boinc/client/cs_apps.C

402 lines
12 KiB
C

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2005 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// The "policy" part of task execution is here.
// The "mechanism" part is in app.C
//
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifndef _WIN32
#include "config.h"
#include <cassert>
#include <csignal>
#endif
#include "md5_file.h"
#include "util.h"
#include "error_numbers.h"
#include "file_names.h"
#include "filesys.h"
#include "shmem.h"
#include "log_flags.h"
#include "client_msgs.h"
#include "client_state.h"
using std::vector;
// Quit running applications, quit benchmarks,
// write the client_state.xml file
// (in principle we could also terminate net_xfers here,
// e.g. flush buffers, but why bother)
//
int CLIENT_STATE::quit_activities() {
int retval;
// calculate long-term debts (for state file)
//
adjust_debts();
retval = active_tasks.exit_tasks();
if (retval) {
msg_printf(NULL, MSG_ERROR,
"Couldn't exit tasks: %s", boincerror(retval)
);
}
write_state_file();
abort_cpu_benchmarks();
return 0;
}
// Handle a task that has finished.
// Mark its output files as present, and delete scratch files.
// Don't delete input files because they might be shared with other WUs.
// Update state of result record.
//
int CLIENT_STATE::app_finished(ACTIVE_TASK& at) {
RESULT* rp = at.result;
FILE_INFO* fip;
unsigned int i;
char path[256];
int retval;
double size;
bool had_error = false;
// scan the output files, check if missing or too big
// Don't bother doing this if result was aborted via GUI
if (rp->exit_status != ERR_ABORTED_VIA_GUI) {
for (i=0; i<rp->output_files.size(); i++) {
fip = rp->output_files[i].file_info;
if (fip->uploaded) continue;
get_pathname(fip, path);
retval = file_size(path, size);
if (retval) {
// an output file is unexpectedly absent.
//
fip->status = retval;
had_error = true;
} else if (size > fip->max_nbytes) {
// Note: this is only checked when the application finishes.
// The total disk space is checked while the application is running.
//
msg_printf(
rp->project, MSG_INFO,
"Output file %s for task %s exceeds size limit.",
fip->name, rp->name
);
msg_printf(
rp->project, MSG_INFO,
"File size: %f bytes. Limit: %f bytes",
size, fip->max_nbytes
);
fip->delete_file();
fip->status = ERR_FILE_TOO_BIG;
had_error = true;
} else {
if (!fip->upload_when_present && !fip->sticky) {
fip->delete_file(); // sets status to NOT_PRESENT
} else {
retval = 0;
if (fip->gzip_when_done) {
retval = fip->gzip();
}
if (!retval) {
retval = md5_file(path, fip->md5_cksum, fip->nbytes);
}
if (retval) {
fip->status = retval;
had_error = true;
} else {
fip->status = FILE_PRESENT;
}
}
}
}
}
if (rp->exit_status != 0) {
had_error = true;
}
if (had_error) {
switch (rp->exit_status) {
case ERR_ABORTED_VIA_GUI:
case ERR_ABORTED_BY_PROJECT:
rp->state = RESULT_ABORTED;
break;
default:
rp->state = RESULT_COMPUTE_ERROR;
}
} else {
rp->state = RESULT_FILES_UPLOADING;
rp->project->update_duration_correction_factor(rp);
}
double wall_cpu_time = now - cpu_sched_last_time;
at.result->project->wall_cpu_time_this_period += wall_cpu_time;
total_wall_cpu_time_this_period += wall_cpu_time;
total_cpu_time_this_period += at.current_cpu_time - at.cpu_time_at_last_sched;
return 0;
}
// clean up after finished apps
//
bool CLIENT_STATE::handle_finished_apps() {
unsigned int i;
ACTIVE_TASK* atp;
bool action = false;
static double last_time = 0;
if (gstate.now - last_time < 1.0) return false;
last_time = gstate.now;
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
switch (atp->task_state) {
case PROCESS_EXITED:
case PROCESS_WAS_SIGNALED:
case PROCESS_EXIT_UNKNOWN:
case PROCESS_COULDNT_START:
case PROCESS_ABORTED:
if (log_flags.task) {
msg_printf(atp->wup->project, MSG_INFO,
"Computation for task %s finished", atp->result->name
);
}
if (log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"CLIENT_STATE::handle_finished_apps(): task finished; pid %d, status %d\n",
atp->pid, atp->result->exit_status
);
}
app_finished(*atp);
active_tasks.remove(atp);
delete atp;
set_client_state_dirty("handle_finished_apps");
action = true;
}
}
return action;
}
// Returns true iff all the input files for a result are present
// (both WU and app version)
// Called from CLIENT_STATE::update_results (with verify=false)
// to transition result from DOWNLOADING to DOWNLOADED.
// Called from ACTIVE_TASK::start() (with verify=true)
// when project has verify_files_on_app_start set.
//
int CLIENT_STATE::input_files_available(RESULT* rp, bool verify) {
WORKUNIT* wup = rp->wup;
FILE_INFO* fip;
unsigned int i;
APP_VERSION* avp;
FILE_REF fr;
PROJECT* project = rp->project;
int retval;
avp = wup->avp;
for (i=0; i<avp->app_files.size(); i++) {
fr = avp->app_files[i];
fip = fr.file_info;
if (fip->status != FILE_PRESENT) return ERR_FILE_MISSING;
// don't verify app files if using anonymous platform
//
if (!project->anonymous_platform) {
retval = fip->verify_file(verify);
if (retval) return retval;
}
}
for (i=0; i<wup->input_files.size(); i++) {
fip = wup->input_files[i].file_info;
if (fip->generated_locally) continue;
if (fip->status != FILE_PRESENT) return ERR_FILE_MISSING;
retval = fip->verify_file(verify);
if (retval) return retval;
}
return 0;
}
// if there's not an active task for the result, make one
//
int CLIENT_STATE::schedule_result(RESULT* rp) {
ACTIVE_TASK *atp = lookup_active_task_by_result(rp);
if (!atp) {
atp = new ACTIVE_TASK;
atp->slot = active_tasks.get_free_slot();
atp->init(rp);
active_tasks.active_tasks.push_back(atp);
}
atp->next_scheduler_state = CPU_SCHED_SCHEDULED;
return 0;
}
// find total resource shares of all projects
//
double CLIENT_STATE::total_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
if (!projects[i]->non_cpu_intensive ) {
x += projects[i]->resource_share;
}
}
return x;
}
// same, but only runnable projects (can use CPU right now)
//
double CLIENT_STATE::runnable_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (p->runnable()) {
x += p->resource_share;
}
}
return x;
}
// same, but potentially runnable (could ask for work right now)
//
double CLIENT_STATE::potentially_runnable_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (p->potentially_runnable()) {
x += p->resource_share;
}
}
return x;
}
// same, but nearly runnable (could be downloading work right now)
//
double CLIENT_STATE::nearly_runnable_resource_share() {
double x = 0;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (p->nearly_runnable()) {
x += p->resource_share;
}
}
return x;
}
void CLIENT_STATE::set_ncpus() {
int ncpus_old = ncpus;
if (config.ncpus>0) {
ncpus = config.ncpus;
} else if (host_info.p_ncpus>0) {
ncpus = host_info.p_ncpus;
} else {
ncpus = 1;
}
if (ncpus > global_prefs.max_cpus) ncpus = global_prefs.max_cpus;
if (ncpus_old && ncpus != ncpus_old) {
msg_printf(0, MSG_INFO,
"Number of usable CPUs has changed. Running benchmarks."
);
run_cpu_benchmarks = true;
request_schedule_cpus("Number of usable CPUs has changed");
}
}
inline double force_fraction(double f) {
if (f < 0) return 0;
if (f > 1) return 1;
return f;
}
double CLIENT_STATE::get_fraction_done(RESULT* result) {
ACTIVE_TASK* atp = active_tasks.lookup_result(result);
return atp ? force_fraction(atp->fraction_done) : 0.0;
}
// Decide which app version to use for a WU.
// Return -1 if can't find one
//
int CLIENT_STATE::choose_version_num(char* app_name, SCHEDULER_REPLY& sr) {
unsigned int i;
int best = -1;
APP_VERSION* avp;
// First look in the scheduler reply
//
for (i=0; i<sr.app_versions.size(); i++) {
avp = &sr.app_versions[i];
if (!strcmp(app_name, avp->app_name)) {
return avp->version_num;
}
}
// If not there, use the latest one in our state
//
for (i=0; i<app_versions.size(); i++) {
avp = app_versions[i];
if (strcmp(avp->app_name, app_name)) continue;
if (avp->version_num < best) continue;
best = avp->version_num;
}
if (best < 0) {
msg_printf(0, MSG_ERROR,
"No version found for application %s", app_name
);
}
return best;
}
// trigger CPU schedule enforcement.
// Called when a new schedule is computed,
// and when an app checkpoints.
//
void CLIENT_STATE::request_enforce_schedule(const char* where) {
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "Request enforce CPU schedule: %s", where);
}
must_enforce_cpu_schedule = true;
}
// trigger CPU scheduling.
// Called when a result is completed,
// when new results become runnable,
// or when the user performs a UI interaction
// (e.g. suspending or resuming a project or result).
//
void CLIENT_STATE::request_schedule_cpus(const char* where) {
if (log_flags.cpu_sched_debug) {
msg_printf(0, MSG_INFO, "Request CPU reschedule: %s", where);
}
must_schedule_cpus = true;
}
const char *BOINC_RCSID_7bf63ad771 = "$Id$";