boinc/vda/vda_lib.cpp

438 lines
12 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2012 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
#include <stdio.h>
#include <string.h>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <limits.h>
using std::vector;
using std::set;
#include "vda_lib.h"
char* time_str(double t) {
static char buf[256];
int n = (int)t;
int nsec = n % 60;
n /= 60;
int nmin = n % 60;
n /= 60;
int nhour = n % 24;
n /= 24;
sprintf(buf, "%4d days %02d:%02d:%02d", n, nhour, nmin, nsec);
return buf;
}
void STATS_ITEM::init(const char* n, const char* filename, STATS_KIND k) {
f = fopen(filename, "w");
strcpy(name, n);
kind = k;
value = 0;
integral = 0;
switch (kind) {
case DISK:
case NETWORK:
extreme_val = 0;
break;
case FAULT_TOLERANCE:
extreme_val = INT_MAX;
break;
}
extreme_val_time = 0;
first = true;
}
void STATS_ITEM::sample(double v, bool collecting_stats, double now) {
#ifdef SAMPLE_DEBUG
switch (kind) {
case DISK:
printf("%s: %s: %fGB -> %fGB\n", now_str(), name, value/1e9, v/1e9);
break;
case NETWORK:
printf("%s: %s: %fMbps -> %fMbps\n", now_str(), name, value/1e6, v/1e6);
break;
case FAULT_TOLERANCE:
printf("%s: %s: %.0f -> %.0f\n", now_str(), name, value, v);
break;
}
#endif
double old_val = value;
value = v;
if (!collecting_stats) return;
if (first) {
first = false;
prev_t = now;
return;
}
double dt = now - prev_t;
prev_t = now;
integral += dt*old_val;
switch (kind) {
case DISK:
case NETWORK:
if (v > extreme_val) {
extreme_val = v;
extreme_val_time = now;
}
break;
case FAULT_TOLERANCE:
if (v < extreme_val) {
extreme_val = v;
extreme_val_time = now;
}
break;
}
fprintf(f, "%f %f\n", now, old_val);
fprintf(f, "%f %f\n", now, v);
}
void STATS_ITEM::sample_inc(double inc, bool collecting_stats, double now) {
sample(value+inc, collecting_stats, now);
}
void STATS_ITEM::print(double now) {
sample_inc(0, true, now);
double dt = now - start_time;
switch (kind) {
case DISK:
printf(" mean: %fGB. Max: %fGB at %s\n",
(integral/dt)/1e9, extreme_val/1e9, time_str(extreme_val_time)
);
break;
case NETWORK:
printf(" mean: %fMbps. Max: %fMbps at %s\n",
(integral/dt)/1e6, extreme_val/1e6, time_str(extreme_val_time)
);
break;
case FAULT_TOLERANCE:
printf(" mean: %.2f. Min: %.0f at %s\n",
integral/dt, extreme_val, time_str(extreme_val_time)
);
break;
}
}
void STATS_ITEM::print_summary(FILE* fout, double now) {
double dt = now - start_time;
switch (kind) {
case DISK:
fprintf(fout, "%f\n", integral/dt);
break;
case NETWORK:
fprintf(fout, "%f\n", integral/dt);
break;
case FAULT_TOLERANCE:
fprintf(fout, "%f\n", extreme_val);
break;
}
}
META_CHUNK::META_CHUNK(
VDA_FILE_AUX* d, META_CHUNK* par, double size,
int coding_level, int index
) {
dfile = d;
parent = par;
coding = d->policy.codings[coding_level];
if (parent) {
sprintf(name, "%s.%d", parent->name, index);
} else {
sprintf(name, "%d", index);
}
if (coding_level<d->policy.coding_levels-1) {
for (int j=0; j<coding.m; j++) {
children.push_back(new META_CHUNK(
d,
this,
size/coding.n,
coding_level+1,
j
));
}
} else {
for (int j=0; j<coding.m; j++) {
children.push_back(
new CHUNK(this, size/coding.n, j)
);
}
}
}
// sort by increasing cost
//
bool compare_cost(const DATA_UNIT* d1, const DATA_UNIT* d2) {
return d1->cost < d2->cost;
}
// sort by increase min_failures
//
bool compare_min_failures(const DATA_UNIT* d1, const DATA_UNIT* d2) {
return d1->min_failures < d2->min_failures;
}
// Recovery logic: decide what to do in response to
// host failures and upload/download completions.
//
// One way to do this would be to store a bunch of state info
// with each node in the file's tree,
// and do things by local tree traversal.
//
// However, it's simpler to store minimal state info,
// and to reconstruct state info using
// a top-down tree traversal in response to each event.
// Actually we do 2 traversals:
// 1) plan phase:
// We see whether each node is recoverable,
// and if so compute its "recovery set":
// the set of children from which it can be recovered
// with minimal cost (i.e. network traffic).
// Decide whether each chunk currently on the server needs to remain.
// 2) action phase
// Based on the results of phase 1,
// decide whether to start upload/download of chunks,
// and whether to delete data currently on server
//
int META_CHUNK::recovery_plan() {
vector<DATA_UNIT*> recoverable;
vector<DATA_UNIT*> present;
unsigned int i;
have_unrecoverable_children = false;
// make lists of children in various states
//
for (i=0; i<children.size(); i++) {
DATA_UNIT* c = children[i];
c->in_recovery_set = false;
c->data_needed = false;
c->data_now_present = false;
int retval = c->recovery_plan();
if (retval) return retval;
switch (c->status) {
case PRESENT:
present.push_back(c);
break;
case RECOVERABLE:
recoverable.push_back(c);
break;
case UNRECOVERABLE:
have_unrecoverable_children = true;
break;
}
}
// based on states of children, decide what state we're in
//
if ((int)(present.size()) >= coding.n) {
status = PRESENT;
sort(present.begin(), present.end(), compare_cost);
present.resize(coding.n);
cost = 0;
for (i=0; i<present.size(); i++) {
DATA_UNIT* c= present[i];
cost += c->cost;
c->in_recovery_set = true;
}
} else if ((int)(present.size() + recoverable.size()) >= coding.n) {
status = RECOVERABLE;
unsigned int j = coding.n - present.size();
sort(recoverable.begin(), recoverable.end(), compare_cost);
cost = 0;
for (i=0; i<present.size(); i++) {
DATA_UNIT* c= present[i];
c->in_recovery_set = true;
}
for (i=0; i<j; i++) {
DATA_UNIT* c= recoverable[i];
c->in_recovery_set = true;
cost += c->cost;
}
} else {
status = UNRECOVERABLE;
}
return 0;
}
int CHUNK::recovery_plan() {
if (present_on_server) {
status = PRESENT;
cost = 0;
min_failures = INT_MAX;
} else if (hosts.size() > 0) {
status = RECOVERABLE;
cost = size;
if ((int)(hosts.size()) < parent->dfile->policy.replication) {
data_needed = true;
}
min_failures = hosts.size();
} else {
status = UNRECOVERABLE;
min_failures = 0;
}
#ifdef DEBUG_RECOVERY
printf("chunk plan %s: status %s\n", name, status_str(status));
#endif
return 0;
}
int META_CHUNK::recovery_action(double now) {
unsigned int i;
int retval;
if (data_now_present) {
status = PRESENT;
}
#ifdef DEBUG_RECOVERY
printf("meta chunk action %s state %s unrec children %d\n",
name, status_str(status), have_unrecoverable_children
);
#endif
for (i=0; i<children.size(); i++) {
DATA_UNIT* c = children[i];
#ifdef DEBUG_RECOVERY
printf(" child %s status %s in rec set %d\n",
c->name, status_str(c->status), c->in_recovery_set
);
#endif
switch (status) {
case PRESENT:
if (c->status == UNRECOVERABLE) {
c->data_now_present = true;
}
break;
case RECOVERABLE:
if (c->in_recovery_set && have_unrecoverable_children) {
c->data_needed = true;
}
break;
case UNRECOVERABLE:
break;
}
retval = c->recovery_action(now);
if (retval) return retval;
}
// because of recovery action,
// some of our children may have changed status and fault tolerance,
// so ours may have changed too.
// Recompute them.
//
vector<DATA_UNIT*> recoverable;
vector<DATA_UNIT*> present;
for (i=0; i<children.size(); i++) {
DATA_UNIT* c = children[i];
switch (c->status) {
case PRESENT:
present.push_back(c);
break;
case RECOVERABLE:
recoverable.push_back(c);
break;
}
}
if ((int)(present.size()) >= coding.n) {
status = PRESENT;
min_failures = INT_MAX;
} else if ((int)(present.size() + recoverable.size()) >= coding.n) {
status = RECOVERABLE;
// our min_failures is the least X such that some X host failures
// would make this node unrecoverable
//
sort(recoverable.begin(), recoverable.end(), compare_min_failures);
min_failures = 0;
unsigned int k = coding.n - present.size();
// we'd need to recover K recoverable children
unsigned int j = recoverable.size() - k + 1;
// a loss of J recoverable children would make this impossible
// the loss of J recoverable children would make us unrecoverable
// Sum the min_failures of the J children with smallest min_failures
//
for (i=0; i<j; i++) {
DATA_UNIT* c = recoverable[i];
printf(" Min failures of %s: %d\n", c->name, c->min_failures);
min_failures += c->min_failures;
}
printf(" our min failures: %d\n", min_failures);
}
return 0;
}
bool CHUNK::download_in_progress() {
set<VDA_CHUNK_HOST*>::iterator i;
for (i=hosts.begin(); i!=hosts.end(); i++) {
VDA_CHUNK_HOST* ch = *i;
if (ch->download_in_progress()) return true;
}
return false;
}
int CHUNK::recovery_action(double now) {
int retval;
VDA_FILE_AUX* fp = parent->dfile;
if (data_now_present) {
present_on_server = true;
fp->disk_usage.sample_inc(
size,
fp->collecting_stats(),
now
);
status = PRESENT;
}
if (status == PRESENT && (int)(hosts.size()) < fp->policy.replication) {
retval = assign();
if (retval) return retval;
}
if (download_in_progress()) {
data_needed = true;
}
#ifdef DEBUG_RECOVERY
printf("chunk action: %s data_needed %d present_on_server %d\n",
name, data_needed, present_on_server
);
#endif
if (data_needed) {
if (!present_on_server) {
retval = start_upload();
if (retval) return retval;
}
} else {
if (present_on_server) {
present_on_server = false;
status = RECOVERABLE;
min_failures = fp->policy.replication;
#ifdef EVENT_DEBUG
printf("%s: %s replicated, removing from server\n", now_str(), name);
#endif
parent->dfile->disk_usage.sample_inc(
-size,
fp->collecting_stats(),
now
);
}
}
return 0;
}