boinc/client/sim.C

1027 lines
29 KiB
C

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2006 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// BOINC client simulator.
//
// usage:
// sim [--duration x] [--delta x] [--dirs dir ...]
// duration = simulation duration (default 86400)
// delta = simulation time step (default 10)
//
// If no dirs are specified:
// reads input files
// sim_projects.xml, sim_host.xml, sim_prefs.xml, cc_config.xml
// and does simulation, generating output files
// sim_log.txt, sim_out.html
//
// If dirs are specified, chdir into each directory in sequence,
// do the above for each one, and write summary info to stdout
#include "error_numbers.h"
#include "str_util.h"
#include "log_flags.h"
#include "filesys.h"
#include "network.h"
#include "client_msgs.h"
#include "sim.h"
CLIENT_STATE gstate;
NET_STATUS net_status;
bool g_use_sandbox;
bool user_active;
double duration = 86400, delta = 60;
FILE* logfile;
bool running;
SIM_RESULTS sim_results;
//////////////// FUNCTIONS MODIFIED OR STUBBED OUT /////////////
CLIENT_STATE::CLIENT_STATE() {
initialized = false;
}
FILE* boinc_fopen(const char* path, const char* mode) {
return fopen(path, mode);
}
void CLIENT_STATE::set_client_state_dirty(char const*) {
}
void HOST_INFO::generate_host_cpid() {}
int get_connected_state() {return CONNECTED_STATE_CONNECTED;}
int CLIENT_STATE::report_result_error(RESULT& , const char* , ...) {return 0;}
void show_message(PROJECT *p, char* msg, int priority) {
const char* x;
char message[1024];
char* time_string = time_to_string(gstate.now);
if (priority == MSG_INTERNAL_ERROR) {
strcpy(message, "[error] ");
strlcpy(message+8, msg, sizeof(message)-8);
} else {
strlcpy(message, msg, sizeof(message));
}
while (strlen(message)&&message[strlen(message)-1] == '\n') {
message[strlen(message)-1] = 0;
}
if (p) {
x = p->get_project_name();
} else {
x = "---";
}
fprintf(logfile, "%s [%s] %s\n", time_string, x, message);
}
bool RESULT::some_download_stalled() {
return false;
}
bool PROJECT::some_download_stalled() {
return false;
}
APP_CLIENT_SHM::APP_CLIENT_SHM() {}
GRAPHICS_MSG::GRAPHICS_MSG() {}
HOST_INFO::HOST_INFO() {}
//////////////// FUNCTIONS COPIED /////////////
void SIM_PROJECT::init() {
strcpy(master_url, "");
strcpy(authenticator, "");
project_specific_prefs = "";
gui_urls = "";
resource_share = 100;
strcpy(host_venue, "");
using_venue_specific_prefs = false;
scheduler_urls.clear();
strcpy(project_name, "");
strcpy(symstore, "");
strcpy(user_name, "");
strcpy(team_name, "");
strcpy(email_hash, "");
strcpy(cross_project_id, "");
user_total_credit = 0;
user_expavg_credit = 0;
user_create_time = 0;
ams_resource_share = 0;
rpc_seqno = 0;
hostid = 0;
host_total_credit = 0;
host_expavg_credit = 0;
host_create_time = 0;
nrpc_failures = 0;
master_fetch_failures = 0;
min_rpc_time = 0;
possibly_backed_off = true;
master_url_fetch_pending = false;
sched_rpc_pending = 0;
next_rpc_time = 0;
last_rpc_time = 0;
trickle_up_pending = false;
tentative = false;
anonymous_platform = false;
non_cpu_intensive = false;
verify_files_on_app_start = false;
short_term_debt = 0;
long_term_debt = 0;
send_file_list = false;
suspended_via_gui = false;
dont_request_more_work = false;
detach_when_done = false;
attached_via_acct_mgr = false;
strcpy(code_sign_key, "");
user_files.clear();
project_files.clear();
anticipated_debt = 0;
wall_cpu_time_this_debt_interval = 0;
next_runnable_result = NULL;
work_request = 0;
work_request_urgency = WORK_FETCH_DONT_NEED;
duration_correction_factor = 1;
project_files_downloaded_time = 0;
// Initialize scratch variables.
rrsim_proc_rate = 0.0;
cpu_shortfall = 0.0;
rr_sim_deadlines_missed = 0;
deadlines_missed = 0;
idle_period_duration = 0;
idle_period_sumsq = 0;
}
void RESULT::clear() {
strcpy(name, "");
strcpy(wu_name, "");
report_deadline = 0;
output_files.clear();
_state = RESULT_NEW;
ready_to_report = false;
completed_time = 0;
got_server_ack = false;
final_cpu_time = 0;
exit_status = 0;
stderr_out = "";
suspended_via_gui = false;
rr_sim_misses_deadline = false;
last_rr_sim_missed_deadline = false;
fpops_per_cpu_sec = 0;
fpops_cumulative = 0;
intops_per_cpu_sec = 0;
intops_cumulative = 0;
app = NULL;
wup = NULL;
project = NULL;
}
static const char* task_state_name(int val) {
switch (val) {
case PROCESS_UNINITIALIZED: return "UNINITIALIZED";
case PROCESS_EXECUTING: return "EXECUTING";
case PROCESS_SUSPENDED: return "SUSPENDED";
case PROCESS_ABORT_PENDING: return "ABORT_PENDING";
case PROCESS_EXITED: return "EXITED";
case PROCESS_WAS_SIGNALED: return "WAS_SIGNALED";
case PROCESS_EXIT_UNKNOWN: return "EXIT_UNKNOWN";
case PROCESS_ABORTED: return "ABORTED";
case PROCESS_COULDNT_START: return "COULDNT_START";
case PROCESS_QUIT_PENDING: return "QUIT_PENDING";
}
return "Unknown";
}
void ACTIVE_TASK::set_task_state(int val, const char* where) {
_task_state = val;
if (log_flags.task_debug) {
msg_printf(result->project, MSG_INFO,
"[task_debug] task_state=%s for %s from %s",
task_state_name(val), result->name, where
);
}
}
char* PROJECT::get_project_name() {
if (strlen(project_name)) {
return project_name;
} else {
return master_url;
}
}
static inline double drand() {
return (double)rand()/(double)RAND_MAX;
}
// return a random double in the range [rmin,rmax)
static inline double rand_range(double rmin, double rmax) {
if (rmin < rmax) {
return drand() * (rmax-rmin) + rmin;
} else {
return rmin;
}
}
// return a random double in the range [MIN,min(e^n,MAX))
//
double calculate_exponential_backoff( int n, double MIN, double MAX) {
double rmax = std::min(MAX, exp((double)n));
return rand_range(MIN, rmax);
}
// amount of RAM usable now
//
double CLIENT_STATE::available_ram() {
if (user_active) {
return host_info.m_nbytes * global_prefs.ram_max_used_busy_frac;
} else {
return host_info.m_nbytes * global_prefs.ram_max_used_idle_frac;
}
}
// max amount that will ever be usable
//
double CLIENT_STATE::max_available_ram() {
return host_info.m_nbytes*std::max(
global_prefs.ram_max_used_busy_frac, global_prefs.ram_max_used_idle_frac
);
}
RESULT* CLIENT_STATE::lookup_result(PROJECT* p, const char* name) {
for (unsigned int i=0; i<results.size(); i++) {
RESULT* rp = results[i];
if (rp->project == p && !strcmp(name, rp->name)) return rp;
}
return 0;
}
bool CLIENT_STATE::simulate_rpc(PROJECT* _p) {
double net_fpops = host_info.p_fpops;
char buf[256];
SIM_PROJECT* p = (SIM_PROJECT*) _p;
static double last_time=0;
double diff = now - last_time;
if (diff && diff < host_info.connection_interval) {
return false;
}
last_time = now;
sprintf(buf, "RPC to %s; asking for %f<br>", p->project_name, p->work_request);
html_msg += buf;
// remove ready-to-report results
//
vector<RESULT*>::iterator result_iter;
result_iter = results.begin();
while (result_iter != results.end()) {
RESULT* rp = *result_iter;
if (rp->ready_to_report) {
sprintf(buf, "result %s reported; %s<br>",
rp->name,
(gstate.now > rp->report_deadline)?
"<font color=#cc0000>MISSED DEADLINE</font>":
"<font color=#00cc00>MADE DEADLINE</font>"
);
SIM_PROJECT* spp = (SIM_PROJECT*)rp->project;
if (gstate.now > rp->report_deadline) {
sim_results.cpu_wasted += rp->final_cpu_time;
sim_results.nresults_missed_deadline++;
spp->project_results.nresults_missed_deadline++;
spp->project_results.cpu_wasted += rp->final_cpu_time;
} else {
sim_results.cpu_used += rp->final_cpu_time;
sim_results.nresults_met_deadline++;
spp->project_results.nresults_met_deadline++;
spp->project_results.cpu_used += rp->final_cpu_time;
}
gstate.html_msg += buf;
delete rp;
result_iter = results.erase(result_iter);
} else {
result_iter++;
}
}
while (p->work_request > 0) {
// pick a random app
SIM_APP* ap1, *ap=0;
double x = drand();
for (unsigned int i=0; i<apps.size();i++) {
ap1 = (SIM_APP*)apps[i];
if (ap1->project != p) continue;
x -= ap1->weight;
if (x <= 0) {
ap = ap1;
break;
}
}
if (!ap) {
printf("ERROR-NO APP\n");
break;
}
RESULT* rp = new RESULT;
WORKUNIT* wup = new WORKUNIT;
rp->clear();
rp->project = p;
rp->wup = wup;
sprintf(rp->name, "%s_%d", p->project_name, p->result_index++);
rp->set_state(RESULT_FILES_DOWNLOADED, "simulate_rpc");
wup->project = p;
wup->rsc_fpops_est = ap->fpops_est;
results.push_back(rp);
double ops = ap->fpops.sample();
if (ops < 0) ops = 0;
rp->final_cpu_time = ops/net_fpops;
rp->report_deadline = now + ap->latency_bound;
sprintf(buf, "got job %s: CPU time %.2f, deadline %s<br>",
rp->name, rp->final_cpu_time, time_to_string(rp->report_deadline)
);
html_msg += buf;
p->work_request -= p->duration_correction_factor*ap->fpops_est/net_fpops;
}
p->work_request = 0;
request_schedule_cpus("simulate_rpc");
request_work_fetch("simulate_rpc");
return true;
}
bool CLIENT_STATE::scheduler_rpc_poll() {
PROJECT *p;
p = next_project_sched_rpc_pending();
if (p) {
return simulate_rpc(p);
}
p = find_project_with_overdue_results();
if (p) {
return simulate_rpc(p);
}
p = next_project_need_work();
if (p) {
return simulate_rpc(p);
}
return false;
}
bool ACTIVE_TASK_SET::poll() {
unsigned int i;
char buf[256];
bool action = false;
static double last_time = 0;
double diff = gstate.now - last_time;
if (diff < 1.0) return false;
last_time = gstate.now;
SIM_PROJECT* p;
if (!running) return false;
for (i=0; i<gstate.projects.size(); i++) {
p = (SIM_PROJECT*) gstate.projects[i];
p->idle = true;
}
int n=0;
for (i=0; i<active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks[i];
switch (atp->task_state()) {
case PROCESS_EXECUTING:
atp->cpu_time_left -= diff;
RESULT* rp = atp->result;
double cpu_time_used = rp->final_cpu_time - atp->cpu_time_left;
atp->fraction_done = cpu_time_used/rp->final_cpu_time;
atp->checkpoint_wall_time = gstate.now;
if (atp->cpu_time_left <= 0) {
atp->set_task_state(PROCESS_EXITED, "poll");
rp->exit_status = 0;
rp->ready_to_report = true;
gstate.request_schedule_cpus("ATP poll");
gstate.request_work_fetch("ATP poll");
sprintf(buf, "result %s finished<br>", rp->name);
gstate.html_msg += buf;
}
((SIM_PROJECT*)rp->project)->idle = false;
n++;
}
}
if (n < gstate.ncpus) {
sim_results.cpu_idle += diff*(gstate.ncpus-n);
}
if (n > gstate.ncpus) {
sprintf(buf, "TOO MANY JOBS RUNNING");
gstate.html_msg += buf;
}
for (i=0; i<gstate.projects.size(); i++) {
p = (SIM_PROJECT*) gstate.projects[i];
if (p->idle) {
p->idle_period_duration += diff;
} else {
p->idle_period_duration = 0;
}
double ipd = p->idle_period_duration;
p->idle_period_sumsq += ipd*ipd;
p->nidle_periods++;
}
return action;
}
//////////////// FUNCTIONS WE NEED TO IMPLEMENT /////////////
ACTIVE_TASK::ACTIVE_TASK() {
}
int ACTIVE_TASK::suspend() {
if (task_state() != PROCESS_EXECUTING) {
msg_printf(0, MSG_INFO, "Internal error: expected process to be executing");
}
set_task_state(PROCESS_SUSPENDED, "suspend");
return 0;
}
int ACTIVE_TASK::request_exit() {
set_task_state(PROCESS_UNINITIALIZED, "request_exit");
return 0;
}
int ACTIVE_TASK::resume_or_start(bool first_time) {
if (log_flags.task) {
msg_printf(result->project, MSG_INFO,
"[task] %s task %s",
first_time?"Starting":"Resuming", result->name
);
}
set_task_state(PROCESS_EXECUTING, "start");
char buf[256];
sprintf(buf, "Starting %s: %f<br>", result->name, cpu_time_left);
gstate.html_msg += buf;
return 0;
}
int ACTIVE_TASK_SET::get_free_slot(){
return 0;
}
int ACTIVE_TASK::init(RESULT* rp) {
result = rp;
wup = rp->wup;
app_version = wup->avp;
max_cpu_time = rp->wup->rsc_fpops_bound/gstate.host_info.p_fpops;
max_disk_usage = rp->wup->rsc_disk_bound;
max_mem_usage = rp->wup->rsc_memory_bound;
cpu_time_left = rp->final_cpu_time;
_task_state = PROCESS_UNINITIALIZED;
scheduler_state = CPU_SCHED_UNINITIALIZED;
return 0;
}
void CLIENT_STATE::print_project_results(FILE* f) {
for (unsigned int i=0; i<projects.size(); i++) {
SIM_PROJECT* p = (SIM_PROJECT*) projects[i];
p->print_results(f, sim_results);
}
}
//////////////// OTHER
PROJECT::PROJECT() {
}
// http://www.cs.wm.edu/~va/software/park/rvgs.c
double NORMAL_DIST::sample() {
const double p0 = 0.322232431088; const double q0 = 0.099348462606;
const double p1 = 1.0; const double q1 = 0.588581570495;
const double p2 = 0.342242088547; const double q2 = 0.531103462366;
const double p3 = 0.204231210245e-1; const double q3 = 0.103537752850;
const double p4 = 0.453642210148e-4; const double q4 = 0.385607006340e-2;
double u, t, p, q, z;
u = drand();
if (u < 0.5)
t = sqrt(-2.0 * log(u));
else
t = sqrt(-2.0 * log(1.0 - u));
p = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)));
q = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4)));
if (u < 0.5)
z = (p / q) - t;
else
z = t - (p / q);
return (mean + stdev * z);
}
inline double exponential(double mean) {
return -mean*log(1-drand());
}
bool RANDOM_PROCESS::sample(double t) {
if (frac==1) return true;
double diff = t-last_time;
last_time = t;
time_left -= diff;
if (time_left < 0) {
if (value) {
time_left += exponential(off_lambda);
value = false;
} else {
time_left += exponential(lambda);
value = true;
}
}
return value;
}
RANDOM_PROCESS::RANDOM_PROCESS() {
frac = 1;
}
void RANDOM_PROCESS::init() {
value = true;
time_left = exponential(lambda);
off_lambda = lambda/frac - lambda;
}
int NORMAL_DIST::parse(XML_PARSER& xp, char* end_tag) {
char tag[256];
bool is_tag;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (xp.parse_double(tag, "mean", mean)) continue;
else if (xp.parse_double(tag, "stdev", stdev)) continue;
else if (!strcmp(tag, end_tag)) return 0;
else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
int UNIFORM_DIST::parse(XML_PARSER& xp, char* end_tag) {
char tag[256];
bool is_tag;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (xp.parse_double(tag, "lo", lo)) continue;
else if (xp.parse_double(tag, "hi", hi)) continue;
else if (!strcmp(tag, end_tag)) return 0;
else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
int RANDOM_PROCESS::parse(XML_PARSER& xp, char* end_tag) {
char tag[256];
bool is_tag;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (xp.parse_double(tag, "frac", frac)) continue;
else if (xp.parse_double(tag, "lambda", lambda)) continue;
else if (!strcmp(tag, end_tag)) return 0;
else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
int SIM_APP::parse(XML_PARSER& xp) {
char tag[256];
bool is_tag;
int retval;
weight = 1;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (!strcmp(tag, "/app")) {
return 0;
}
else if (xp.parse_double(tag, "latency_bound", latency_bound)) continue;
else if (xp.parse_double(tag, "fpops_est", fpops_est)) continue;
else if (xp.parse_double(tag, "weight", weight)) continue;
else if (!strcmp(tag, "fpops")) {
retval = fpops.parse(xp, "/fpops");
if (retval) return retval;
} else if (!strcmp(tag, "checkpoint_period")) {
retval = checkpoint_period.parse(xp, "/checkpoint_period");
if (retval) return retval;
} else if (xp.parse_double(tag, "working_set", working_set)) continue;
else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
// return the fraction of CPU time that was spent in violation of shares
// i.e., if a project got X and it should have got Y,
// add up |X-Y| over all projects, and divide by total CPU
//
double CLIENT_STATE::share_violation() {
double x = 0;
unsigned int i;
double tot = 0, trs=0;
for (i=0; i<projects.size(); i++) {
SIM_PROJECT* p = (SIM_PROJECT*) projects[i];
tot += p->project_results.cpu_used + p->project_results.cpu_wasted;
trs += p->resource_share;
}
double sum = 0;
for (i=0; i<projects.size(); i++) {
SIM_PROJECT* p = (SIM_PROJECT*) projects[i];
double t = p->project_results.cpu_used + p->project_results.cpu_wasted;
double rs = p->resource_share/trs;
double rt = tot*rs;
sum += fabs(t - rt);
}
return sum/tot;
}
// "variety" is defined as the RMS of the duration of idle periods
// across all projects
//
double CLIENT_STATE::variety() {
double sum = 0;
int n = 0;
unsigned int i;
for (i=0; i<projects.size(); i++) {
SIM_PROJECT* p = (SIM_PROJECT*) projects[i];
sum += p->idle_period_sumsq;
n += p->nidle_periods;
}
return sqrt(sum/n);
}
void SIM_RESULTS::compute() {
double total = cpu_used + cpu_wasted + cpu_idle;
cpu_wasted_frac = cpu_wasted/total;
cpu_idle_frac = cpu_idle/total;
share_violation = gstate.share_violation();
variety = gstate.variety();
}
// top-level results (for aggregating multiple simulations)
//
void SIM_RESULTS::print(FILE* f, const char* title) {
if (title) {
fprintf(f, title);
}
fprintf(f, "wasted %f idle %f share_violation %f variety %f\n",
cpu_wasted_frac, cpu_idle_frac, share_violation, variety
);
}
void SIM_RESULTS::parse(FILE* f) {
fscanf(f, "wasted %lf idle %lf share_violation %lf variety %lf",
&cpu_wasted, &cpu_idle, &share_violation, &variety
);
}
void SIM_RESULTS::add(SIM_RESULTS& r) {
cpu_used += r.cpu_used;
cpu_wasted += r.cpu_wasted;
cpu_idle += r.cpu_idle;
nresults_met_deadline += r.nresults_met_deadline;
nresults_missed_deadline += r.nresults_missed_deadline;
}
SIM_RESULTS::SIM_RESULTS() {
cpu_used = 0; cpu_wasted=0; cpu_idle=0;
nresults_met_deadline = 0; nresults_missed_deadline = 0;
}
void SIM_PROJECT::print_results(FILE* f, SIM_RESULTS& sr) {
double t = project_results.cpu_used + project_results.cpu_wasted;
double gt = sr.cpu_used + sr.cpu_wasted;
fprintf(f, "%s: share %.2f total CPU %2f (%.2f%%)\n"
" used %.2f wasted %.2f\n"
" met %d missed %d\n",
project_name, resource_share,
t, (t/gt)*100,
project_results.cpu_used,
project_results.cpu_wasted,
project_results.nresults_met_deadline,
project_results.nresults_missed_deadline
);
}
int SIM_PROJECT::parse(XML_PARSER& xp) {
char tag[256];
bool is_tag;
int retval;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (!strcmp(tag, "/project")) return 0;
else if (xp.parse_str(tag, "project_name", project_name, sizeof(project_name))) continue;
else if (!strcmp(tag, "app")) {
SIM_APP* sap = new SIM_APP;
retval = sap->parse(xp);
if (retval) return retval;
sap->project = this;
gstate.apps.push_back(sap);
} else if (!strcmp(tag, "available")) {
retval = available.parse(xp, "/available");
if (retval) return retval;
} else if (xp.parse_double(tag, "resource_share", resource_share)) {
continue;
} else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
int SIM_HOST::parse(XML_PARSER& xp) {
char tag[256];
bool is_tag;
int retval;
p_ncpus = 1;
connection_interval = 0;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (!strcmp(tag, "/host")) return 0;
else if (xp.parse_double(tag, "p_fpops", p_fpops)) continue;
else if (xp.parse_double(tag, "m_nbytes", m_nbytes)) continue;
else if (xp.parse_double(tag, "connection_interval", connection_interval)) continue;
else if (xp.parse_int(tag, "p_ncpus", p_ncpus)) continue;
else if (!strcmp(tag, "available")) {
retval = available.parse(xp, "/available");
if (retval) return retval;
available.init();
} else if (!strcmp(tag, "idle")) {
retval = idle.parse(xp, "/idle");
if (retval) return retval;
idle.init();
} else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
int CLIENT_STATE::parse_projects(char* name) {
char tag[256];
bool is_tag;
MIOFILE mf;
int retval, index=0;
FILE* f = fopen(name, "r");
if (!f) return ERR_FOPEN;
mf.init_file(f);
XML_PARSER xp(&mf);
if (!xp.parse_start("projects")) return ERR_XML_PARSE;
while(!xp.get(tag, sizeof(tag), is_tag)) {
if (!is_tag) return ERR_XML_PARSE;
if (!strcmp(tag, "project")) {
SIM_PROJECT *p = new SIM_PROJECT;
p->init();
retval = p->parse(xp);
if (retval) return retval;
p->index = index++;
p->result_index = 0;
projects.push_back(p);
} else if (!strcmp(tag, "/projects")) {
return 0;
} else {
printf("unrecognized: %s\n", tag);
return ERR_XML_PARSE;
}
}
return ERR_XML_PARSE;
}
int CLIENT_STATE::parse_host(char* name) {
MIOFILE mf;
FILE* f = fopen(name, "r");
if (!f) return ERR_FOPEN;
mf.init_file(f);
XML_PARSER xp(&mf);
if (!xp.parse_start("host")) return ERR_XML_PARSE;
return host_info.parse(xp);
}
char* colors[] = {
"#ffffdd",
"#ffddff",
"#ddffff",
"#ddffdd",
"#ddddff",
"#ffdddd",
};
void CLIENT_STATE::html_start() {
html_out = fopen("sim_out.html", "w");
fprintf(html_out, "<h2>Simulator output</h2>"
"<a href=sim_log.txt>message log</a><p>"
"<table border=1>\n"
);
}
void CLIENT_STATE::html_rec() {
fprintf(html_out, "<tr><td>%s</td>", time_to_string(now));
if (!running) {
for (int j=0; j<ncpus; j++) {
fprintf(html_out, "<td bgcolor=#888888><br></td>");
}
} else {
int n=0;
for (unsigned int i=0; i<active_tasks.active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks.active_tasks[i];
if (atp->task_state() == PROCESS_EXECUTING) {
SIM_PROJECT* p = (SIM_PROJECT*)atp->result->project;
fprintf(html_out, "<td bgcolor=%s>%s: %.2f</td>",
colors[p->index], atp->result->name, atp->cpu_time_left);
n++;
}
}
while (n<ncpus) {
fprintf(html_out, "<td><br></td>");
n++;
}
}
fprintf(html_out, "<td><font size=-2>%s</font></td></tr>\n", html_msg.c_str());
html_msg = "";
}
void CLIENT_STATE::html_end() {
double cpu_total=sim_results.cpu_used + sim_results.cpu_wasted + sim_results.cpu_idle;
fprintf(html_out, "</table><pre>\n");
sim_results.compute();
sim_results.print(html_out);
print_project_results(html_out);
fprintf(html_out, "</pre>\n");
fclose(html_out);
}
void CLIENT_STATE::simulate() {
bool action;
now = 0;
html_start();
while (1) {
running = host_info.available.sample(now);
while (1) {
action = active_tasks.poll();
if (running) {
action |= handle_finished_apps();
action |= possibly_schedule_cpus();
action |= enforce_schedule();
action |= compute_work_requests();
action |= scheduler_rpc_poll();
}
if (!action) break;
}
now += delta;
html_rec();
if (now > duration) break;
}
html_end();
}
void parse_error(char* file, int retval) {
printf("can't parse %s: %d\n", file, retval);
exit(1);
}
void help(char* prog) {
fprintf(stderr, "usage: %s [--duration X] [--delta X] [--dirs ...]\n", prog);
exit(1);
}
char* next_arg(int argc, char** argv, int& i) {
if (i >= argc) {
fprintf(stderr, "Missing command-line argument\n");
help(argv[0]);
}
return argv[i++];
}
#define PROJECTS_FILE "sim_projects.xml"
#define HOST_FILE "sim_host.xml"
#define PREFS_FILE "sim_prefs.xml"
#define SUMMARY_FILE "sim_summary.txt"
#define LOG_FILE "sim_log.txt"
int main(int argc, char** argv) {
int i, retval;
vector<std::string> dirs;
logfile = fopen("sim_log.txt", "w");
for (i=1; i<argc;) {
char* opt = argv[i++];
if (!strcmp(opt, "--duration")) {
duration = atof(next_arg(argc, argv, i));
} else if (!strcmp(opt, "--delta")) {
delta = atof(next_arg(argc, argv, i));
} else if (!strcmp(opt, "--dirs")) {
while (i<argc) {
dirs.push_back(argv[i++]);
}
} else {
help(argv[0]);
}
}
if (duration <= 0) {
printf("non-pos duration\n");
exit(1);
}
if (delta <= 0) {
printf("non-pos delta\n");
exit(1);
}
if (dirs.size()) {
// If we need to do several simulations,
// use system() to do each one in a separate process,
// because there are lots of static variables and we need to ensure
// that they start off with the right initial values
//
unsigned int i;
SIM_RESULTS total_results;
for (i=0; i<dirs.size(); i++) {
std::string dir = dirs[i];
retval = chdir(dir.c_str());
if (retval) {
fprintf(stderr, "can't chdir into %s: ", dir.c_str());
perror("chdir");
continue;
}
char buf[256];
sprintf(
buf, "../sim --duration %f --delta %f > %s",
duration, delta, SUMMARY_FILE
);
system(buf);
FILE* f = fopen(SUMMARY_FILE, "r");
sim_results.parse(f);
fclose(f);
sim_results.print(stdout, dir.c_str());
total_results.add(sim_results);
chdir("..");
}
total_results.print(stdout, "Total");
} else {
read_config_file();
int retval;
bool flag;
retval = gstate.parse_projects(PROJECTS_FILE);
if (retval) parse_error(PROJECTS_FILE, retval);
retval = gstate.parse_host(HOST_FILE);
if (retval) parse_error(HOST_FILE, retval);
retval = gstate.global_prefs.parse_file(PREFS_FILE, "", flag);
if (retval) parse_error(PREFS_FILE, retval);
gstate.set_ncpus();
gstate.request_work_fetch("init");
gstate.simulate();
sim_results.compute();
// print machine-readable first
sim_results.print(stdout);
// then other
gstate.print_project_results(stdout);
}
}