if (host_info.have_ati()) {
ati_work_fetch.update_long_term_debts();
ati_work_fetch.update_short_term_debts();
}
reset_debt_accounting();
}
// Decide whether to run the CPU scheduler.
// This is called periodically.
// Scheduled tasks are placed in order of urgency for scheduling
// in the ordered_scheduled_results vector
//
bool CLIENT_STATE::possibly_schedule_cpus() {
double elapsed_time;
static double last_reschedule=0;
if (projects.size() == 0) return false;
if (results.size() == 0) return false;
// Reschedule every cpu_sched_period seconds,
// or if must_schedule_cpus is set
// (meaning a new result is available, or a CPU has been freed).
//
elapsed_time = now - last_reschedule;
if (elapsed_time >= global_prefs.cpu_scheduling_period()) {
request_schedule_cpus("Scheduling period elapsed.");
}
if (!must_schedule_cpus) return false;
last_reschedule = now;
must_schedule_cpus = false;
schedule_cpus();
return true;
}
// Check whether the job can be run:
// - it will fit in RAM
// - we have enough shared-mem segments (old Mac problem)
// If so, update proc_rsc and anticipated debts, and return true
//
static bool schedule_if_possible(
RESULT* rp, ACTIVE_TASK* atp, PROC_RESOURCES& proc_rsc,
const char* description
) {
if (atp) {
// see if it fits in available RAM
//
if (atp->procinfo.working_set_size_smoothed > proc_rsc.ram_left) {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] %s working set too large: %.2fMB",
rp->name, atp->procinfo.working_set_size_smoothed/MEGA
);
}
atp->too_large = true;
return false;
}
atp->too_large = false;
if (gstate.retry_shmem_time > gstate.now) {
if (atp->app_client_shm.shm == NULL) {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] waiting for shared mem: %s",
rp->name
);
}
atp->needs_shmem = true;
return false;
}
atp->needs_shmem = false;
}
proc_rsc.ram_left -= atp->procinfo.working_set_size_smoothed;
} else {
if (rp->avp->max_working_set_size > proc_rsc.ram_left) {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] %s projected working set too large: %.2fMB",
rp->name, rp->avp->max_working_set_size/MEGA
);
}
return false;
}
}
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] scheduling %s (%s)", rp->name, description
);
}
proc_rsc.schedule(rp);
double dt = gstate.global_prefs.cpu_scheduling_period();
// project STD at end of scheduling period
//
rp->project->cpu_pwf.anticipated_debt -= dt*rp->avp->avg_ncpus/cpu_work_fetch.ninstances;
rp->project->cuda_pwf.anticipated_debt -= dt*rp->avp->ncudas/cuda_work_fetch.ninstances;
rp->project->ati_pwf.anticipated_debt -= dt*rp->avp->natis/ati_work_fetch.ninstances;
return true;
}
// If a job J once ran in EDF,
// and its project has another job of the same resource type
// marked as deadline miss, mark J as deadline miss.
// This avoids domino-effect preemption
//
static void promote_once_ran_edf() {
for (unsigned int i=0; i<gstate.active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK* atp = gstate.active_tasks.active_tasks[i];
if (atp->once_ran_edf) {
RESULT* rp = atp->result;
PROJECT* p = rp->project;
if (p->deadlines_missed(rp->avp->rsc_type())) {
rp->rr_sim_misses_deadline = true;
}
}
}
}
void add_coproc_jobs(int rsc_type, PROC_RESOURCES& proc_rsc) {
ACTIVE_TASK* atp;
RESULT* rp;
bool can_run;
// choose coproc jobs from projects with coproc deadline misses
//
while (!proc_rsc.stop_scan_coproc(rsc_type)) {
rp = earliest_deadline_result(rsc_type);
if (!rp) break;
rp->already_selected = true;
if (!proc_rsc.can_schedule(rp)) continue;
atp = gstate.lookup_active_task_by_result(rp);
can_run = schedule_if_possible(
rp, atp, proc_rsc, "coprocessor job, EDF"
);
if (!can_run) continue;
if (rsc_type == RSC_TYPE_CUDA) {
rp->project->cuda_pwf.deadlines_missed_copy--;
} else {
rp->project->ati_pwf.deadlines_missed_copy--;
}
rp->edf_scheduled = true;
gstate.ordered_scheduled_results.push_back(rp);
}
// then coproc jobs in FIFO order
//
while (!proc_rsc.stop_scan_coproc(rsc_type)) {
rp = first_coproc_result(rsc_type);
if (!rp) break;
rp->already_selected = true;
if (!proc_rsc.can_schedule(rp)) continue;
atp = gstate.lookup_active_task_by_result(rp);
can_run = schedule_if_possible(
rp, atp, proc_rsc, "coprocessor job, FIFO"
);
if (!can_run) continue;
gstate.ordered_scheduled_results.push_back(rp);
}
}
// CPU scheduler - decide which results to run.
// output: sets ordered_scheduled_result.
//
void CLIENT_STATE::schedule_cpus() {
RESULT* rp;
PROJECT* p;
unsigned int i;
PROC_RESOURCES proc_rsc;
ACTIVE_TASK* atp;
bool can_run;
proc_rsc.ncpus = ncpus;
proc_rsc.ncpus_used = 0;
proc_rsc.ram_left = available_ram();
proc_rsc.coprocs.clone(host_info.coprocs, false);
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "[cpu_sched] schedule_cpus(): start");
}
// do round-robin simulation to find what results miss deadline
//
rr_simulation();
if (log_flags.cpu_sched_debug) {
print_deadline_misses();
}
// avoid preemption of jobs that once ran EDF
//
promote_once_ran_edf();
// set temporary variables
//
for (i=0; i<results.size(); i++) {
rp = results[i];
rp->already_selected = false;
rp->edf_scheduled = false;
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->next_runnable_result = NULL;
p->cpu_pwf.anticipated_debt = p->cpu_pwf.short_term_debt;
p->cuda_pwf.anticipated_debt = p->cuda_pwf.short_term_debt;
p->ati_pwf.anticipated_debt = p->ati_pwf.short_term_debt;
p->cpu_pwf.deadlines_missed_copy = p->cpu_pwf.deadlines_missed;
p->cuda_pwf.deadlines_missed_copy = p->cuda_pwf.deadlines_missed;
p->ati_pwf.deadlines_missed_copy = p->ati_pwf.deadlines_missed;
}
for (i=0; i<app_versions.size(); i++) {
app_versions[i]->max_working_set_size = 0;
}
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
atp->too_large = false;
double w = atp->procinfo.working_set_size_smoothed;
APP_VERSION* avp = atp->app_version;
if (w > avp->max_working_set_size) {
avp->max_working_set_size = w;
}
}
ordered_scheduled_results.clear();
add_coproc_jobs(RSC_TYPE_CUDA, proc_rsc);
add_coproc_jobs(RSC_TYPE_ATI, proc_rsc);
// choose CPU jobs from projects with CPU deadline misses
//
#ifdef SIM
if (!cpu_sched_rr_only) {
#endif
while (!proc_rsc.stop_scan_cpu()) {
rp = earliest_deadline_result(RSC_TYPE_CPU);
if (!rp) break;
rp->already_selected = true;
if (!proc_rsc.can_schedule(rp)) continue;
atp = lookup_active_task_by_result(rp);
can_run = schedule_if_possible(
rp, atp, proc_rsc, "CPU job, EDF"
);
if (!can_run) continue;
rp->project->cpu_pwf.deadlines_missed_copy--;
rp->edf_scheduled = true;
ordered_scheduled_results.push_back(rp);
}
#ifdef SIM
}
#endif
// Next, choose CPU jobs from projects with large debt
//
while (!proc_rsc.stop_scan_cpu()) {
assign_results_to_projects();
rp = largest_debt_project_best_result();
if (!rp) break;
atp = lookup_active_task_by_result(rp);
if (!proc_rsc.can_schedule(rp)) continue;
can_run = schedule_if_possible(
rp, atp, proc_rsc, "CPU job, debt order"
);
if (!can_run) continue;
ordered_scheduled_results.push_back(rp);
}
request_enforce_schedule(NULL, "schedule_cpus");
}
static inline bool in_ordered_scheduled_results(ACTIVE_TASK* atp) {
for (unsigned int i=0; i<gstate.ordered_scheduled_results.size(); i++) {
if (atp->result == gstate.ordered_scheduled_results[i]) return true;
}
return false;
}
// scan the runnable list, keeping track of CPU usage X.
// if find a MT job J, and X < ncpus, move J before all non-MT jobs
// But don't promote a MT job ahead of a job in EDF
//
static void promote_multi_thread_jobs(vector<RESULT*>& runnable_jobs) {
double cpus_used = 0;
vector<RESULT*>::iterator first_non_mt = runnable_jobs.end();
vector<RESULT*>::iterator cur = runnable_jobs.begin();
while(1) {
if (cur == runnable_jobs.end()) break;
if (cpus_used >= gstate.ncpus) break;
RESULT* rp = *cur;
if (rp->rr_sim_misses_deadline) break;
double nc = rp->avp->avg_ncpus;
if (nc > 1) {
if (first_non_mt != runnable_jobs.end()) {
cur = runnable_jobs.erase(cur);
runnable_jobs.insert(first_non_mt, rp);
cpus_used = 0;
first_non_mt = runnable_jobs.end();
cur = runnable_jobs.begin();
continue;
}
} else {
if (first_non_mt == runnable_jobs.end()) {
first_non_mt = cur;
}
}
cpus_used += nc;
cur++;
}
}
// return true if r0 is more important to run than r1
//
static inline bool more_important(RESULT* r0, RESULT* r1) {
// favor jobs in danger of deadline miss
//
bool miss0 = r0->edf_scheduled;
bool miss1 = r1->edf_scheduled;
if (miss0 && !miss1) return true;
if (!miss0 && miss1) return false;
// favor coproc jobs, so that e.g. if we're RAM-limited
// we'll use the GPU instead of the CPU
//
bool cp0 = r0->uses_coprocs();
bool cp1 = r1->uses_coprocs();
if (cp0 && !cp1) return true;
if (!cp0 && cp1) return false;
// favor jobs in the middle of time slice
//
bool unfin0 = r0->unfinished_time_slice;
bool unfin1 = r1->unfinished_time_slice;
if (unfin0 && !unfin1) return true;
if (!unfin0 && unfin1) return false;
// favor jobs selected first by schedule_cpus()
// (e.g., because their project has high STD)
//
if (r0->seqno < r1->seqno) return true;
if (r0->seqno > r1->seqno) return false;
// tie breaker
return (r0 < r1);
}
static void print_job_list(vector<RESULT*>& jobs) {
for (unsigned int i=0; i<jobs.size(); i++) {
RESULT* rp = jobs[i];
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] %d: %s (MD: %s; UTS: %s)",
i, rp->name,
rp->edf_scheduled?"yes":"no",
rp->unfinished_time_slice?"yes":"no"
);
}
}
// find running jobs that haven't finished their time slice.
// Mark them as such, and add to list if not already there
//
void CLIENT_STATE::append_unfinished_time_slice(
vector<RESULT*> &runnable_jobs
) {
unsigned int i;
int seqno = (int)runnable_jobs.size();
for (i=0; i<active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks.active_tasks[i];
if (!atp->result->runnable()) continue;
if (atp->result->project->non_cpu_intensive) continue;
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
if (atp->result->uses_coprocs()) continue;
if (finished_time_slice(atp)) continue;
atp->result->unfinished_time_slice = true;
if (in_ordered_scheduled_results(atp)) continue;
runnable_jobs.push_back(atp->result);
atp->result->seqno = seqno;
}
}
////////// Coprocessor scheduling ////////////////
//
// theory of operations:
//
// Jobs can use one or more integral instances, or a fractional instance
//
// RESULT::coproc_indices
// for a running job, the coprocessor instances it's using
// COPROC::pending_usage[]: for each instance, its usage by running jobs
// CORPOC::usage[]: for each instance, its usage
//
// enforce_schedule() calls assign_coprocs(),
// which assigns coproc instances to scheduled jobs,
// and prunes jobs for which we can't make an assignment
// (the job list is in order of decreasing priority)
//
// assign_coprocs():
// clear usage and pending_usage of all instances
// for each running job J
// increment pending_usage for the instances assigned to J
// for each scheduled job J
// if J is running
// if J's assignment fits
// confirm assignment: dev pending_usage, inc usage
// else
// prune J
// else
// if J.usage is fractional
// look for an instance that's already fractionally assigned
// if that fails, look for a free instance
// if that fails, prune J
// else
// if there are enough instances with usage=0
// assign instances with pending_usage = usage = 0
// (avoid preempting running jobs)
// if need more, assign instances with usage = 0
// else
// prune J
static inline void increment_pending_usage(
RESULT* rp, double usage, COPROC* cp
) {
double x = (usage<1)?usage:1;
for (int i=0; i<usage; i++) {
int j = rp->coproc_indices[i];
cp->pending_usage[j] += x;
if (cp->pending_usage[j] > 1) {
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] huh? %s %d %s pending usage > 1",
cp->type, i, rp->name
);
}
}
}
}
// check the GPU assignment for a currently-running app.
// Note: don't check available RAM.
// It may not be known (e.g. NVIDIA) and in any case,
// if the app is still running, it has enough RAM
//
static inline bool current_assignment_ok(
RESULT* rp, double usage, COPROC* cp, bool& defer_sched
) {
defer_sched = false;
double x = (usage<1)?usage:1;
for (int i=0; i<usage; i++) {
int j = rp->coproc_indices[i];
if (cp->usage[j] + x > 1) {
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] %s device %d already assigned: task %s",
cp->type, j, rp->name
);
}
return false;
}
}
return true;
}
static inline void confirm_current_assignment(
RESULT* rp, double usage, COPROC* cp
) {
double x = (usage<1)?usage:1;
for (int i=0; i<usage; i++) {
int j = rp->coproc_indices[i];
cp->usage[j] +=x;
cp->pending_usage[j] -=x;
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] %s instance %d: confirming for %s",
cp->type, j, rp->name
);
}
cp->available_ram[j] -= rp->avp->gpu_ram;
}
}
static inline bool get_fractional_assignment(
RESULT* rp, double usage, COPROC* cp, bool& defer_sched
) {
int i;
defer_sched = false;
// try to assign an instance that's already fractionally assigned
//
for (i=0; i<cp->count; i++) {
if (cp->available_ram_unknown[i]) {
continue;
}
if ((cp->usage[i] || cp->pending_usage[i])
&& (cp->usage[i] + cp->pending_usage[i] + usage <= 1)
) {
if (rp->avp->gpu_ram > cp->available_ram[i]) {
defer_sched = true;
continue;
}
rp->coproc_indices[0] = i;
cp->usage[i] += usage;
cp->available_ram[i] -= rp->avp->gpu_ram;
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] Assigning %f of %s instance %d to %s",
usage, cp->type, i, rp->name
);
}
return true;
}
}
// failing that, assign an unreserved instance
//
for (i=0; i<cp->count; i++) {
if (cp->available_ram_unknown[i]) {
continue;
}
if (!cp->usage[i]) {
if (rp->avp->gpu_ram > cp->available_ram[i]) {
defer_sched = true;
continue;
}
rp->coproc_indices[0] = i;
cp->usage[i] += usage;
cp->available_ram[i] -= rp->avp->gpu_ram;
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] Assigning %f of %s free instance %d to %s",
usage, cp->type, i, rp->name
);
}
return true;
}
}
msg_printf(rp->project, MSG_INFO,
"[coproc] Insufficient %s for %s: need %f",
cp->type, rp->name, usage
);
return false;
}
static inline bool get_integer_assignment(
RESULT* rp, double usage, COPROC* cp, bool& defer_sched
) {
int i;
defer_sched = false;
// make sure we have enough free instances
//
int nfree = 0;
for (i=0; i<cp->count; i++) {
if (cp->available_ram_unknown[i]) {
continue;
}
if (!cp->usage[i]) {
if (rp->avp->gpu_ram > cp->available_ram[i]) {
defer_sched = true;
continue;
};
nfree++;
}
}
if (nfree < usage) {
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] Insufficient %s for %s; need %d, available %d",
cp->type, rp->name, (int)usage, nfree
);
if (defer_sched) {
msg_printf(rp->project, MSG_INFO,
"[coproc] some instances lack available memory"
);
}
}
return false;
}
int n = 0;
// assign non-pending instances first
for (i=0; i<cp->count; i++) {
if (cp->available_ram_unknown[i]) {
continue;
}
if (!cp->usage[i]
&& !cp->pending_usage[i]
&& (rp->avp->gpu_ram <= cp->available_ram[i])
) {
cp->usage[i] = 1;
cp->available_ram[i] -= rp->avp->gpu_ram;
rp->coproc_indices[n++] = i;
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] Assigning %s instance %d to %s",
cp->type, i, rp->name
);
}
if (n == usage) return true;
}
}
// if needed, assign pending instances
for (i=0; i<cp->count; i++) {
if (cp->available_ram_unknown[i]) {
continue;
}
if (!cp->usage[i]
&& (rp->avp->gpu_ram <= cp->available_ram[i])
) {
cp->usage[i] = 1;
cp->available_ram[i] -= rp->avp->gpu_ram;
rp->coproc_indices[n++] = i;
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] Assigning %s pending instance %d to %s",
cp->type, i, rp->name
);
}
if (n == usage) return true;
}
}
if (log_flags.coproc_debug) {
msg_printf(rp->project, MSG_INFO,
"[coproc] huh??? ran out of %s instances for %s",
cp->type, rp->name
);
}
return false;
}
static inline void mark_as_defer_sched(RESULT* rp) {
if (rp->uses_cuda()) {
rp->project->cuda_defer_sched = true;
} else if (rp->uses_ati()) {
rp->project->ati_defer_sched = true;
}
rp->schedule_backoff = gstate.now + 300; // try again in 5 minutes
gstate.request_schedule_cpus("insufficient GPU RAM");
}
static inline void assign_coprocs(vector<RESULT*>& jobs) {
unsigned int i;
COPROC* cp;
double usage;
gstate.host_info.coprocs.clear_usage();
if (gstate.host_info.have_cuda()) {
gstate.host_info.coprocs.cuda.get_available_ram();
if (log_flags.coproc_debug) {
gstate.host_info.coprocs.cuda.print_available_ram();
}
}
if (gstate.host_info.have_ati()) {
gstate.host_info.coprocs.ati.get_available_ram();
if (log_flags.coproc_debug) {
gstate.host_info.coprocs.ati.print_available_ram();
}
}
// fill in pending usage
//
for (i=0; i<jobs.size(); i++) {
RESULT* rp = jobs[i];
APP_VERSION* avp = rp->avp;
if (avp->ncudas) {
usage = avp->ncudas;
cp = &gstate.host_info.coprocs.cuda;
} else if (avp->natis) {
usage = avp->natis;
cp = &gstate.host_info.coprocs.ati;
} else {
continue;
}
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rp);
if (!atp) continue;
if (atp->task_state() != PROCESS_EXECUTING) continue;
increment_pending_usage(rp, usage, cp);
}
vector<RESULT*>::iterator job_iter;
job_iter = jobs.begin();
while (job_iter != jobs.end()) {
RESULT* rp = *job_iter;
APP_VERSION* avp = rp->avp;
if (avp->ncudas) {
usage = avp->ncudas;
cp = &gstate.host_info.coprocs.cuda;
} else if (avp->natis) {
usage = avp->natis;
cp = &gstate.host_info.coprocs.ati;
} else {
job_iter++;
continue;
}
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rp);
bool defer_sched;
if (atp && atp->task_state() == PROCESS_EXECUTING) {
if (current_assignment_ok(rp, usage, cp, defer_sched)) {
confirm_current_assignment(rp, usage, cp);
job_iter++;
} else {
if (defer_sched) {
mark_as_defer_sched(rp);
}
job_iter = jobs.erase(job_iter);
}
} else {
if (usage < 1) {
if (get_fractional_assignment(rp, usage, cp, defer_sched)) {
job_iter++;
} else {
if (defer_sched) {
mark_as_defer_sched(rp);
}
job_iter = jobs.erase(job_iter);
}
} else {
if (get_integer_assignment(rp, usage, cp, defer_sched)) {
job_iter++;
} else {
if (defer_sched) {
mark_as_defer_sched(rp);
}
job_iter = jobs.erase(job_iter);
}
}
}
}
#if 0
// enforce "don't use GPUs while active" pref in NVIDIA case;
// it applies only to GPUs running a graphics app
//
if (gstate.host_info.coprocs.cuda.count && gstate.user_active && !gstate.global_prefs.run_gpu_if_user_active) {
job_iter = jobs.begin();
while (job_iter != jobs.end()) {
RESULT* rp = *job_iter;
if (!rp->avp->ncudas) {
job_iter++;
continue;
}
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rp);
bool some_gpu_busy = false;
for (i=0; i<rp->avp->ncudas; i++) {
int dev = atp->coproc_indices[i];
if (gstate.host_info.coprocs.cuda.running_graphics_app[dev]) {
some_gpu_busy = true;
break;
}
}
if (some_gpu_busy) {
job_iter = jobs.erase(job_iter);
} else {
job_iter++;
}
}
}
#endif
}
// Enforce the CPU schedule.
// Inputs:
// ordered_scheduled_results
// List of tasks that should (ideally) run, set by schedule_cpus().
// Most important tasks (e.g. early deadline) are first.
// The set of tasks that actually run may be different:
// - if a task hasn't checkpointed recently we avoid preempting it
// - we don't run tasks that would exceed working-set limits
// Details:
// Initially, each task's scheduler_state is PREEMPTED or SCHEDULED
// depending on whether or not it is running.
// This function sets each task's next_scheduler_state,
// and at the end it starts/resumes and preempts tasks
// based on scheduler_state and next_scheduler_state.
//
bool CLIENT_STATE::enforce_schedule() {
unsigned int i;
vector<ACTIVE_TASK*> preemptable_tasks;
static double last_time = 0;
int retval;
double ncpus_used;
ACTIVE_TASK* atp;
// Do this when requested, and once a minute as a safety net
//
if (now - last_time > CPU_SCHED_ENFORCE_PERIOD) {
must_enforce_cpu_schedule = true;
}
if (!must_enforce_cpu_schedule) return false;
must_enforce_cpu_schedule = false;
// NOTE: there's an assumption that debt is adjusted at
// least as often as the CPU sched is enforced (see client_state.h).
// If you remove the following, make changes accordingly
//
adjust_debts();
last_time = now;
bool action = false;
#ifndef SIM
// check whether GPUs are usable
//
if (check_coprocs_usable()) {
request_schedule_cpus("GPU usability change");
return true;
}
#endif
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "[cpu_sched] enforce_schedule(): start");
msg_printf(0, MSG_INFO, "[cpu_sched] preliminary job list:");
print_job_list(ordered_scheduled_results);
}
// Set next_scheduler_state to PREEMPT for all tasks
//
for (i=0; i< active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
atp->next_scheduler_state = CPU_SCHED_PREEMPTED;
}
// make initial "to-run" list
//
vector<RESULT*>runnable_jobs;
for (i=0; i<ordered_scheduled_results.size(); i++) {
RESULT* rp = ordered_scheduled_results[i];
rp->seqno = i;
rp->unfinished_time_slice = false;
runnable_jobs.push_back(rp);
}
// append running jobs not done with time slice to the to-run list
//
append_unfinished_time_slice(runnable_jobs);
// sort to-run list by decreasing importance
//
std::sort(
runnable_jobs.begin(),
runnable_jobs.end(),
more_important
);
promote_multi_thread_jobs(runnable_jobs);
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "[cpu_sched] final job list:");
print_job_list(runnable_jobs);
}
double ram_left = available_ram();
double swap_left = (global_prefs.vm_max_used_frac)*host_info.m_swap;
if (log_flags.mem_usage_debug) {
msg_printf(0, MSG_INFO,
"[mem_usage] enforce: available RAM %.2fMB swap %.2fMB",
ram_left/MEGA, swap_left/MEGA
);
}
for (i=0; i<projects.size(); i++) {
projects[i]->cuda_defer_sched = false;
projects[i]->ati_defer_sched = false;
}
// schedule non-CPU-intensive tasks,
// and look for backed-off GPU jobs
//
for (i=0; i<results.size(); i++) {
RESULT* rp = results[i];
if (rp->project->non_cpu_intensive && rp->runnable()) {
atp = get_task(rp);
atp->next_scheduler_state = CPU_SCHED_SCHEDULED;
ram_left -= atp->procinfo.working_set_size_smoothed;
swap_left -= atp->procinfo.swap_size;
}
if (rp->schedule_backoff) {
if (rp->schedule_backoff > gstate.now) {
if (rp->uses_cuda()) {
rp->project->cuda_defer_sched = true;
} else if (rp->uses_ati()) {
rp->project->ati_defer_sched = true;
}
} else {
rp->schedule_backoff = 0;
request_schedule_cpus("schedule backoff finished");
}
}
}
// assign coprocessors to coproc jobs,
// and prune those that can't be assigned
//
assign_coprocs(runnable_jobs);
// prune jobs that don't fit in RAM or that exceed CPU usage limits.
// Mark the rest as SCHEDULED
//
ncpus_used = 0;
bool running_multithread = false;
for (i=0; i<runnable_jobs.size(); i++) {
RESULT* rp = runnable_jobs[i];
atp = lookup_active_task_by_result(rp);
if (!rp->uses_coprocs()) {
// see if we're already using too many CPUs to run this job
//
if (ncpus_used >= ncpus) {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] all CPUs used (%.2f > %d), skipping %s",
ncpus_used, ncpus,
rp->name
);
}
continue;
}
// Don't run a multithread app if usage would be #CPUS+1 or more.
// Multithread apps don't run well on an overcommitted system.
// Allow usage of #CPUS + fraction,
// so that a GPU app and a multithread app can run together.
//
if (rp->avp->avg_ncpus > 1) {
if (ncpus_used && (ncpus_used + rp->avp->avg_ncpus >= ncpus+1)) {
// the "ncpus_used &&" is to allow running a job that uses
// more than ncpus (this can happen in pathological cases)
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] not enough CPUs for multithread job, skipping %s",
rp->name
);
}
continue;
}
running_multithread = true;
} else {
// here for a single-thread app.
// Don't run if we're running a multithread app,
// and running this app would overcommit CPUs.
//
if (running_multithread) {
if (ncpus_used + 1 > ncpus) {
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] avoiding overcommit with multithread job, skipping %s",
rp->name
);
}
continue;
}
}
}
}
if (atp) {
atp->too_large = false;
if (atp->procinfo.working_set_size_smoothed > ram_left) {
atp->too_large = true;
if (log_flags.mem_usage_debug) {
msg_printf(rp->project, MSG_INFO,
"[mem_usage] enforce: result %s can't run, too big %.2fMB > %.2fMB",
rp->name, atp->procinfo.working_set_size_smoothed/MEGA, ram_left/MEGA
);
}
continue;
}
}
if (log_flags.cpu_sched_debug) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched] scheduling %s", rp->name
);
}
// We've decided to run this job; create an ACTIVE_TASK if needed.
//
if (!atp) {
atp = get_task(rp);
}
ncpus_used += rp->avp->avg_ncpus;
atp->next_scheduler_state = CPU_SCHED_SCHEDULED;
ram_left -= atp->procinfo.working_set_size_smoothed;
}
if (log_flags.cpu_sched_debug && ncpus_used < ncpus) {
msg_printf(0, MSG_INFO, "[cpu_sched] using %.2f out of %d CPUs",
ncpus_used, ncpus
);
if (ncpus_used < ncpus) {
request_work_fetch("CPUs idle");
}
}
bool check_swap = (host_info.m_swap != 0);
// in case couldn't measure swap on this host
// TODO: enforcement of swap space is broken right now
// preempt tasks as needed, and note whether there are any coproc jobs
// in QUIT_PENDING state (in which case we won't start new coproc jobs)
//
bool coproc_quit_pending = false;
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
if (log_flags.cpu_sched_debug) {
msg_printf(atp->result->project, MSG_INFO,
"[cpu_sched] %s sched state %d next %d task state %d",
atp->result->name, atp->scheduler_state,
atp->next_scheduler_state, atp->task_state()
);
}
int preempt_type = REMOVE_MAYBE_SCHED;
switch (atp->next_scheduler_state) {
case CPU_SCHED_PREEMPTED:
switch (atp->task_state()) {
case PROCESS_EXECUTING:
action = true;
if (check_swap && swap_left < 0) {
if (log_flags.mem_usage_debug) {
msg_printf(atp->result->project, MSG_INFO,
"[mem_usage] out of swap space, will preempt by quit"
);
}
preempt_type = REMOVE_ALWAYS;
}
if (atp->too_large) {
if (log_flags.mem_usage_debug) {
msg_printf(atp->result->project, MSG_INFO,
"[mem_usage] job using too much memory, will preempt by quit"
);
}
preempt_type = REMOVE_ALWAYS;
}
atp->preempt(preempt_type);
break;
case PROCESS_SUSPENDED:
// Handle the case where user changes prefs from
// "leave in memory" to "remove from memory";
// need to quit suspended tasks.
//
if (atp->checkpoint_cpu_time && !global_prefs.leave_apps_in_memory) {
atp->preempt(REMOVE_ALWAYS);
}
break;
}
atp->scheduler_state = CPU_SCHED_PREEMPTED;
break;
}
if (atp->result->uses_coprocs() && atp->task_state() == PROCESS_QUIT_PENDING) {
coproc_quit_pending = true;
}
}
bool coproc_start_deferred = false;
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
if (atp->next_scheduler_state != CPU_SCHED_SCHEDULED) continue;
int ts = atp->task_state();
if (ts == PROCESS_UNINITIALIZED || ts == PROCESS_SUSPENDED) {
// If there's a quit pending for a coproc job,
// don't start new ones since they may bomb out
// on memory allocation. Instead, trigger a retry
//
if (atp->result->uses_coprocs() && coproc_quit_pending) {
coproc_start_deferred = true;
continue;
}
action = true;
bool first_time;
// GPU tasks can get suspended before they're ever run,
// so the only safe way of telling whether this is the
// first time the app is run is to check
// whether the slot dir is empty
//
#ifdef SIM
first_time = atp->scheduler_state == CPU_SCHED_UNINITIALIZED;
#else
first_time = is_dir_empty(atp->slot_dir);
#endif
retval = atp->resume_or_start(first_time);
if ((retval == ERR_SHMGET) || (retval == ERR_SHMAT)) {
// Assume no additional shared memory segs
// will be available in the next 10 seconds
// (run only tasks which are already attached to shared memory).
//
if (gstate.retry_shmem_time < gstate.now) {
request_schedule_cpus("no more shared memory");
}
gstate.retry_shmem_time = gstate.now + 10.0;
continue;
}
if (retval) {
report_result_error(
*(atp->result), "Couldn't start or resume: %d", retval
);
request_schedule_cpus("start failed");
continue;
}
if (atp->result->rr_sim_misses_deadline) {
atp->once_ran_edf = true;
}
atp->run_interval_start_wall_time = now;
app_started = now;
}
if (log_flags.cpu_sched_status) {
msg_printf(atp->result->project, MSG_INFO,
"[css] running %s (%s)",
atp->result->name, atp->result->resources
);
}
atp->scheduler_state = CPU_SCHED_SCHEDULED;
swap_left -= atp->procinfo.swap_size;
}
if (action) {
set_client_state_dirty("enforce_cpu_schedule");
}
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "[cpu_sched] enforce_schedule: end");
}
if (coproc_start_deferred) {
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO,
"[cpu_sched] coproc quit pending, deferring start"
);
}
request_enforce_schedule(NULL, "coproc quit retry");
}
return action;
}
// trigger CPU schedule enforcement.
// Called when a new schedule is computed,
// and when an app checkpoints.
//
void CLIENT_STATE::request_enforce_schedule(PROJECT* p, const char* where) {
if (log_flags.cpu_sched_debug) {
msg_printf(p, MSG_INFO, "[cpu_sched] Request enforce CPU schedule: %s", where);
}
must_enforce_cpu_schedule = true;
}
// trigger CPU scheduling.
// Called when a result is completed,
// when new results become runnable,
// or when the user performs a UI interaction
// (e.g. suspending or resuming a project or result).
//
void CLIENT_STATE::request_schedule_cpus(const char* where) {
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "[cpu_sched] Request CPU reschedule: %s", where);
}
must_schedule_cpus = true;
}
// Find the active task for a given result
//
ACTIVE_TASK* CLIENT_STATE::lookup_active_task_by_result(RESULT* rep) {
for (unsigned int i = 0; i < active_tasks.active_tasks.size(); i ++) {
if (active_tasks.active_tasks[i]->result == rep) {
return active_tasks.active_tasks[i];
}
}
return NULL;
}
bool RESULT::not_started() {
if (computing_done()) return false;
if (gstate.lookup_active_task_by_result(this)) return false;
return true;
}
// find total resource shares of all projects
//
double CLIENT_STATE::total_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
if (!projects[i]->non_cpu_intensive ) {
x += projects[i]->resource_share;
}
}
return x;
}
// same, but only runnable projects (can use CPU right now)
//
double CLIENT_STATE::runnable_resource_share(int rsc_type) {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (p->non_cpu_intensive) continue;
if (p->runnable(rsc_type)) {
x += p->resource_share;
}
}
return x;
}
// same, but potentially runnable (could ask for work right now)
//
double CLIENT_STATE::potentially_runnable_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (p->non_cpu_intensive) continue;
if (p->potentially_runnable()) {
x += p->resource_share;
}
}
return x;
}
// same, but nearly runnable (could be downloading work right now)
//
double CLIENT_STATE::nearly_runnable_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (p->non_cpu_intensive) continue;
if (p->nearly_runnable()) {
x += p->resource_share;
}
}
return x;
}
bool ACTIVE_TASK::process_exists() {
switch (task_state()) {
case PROCESS_EXECUTING:
case PROCESS_SUSPENDED:
case PROCESS_ABORT_PENDING:
case PROCESS_QUIT_PENDING:
return true;
}
return false;
}
// if there's not an active task for the result, make one
//
ACTIVE_TASK* CLIENT_STATE::get_task(RESULT* rp) {
ACTIVE_TASK *atp = lookup_active_task_by_result(rp);
if (!atp) {
atp = new ACTIVE_TASK;
atp->get_free_slot(rp);
atp->init(rp);
active_tasks.active_tasks.push_back(atp);
}
return atp;
}
// Results must be complete early enough to report before the report deadline.
// Not all hosts are connected all of the time.
//
double RESULT::computation_deadline() {
return report_deadline - (
gstate.work_buf_min()
// Seconds that the host will not be connected to the Internet
+ gstate.global_prefs.cpu_scheduling_period()
// Seconds that the CPU may be busy with some other result
+ DEADLINE_CUSHION
);
}
static const char* result_state_name(int val) {
switch (val) {
case RESULT_NEW: return "NEW";
case RESULT_FILES_DOWNLOADING: return "FILES_DOWNLOADING";
case RESULT_FILES_DOWNLOADED: return "FILES_DOWNLOADED";
case RESULT_COMPUTE_ERROR: return "COMPUTE_ERROR";
case RESULT_FILES_UPLOADING: return "FILES_UPLOADING";
case RESULT_FILES_UPLOADED: return "FILES_UPLOADED";
case RESULT_ABORTED: return "ABORTED";
}
return "Unknown";
}
void RESULT::set_state(int val, const char* where) {
_state = val;
if (log_flags.task_debug) {
msg_printf(project, MSG_INFO,
"[task] result state=%s for %s from %s",
result_state_name(val), name, where
);
}
}
// called at startup (after get_host_info())
// and when general prefs have been parsed.
// NOTE: GSTATE.NCPUS MUST BE 1 OR MORE; WE DIVIDE BY IT IN A COUPLE OF PLACES
//
void CLIENT_STATE::set_ncpus() {
int ncpus_old = ncpus;
if (config.ncpus>0) {
ncpus = config.ncpus;
} else if (host_info.p_ncpus>0) {
ncpus = host_info.p_ncpus;
} else {
ncpus = 1;
}
if (global_prefs.max_ncpus_pct) {
ncpus = (int)((ncpus * global_prefs.max_ncpus_pct)/100);
if (ncpus == 0) ncpus = 1;
} else if (global_prefs.max_ncpus && global_prefs.max_ncpus < ncpus) {
ncpus = global_prefs.max_ncpus;
}
if (initialized && ncpus != ncpus_old) {
msg_printf(0, MSG_INFO,
"Number of usable CPUs has changed from %d to %d. Running benchmarks.",
ncpus_old, ncpus
);
run_cpu_benchmarks = true;
request_schedule_cpus("Number of usable CPUs has changed");
request_work_fetch("Number of usable CPUs has changed");
work_fetch.init();
}
}
// The given result has just completed successfully.
// Update the correction factor used to predict
// completion time for this project's results
//
void PROJECT::update_duration_correction_factor(ACTIVE_TASK* atp) {
RESULT* rp = atp->result;
double raw_ratio = atp->elapsed_time/rp->estimated_duration_uncorrected();
double adj_ratio = atp->elapsed_time/rp->estimated_duration(false);
double old_dcf = duration_correction_factor;
// it's OK to overestimate completion time,
// but bad to underestimate it.
// So make it easy for the factor to increase,
// but decrease it with caution
//
if (adj_ratio > 1.1) {
duration_correction_factor = raw_ratio;
} else {
// in particular, don't give much weight to results
// that completed a lot earlier than expected
//
if (adj_ratio < 0.1) {
duration_correction_factor = duration_correction_factor*0.99 + 0.01*raw_ratio;
} else {
duration_correction_factor = duration_correction_factor*0.9 + 0.1*raw_ratio;
}
}
// limit to [.01 .. 100]
//
if (duration_correction_factor > 100) duration_correction_factor = 100;
if (duration_correction_factor < 0.01) duration_correction_factor = 0.01;
if (log_flags.dcf_debug) {
msg_printf(this, MSG_INFO,
"[dcf] DCF: %f->%f, raw_ratio %f, adj_ratio %f",
old_dcf, duration_correction_factor, raw_ratio, adj_ratio
);
}
}