boinc/sched/sched_score.cpp

562 lines
16 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Matchmaker scheduling code
#include <algorithm>
#include "boinc_db.h"
#include "error_numbers.h"
#include "util.h"
#include "sched_check.h"
#include "sched_config.h"
#include "sched_hr.h"
#include "sched_main.h"
#include "sched_msgs.h"
#include "sched_send.h"
#include "sched_shmem.h"
#include "sched_types.h"
#include "sched_version.h"
#include "sched_score.h"
#ifdef NEW_SCORE
static int get_size_class(APP& app, double es) {
for (int i=0; i<app.n_size_classes-1; i++) {
if (es < app.size_class_quantiles[i]) return i;
}
return app.n_size_classes - 1;
}
// Assign a score to this job,
// representing the value of sending the job to this host.
// Also do some initial screening,
// and return false if can't send the job to host
//
bool JOB::get_score(WU_RESULT& wu_result) {
score = 0;
if (!app->beta && wu_result.need_reliable) {
if (!bavp->reliable) {
return false;
}
}
if (app->beta) {
if (g_wreq->allow_beta_work) {
score += 1;
} else {
return false;
}
}
if (app_not_selected(wu_result.workunit)) {
if (g_wreq->allow_non_preferred_apps) {
score -= 1;
} else {
return false;
}
}
if (wu_result.infeasible_count) {
score += 1;
}
if (app->locality_scheduling == LOCALITY_SCHED_LITE
&& g_request->file_infos.size()
) {
int n = nfiles_on_host(wu_result.workunit);
if (config.debug_locality_lite) {
log_messages.printf(MSG_NORMAL,
"[loc_lite] job %s has %d files on this host\n",
wu_result.workunit.name, n
);
}
if (n > 0) {
score += 10;
}
}
if (app->n_size_classes > 1) {
double effective_speed = bavp->host_usage.projected_flops * g_reply->host.on_frac * g_reply->host.active_frac;
int target_size = get_size_class(*app, effective_speed);
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] size: host %d job %d speed %f\n",
target_size, wu_result.workunit.size_class, effective_speed
);
}
if (target_size == wu_result.workunit.size_class) {
score += 5;
} else if (target_size < wu_result.workunit.size_class) {
score -= 2;
} else {
score -= 1;
}
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send]: job score %f\n", score
);
}
return true;
}
bool job_compare(JOB j1, JOB j2) {
return (j1.score > j2.score);
}
static double req_sec_save[NPROC_TYPES];
static double req_inst_save[NPROC_TYPES];
static void clear_others(int rt) {
for (int i=0; i<NPROC_TYPES; i++) {
if (i == rt) continue;
req_sec_save[i] = g_wreq->req_secs[i];
g_wreq->req_secs[i] = 0;
req_inst_save[i] = g_wreq->req_instances[i];
g_wreq->req_instances[i] = 0;
}
}
static void restore_others(int rt) {
for (int i=0; i<NPROC_TYPES; i++) {
if (i == rt) continue;
g_wreq->req_secs[i] += req_sec_save[i];
g_wreq->req_instances[i] += req_inst_save[i];
}
}
// send work for a particular processor type
//
void send_work_score_type(int rt) {
vector<JOB> jobs;
clear_others(rt);
int nscan = config.mm_max_slots;
if (!nscan) nscan = ssp->max_wu_results;
int rnd_off = rand() % ssp->max_wu_results;
for (int j=0; j<nscan; j++) {
int i = (j+rnd_off) % ssp->max_wu_results;
WU_RESULT& wu_result = ssp->wu_results[i];
if (wu_result.state != WR_STATE_PRESENT) {
continue;
}
WORKUNIT wu = wu_result.workunit;
JOB job;
job.app = ssp->lookup_app(wu.appid);
if (job.app->non_cpu_intensive) continue;
job.bavp = get_app_version(wu, true, false);
if (!job.bavp) continue;
job.index = i;
job.result_id = wu_result.resultid;
if (!job.get_score(wu_result)) {
continue;
}
jobs.push_back(job);
}
std::sort(jobs.begin(), jobs.end(), job_compare);
bool sema_locked = false;
for (unsigned int i=0; i<jobs.size(); i++) {
if (!work_needed(false)) {
break;
}
if (!g_wreq->need_proc_type(rt)) {
break;
}
JOB& job = jobs[i];
if (!sema_locked) {
lock_sema();
sema_locked = true;
}
// make sure the job is still in the cache
// array is locked at this point.
//
WU_RESULT& wu_result = ssp->wu_results[job.index];
if (wu_result.state != WR_STATE_PRESENT) {
continue;
}
if (wu_result.resultid != job.result_id) {
continue;
}
WORKUNIT wu = wu_result.workunit;
int retval = wu_is_infeasible_fast(
wu,
wu_result.res_server_state, wu_result.res_priority,
wu_result.res_report_deadline,
*job.app,
*job.bavp
);
if (retval) {
continue;
}
wu_result.state = g_pid;
// It passed fast checks.
// Release sema and to slow checks
unlock_sema();
sema_locked = false;
switch (slow_check(wu_result, job.app, job.bavp)) {
case 1:
wu_result.state = WR_STATE_PRESENT;
break;
case 2:
wu_result.state = WR_STATE_EMPTY;
break;
default:
// slow_check() refreshes fields of wu_result.workunit;
// update our copy too
//
wu.hr_class = wu_result.workunit.hr_class;
wu.app_version_id = wu_result.workunit.app_version_id;
// mark slot as empty AFTER we've copied out of it
// (since otherwise feeder might overwrite it)
//
wu_result.state = WR_STATE_EMPTY;
// reread result from DB, make sure it's still unsent
// TODO: from here to end of add_result_to_reply()
// (which updates the DB record) should be a transaction
//
SCHED_DB_RESULT result;
result.id = wu_result.resultid;
if (result_still_sendable(result, wu)) {
add_result_to_reply(result, wu, job.bavp, false);
// add_result_to_reply() fails only in pathological cases -
// e.g. we couldn't update the DB record or modify XML fields.
// If this happens, don't replace the record in the array
// (we can't anyway, since we marked the entry as "empty").
// The feeder will eventually pick it up again,
// and hopefully the problem won't happen twice.
}
break;
}
}
if (sema_locked) {
unlock_sema();
}
restore_others(rt);
g_wreq->best_app_versions.clear();
}
void send_work_score() {
for (int i=0; i<NPROC_TYPES; i++) {
if (g_wreq->need_proc_type(i)) {
send_work_score_type(i);
}
}
}
#else
// reread result from DB, make sure it's still unsent
// TODO: from here to add_result_to_reply()
// (which updates the DB record) should be a transaction
//
int read_sendable_result(SCHED_DB_RESULT& result) {
int retval = result.lookup_id(result.id);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"[RESULT#%u] result.lookup_id() failed %s\n",
result.id, boincerror(retval)
);
return ERR_NOT_FOUND;
}
if (result.server_state != RESULT_SERVER_STATE_UNSENT) {
log_messages.printf(MSG_NORMAL,
"[RESULT#%u] expected to be unsent; instead, state is %d\n",
result.id, result.server_state
);
return ERR_BAD_RESULT_STATE;
}
return 0;
}
// TODO: use slow_check()
//
bool wu_is_infeasible_slow(
WU_RESULT& wu_result, SCHEDULER_REQUEST&, SCHEDULER_REPLY&
) {
char buf[256];
int retval;
int n;
SCHED_DB_RESULT result;
// Don't send if we've already sent a result of this WU to this user.
//
if (config.one_result_per_user_per_wu) {
sprintf(buf,
"where workunitid=%d and userid=%d",
wu_result.workunit.id, g_reply->user.id
);
retval = result.count(n, buf);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"send_work: can't get result count (%s)\n", boincerror(retval)
);
return true;
} else {
if (n>0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] send_work: user %d already has %d result(s) for WU %d\n",
g_reply->user.id, n, wu_result.workunit.id
);
}
return true;
}
}
} else if (config.one_result_per_host_per_wu) {
// Don't send if we've already sent a result
// of this WU to this host.
// We only have to check this
// if we don't send one result per user.
//
sprintf(buf,
"where workunitid=%d and hostid=%d",
wu_result.workunit.id, g_reply->host.id
);
retval = result.count(n, buf);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"send_work: can't get result count (%s)\n", boincerror(retval)
);
return true;
} else {
if (n>0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] send_work: host %d already has %d result(s) for WU %d\n",
g_reply->host.id, n, wu_result.workunit.id
);
}
return true;
}
}
}
APP* app = ssp->lookup_app(wu_result.workunit.appid);
WORKUNIT wu = wu_result.workunit;
if (app_hr_type(*app)) {
if (already_sent_to_different_hr_class(wu, *app)) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] [WU#%u %s] WU is infeasible (assigned to different platform)\n",
g_reply->host.id, wu.id, wu.name
);
}
// Mark the workunit as infeasible.
// This ensures that jobs already assigned to a platform
// are processed first.
//
wu_result.infeasible_count++;
return true;
}
}
return false;
}
double JOB_SET::lowest_score() {
if (jobs.empty()) return 0;
return jobs.back().score;
}
// add the given job, and remove lowest-score jobs that
// - are in excess of work request
// - are in excess of per-request or per-day limits
// - cause the disk limit to be exceeded
//
void JOB_SET::add_job(JOB& job) {
while (!jobs.empty()) {
JOB& worst_job = jobs.back();
if (est_time + job.est_time - worst_job.est_time > work_req) {
est_time -= worst_job.est_time;
disk_usage -= worst_job.disk_usage;
jobs.pop_back();
ssp->wu_results[worst_job.index].state = WR_STATE_PRESENT;
} else {
break;
}
}
while (!jobs.empty()) {
JOB& worst_job = jobs.back();
if (disk_usage + job.disk_usage > disk_limit) {
est_time -= worst_job.est_time;
disk_usage -= worst_job.disk_usage;
jobs.pop_back();
ssp->wu_results[worst_job.index].state = WR_STATE_PRESENT;
} else {
break;
}
}
if ((int)jobs.size() == max_jobs) {
JOB& worst_job = jobs.back();
jobs.pop_back();
ssp->wu_results[worst_job.index].state = WR_STATE_PRESENT;
}
std::list<JOB>::iterator i = jobs.begin();
while (i != jobs.end()) {
if (i->score < job.score) {
jobs.insert(i, job);
break;
}
i++;
}
if (i == jobs.end()) {
jobs.push_back(job);
}
est_time += job.est_time;
disk_usage += job.disk_usage;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] added job to set. est_time %.2f disk_usage %.2fGB\n",
est_time, disk_usage/GIGA
);
}
}
// return the disk usage of jobs above the given score
//
double JOB_SET::higher_score_disk_usage(double v) {
double sum = 0;
std::list<JOB>::iterator i = jobs.begin();
while (i != jobs.end()) {
if (i->score < v) break;
sum += i->disk_usage;
i++;
}
return sum;
}
void JOB_SET::send() {
WORKUNIT wu;
SCHED_DB_RESULT result;
int retval;
std::list<JOB>::iterator i = jobs.begin();
while (i != jobs.end()) {
JOB& job = *(i++);
WU_RESULT wu_result = ssp->wu_results[job.index];
ssp->wu_results[job.index].state = WR_STATE_EMPTY;
wu = wu_result.workunit;
result.id = wu_result.resultid;
retval = read_sendable_result(result);
if (!retval) {
add_result_to_reply(result, wu, job.bavp, false);
}
}
}
void send_work_score() {
int i, slots_locked=0, slots_nonempty=0;
JOB_SET jobs;
int min_slots = config.mm_min_slots;
if (!min_slots) min_slots = ssp->max_wu_results/2;
int max_slots = config.mm_max_slots;
if (!max_slots) max_slots = ssp->max_wu_results;
int max_locked = 10;
lock_sema();
i = rand() % ssp->max_wu_results;
// scan through the job cache, maintaining a JOB_SET of jobs
// that we can send to this client, ordered by score.
//
for (int slots_scanned=0; slots_scanned<max_slots; slots_scanned++) {
i = (i+1) % ssp->max_wu_results;
WU_RESULT& wu_result = ssp->wu_results[i];
switch (wu_result.state) {
case WR_STATE_EMPTY:
continue;
case WR_STATE_PRESENT:
slots_nonempty++;
break;
default:
slots_nonempty++;
if (wu_result.state == g_pid) break;
slots_locked++;
continue;
}
JOB job;
job.index = i;
// get score for this job, and skip it if it fails quick check.
// NOTE: the EDF check done in get_score()
// includes only in-progress jobs.
//
if (!job.get_score()) {
continue;
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] score for %s: %f\n", wu_result.workunit.name, job.score
);
}
if (job.score > jobs.lowest_score() || !jobs.request_satisfied()) {
ssp->wu_results[i].state = g_pid;
unlock_sema();
if (wu_is_infeasible_slow(wu_result, *g_request, *g_reply)) {
// if we can't use this job, put it back in pool
//
lock_sema();
ssp->wu_results[i].state = WR_STATE_PRESENT;
continue;
}
lock_sema();
jobs.add_job(job);
}
if (jobs.request_satisfied() && slots_scanned>=min_slots) break;
}
if (slots_nonempty) {
g_wreq->no_jobs_available = false;
} else {
log_messages.printf(MSG_CRITICAL,
"Job cache is empty - check feeder\n"
);
}
// TODO: trim jobs from tail of list until we pass the EDF check
//
jobs.send();
unlock_sema();
if (slots_locked > max_locked) {
log_messages.printf(MSG_CRITICAL,
"Found too many locked slots (%d>%d) - increase array size\n",
slots_locked, max_locked
);
}
}
#endif