boinc/client/work_fetch.cpp

1095 lines
33 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#else
#include "config.h"
#endif
#include "util.h"
#include "client_state.h"
#include "client_msgs.h"
#include "scheduler_op.h"
#include "work_fetch.h"
using std::vector;
bool use_hyst_fetch = true;
RSC_WORK_FETCH rsc_work_fetch[MAX_RSC];
WORK_FETCH work_fetch;
#define FETCH_IF_IDLE_INSTANCE 0
// If resource has an idle instance,
// get work for it from the project with greatest LTD,
// even if it's overworked.
#define FETCH_IF_MAJOR_SHORTFALL 1
// If resource is saturated for less than work_buf_min(),
// get work for it from the project with greatest LTD,
// even if it's overworked.
#define FETCH_IF_MINOR_SHORTFALL 2
// If resource is saturated for less than work_buf_total(),
// get work for it from the non-overworked project with greatest LTD.
#define FETCH_IF_PROJECT_STARVED 3
// If any project is not overworked and has too few jobs
// to use its instance share,
// get work from the one with greatest LTD.
static const char* criterion_name(int criterion) {
switch (criterion) {
case FETCH_IF_IDLE_INSTANCE: return "idle instance";
case FETCH_IF_MAJOR_SHORTFALL: return "major shortfall";
case FETCH_IF_MINOR_SHORTFALL: return "minor shortfall";
case FETCH_IF_PROJECT_STARVED: return "starved";
}
return "unknown";
}
inline bool dont_fetch(PROJECT* p, int rsc_type) {
if (p->no_rsc_pref[rsc_type]) return true;
if (p->no_rsc_config[rsc_type]) return true;
if (p->no_rsc_apps[rsc_type]) return true;
if (p->no_rsc_ams[rsc_type]) return true;
return false;
}
// if the configuration file disallows the use of a GPU type
// for a project, set a flag to that effect
//
void set_no_rsc_config() {
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT& p = *gstate.projects[i];
for (int j=1; j<coprocs.n_rsc; j++) {
bool allowed[MAX_COPROC_INSTANCES];
memset(allowed, 0, sizeof(allowed));
COPROC& c = coprocs.coprocs[j];
for (int k=0; k<c.count; k++) {
allowed[c.device_nums[k]] = true;
}
for (unsigned int k=0; k<config.exclude_gpus.size(); k++) {
EXCLUDE_GPU& e = config.exclude_gpus[k];
if (strcmp(e.url.c_str(), p.master_url)) continue;
if (!e.type.empty() && strcmp(e.type.c_str(), c.type)) continue;
if (!e.appname.empty()) continue;
if (e.device_num < 0) {
memset(allowed, 0, sizeof(allowed));
break;
}
allowed[e.device_num] = false;
}
p.no_rsc_config[j] = true;
for (int k=0; k<c.count; k++) {
if (allowed[k]) {
p.no_rsc_config[j] = false;
break;
}
}
}
}
}
// does the project have a downloading or runnable job?
//
static bool has_a_job(PROJECT* p) {
for (unsigned int j=0; j<gstate.results.size(); j++) {
RESULT* rp = gstate.results[j];
if (rp->project != p) continue;
if (rp->state() <= RESULT_FILES_DOWNLOADED) {
return true;
}
}
return false;
}
inline bool has_coproc_app(PROJECT* p, int rsc_type) {
unsigned int i;
for (i=0; i<gstate.app_versions.size(); i++) {
APP_VERSION* avp = gstate.app_versions[i];
if (avp->project != p) continue;
if (avp->gpu_usage.rsc_type == rsc_type) return true;
}
return false;
}
/////////////// RSC_PROJECT_WORK_FETCH ///////////////
bool RSC_PROJECT_WORK_FETCH::compute_may_have_work(PROJECT* p, int rsc_type) {
if (dont_fetch(p, rsc_type)) return false;
if (p->rsc_defer_sched[rsc_type]) return false;
return (backoff_time < gstate.now);
}
void RSC_PROJECT_WORK_FETCH::rr_init(PROJECT* p, int rsc_type) {
may_have_work = compute_may_have_work(p, rsc_type);
fetchable_share = 0;
has_runnable_jobs = false;
sim_nused = 0;
nused_total = 0;
deadlines_missed = 0;
}
void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, const char* name) {
if (backoff_interval) {
backoff_interval *= 2;
if (backoff_interval > WF_MAX_BACKOFF_INTERVAL) backoff_interval = WF_MAX_BACKOFF_INTERVAL;
} else {
backoff_interval = WF_MIN_BACKOFF_INTERVAL;
}
double x = (.5 + drand())*backoff_interval;
backoff_time = gstate.now + x;
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO,
"[work_fetch] backing off %s %.0f sec", name, x
);
}
}
/////////////// RSC_WORK_FETCH ///////////////
RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) {
return p->rsc_pwf[rsc_type];
}
bool RSC_WORK_FETCH::may_have_work(PROJECT* p) {
if (dont_fetch(p, rsc_type)) return false;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
return (w.backoff_time < gstate.now);
}
void RSC_WORK_FETCH::rr_init() {
shortfall = 0;
nidle_now = 0;
sim_nused = 0;
total_fetchable_share = 0;
deadline_missed_instances = 0;
saturated_time = 0;
busy_time_estimator.reset();
}
void RSC_WORK_FETCH::accumulate_shortfall(double d_time) {
double idle = ninstances - sim_nused;
if (idle > 1e-6) {
//msg_printf(0, MSG_INFO, "adding shortfall %d %f", rsc_type, idle*d_time);
shortfall += idle*d_time;
}
#if 0
msg_printf(0, MSG_INFO, "accum shortf (%s): idle %f dt %f sf %f",
rsc_name(rsc_type), idle, d_time, shortfall
);
#endif
}
void RSC_WORK_FETCH::update_saturated_time(double dt) {
double idle = ninstances - sim_nused;
if (idle < 1e-6) {
saturated_time = dt;
}
}
void RSC_WORK_FETCH::update_busy_time(double dur, double nused) {
busy_time_estimator.update(dur, nused);
}
static bool wacky_dcf(PROJECT* p) {
double dcf = p->duration_correction_factor;
return (dcf < 0.02 || dcf > 80.0);
}
// If this resource is below min buffer level,
// return the highest-priority project that may have jobs for it.
//
PROJECT* RSC_WORK_FETCH::choose_project_hyst() {
PROJECT* pbest = NULL;
if (saturated_time > gstate.work_buf_min()) return NULL;
for (unsigned i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (!p->pwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
// if project has excluded GPUs of this type,
// and it has runnable jobs for this type,
// don't fetch work for it.
// TODO: THIS IS CRUDE. Making it smarter would require
// computing shortfall etc. on a per-project basis
//
if (rsc_type) {
if (p->ncoprocs_excluded[rsc_type]
&& p->rsc_pwf[rsc_type].has_runnable_jobs
){
continue;
}
}
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
if (pbest) {
if (pbest->sched_priority > p->sched_priority) {
continue;
}
}
pbest = p;
}
if (!pbest) return NULL;
work_fetch.clear_request();
work_fetch.set_all_requests_hyst(pbest, rsc_type);
return pbest;
}
// Choose the best project to ask for work for this resource,
// given the specific criterion
//
PROJECT* RSC_WORK_FETCH::choose_project(int criterion) {
PROJECT* pbest = NULL;
switch (criterion) {
case FETCH_IF_IDLE_INSTANCE:
if (nidle_now == 0) return NULL;
break;
case FETCH_IF_MAJOR_SHORTFALL:
if (saturated_time > gstate.work_buf_min()) return NULL;
break;
case FETCH_IF_MINOR_SHORTFALL:
if (saturated_time > gstate.work_buf_total()) return NULL;
break;
case FETCH_IF_PROJECT_STARVED:
if (deadline_missed_instances >= ninstances) return NULL;
break;
}
for (unsigned i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (!p->pwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
switch (criterion) {
case FETCH_IF_MINOR_SHORTFALL:
if (wacky_dcf(p)) continue;
if (!p->resource_share) continue;
break;
case FETCH_IF_MAJOR_SHORTFALL:
if (wacky_dcf(p)) continue;
if (!p->resource_share) continue;
break;
case FETCH_IF_PROJECT_STARVED:
if (p->sched_priority < 0) continue;
if (rpwf.nused_total >= ninstances) continue;
if (!p->resource_share) continue;
break;
}
if (pbest) {
if (!p->resource_share) {
continue;
}
if (pbest->sched_priority > p->sched_priority) {
continue;
}
}
pbest = p;
}
if (!pbest) return NULL;
// decide how much work to request from each resource
//
work_fetch.clear_request();
switch (criterion) {
case FETCH_IF_IDLE_INSTANCE:
case FETCH_IF_MAJOR_SHORTFALL:
set_request(pbest);
break;
case FETCH_IF_PROJECT_STARVED:
set_request(pbest);
break;
case FETCH_IF_MINOR_SHORTFALL:
// in this case, potentially request work for all resources
//
if (pbest->sched_priority < 0) {
set_request(pbest);
} else {
work_fetch.set_all_requests(pbest);
}
break;
}
// in principle there should be a nonzero request.
// check, just in case
//
if (!req_secs && !req_instances) {
if (log_flags.work_fetch_debug) {
msg_printf(pbest, MSG_INFO,
"[work_fetch] error: project chosen but zero request"
);
}
return 0;
}
if (log_flags.work_fetch_debug) {
msg_printf(pbest, MSG_INFO,
"[work_fetch] chosen: %s %s: %.2f inst, %.2f sec",
criterion_name(criterion), rsc_name(rsc_type),
req_instances, req_secs
);
}
return pbest;
}
// request this project's share of shortfall and instances.
// don't request anything if project is overworked or backed off.
//
void RSC_WORK_FETCH::set_request(PROJECT* p) {
if (dont_fetch(p, rsc_type)) return;
// if backup project, fetch 1 job per idle instance
//
if (p->resource_share == 0) {
req_instances = nidle_now;
req_secs = 1;
return;
}
if (config.fetch_minimal_work) {
req_instances = ninstances;
req_secs = 1;
return;
}
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (!w.may_have_work) return;
if (w.anon_skip) return;
if (shortfall) {
if (wacky_dcf(p)) {
// if project's DCF is too big or small,
// its completion time estimates are useless; just ask for 1 second
//
req_secs = 1;
} else {
req_secs = shortfall;
}
}
// our share of the idle instances
//
req_instances = nidle_now * w.fetchable_share;
if (log_flags.work_fetch_debug) {
msg_printf(0, MSG_INFO,
"[work_fetch] set_request(): ninst %d nused_total %f nidle_now %f fetch share %f req_inst %f",
ninstances, w.nused_total, nidle_now, w.fetchable_share, req_instances
);
}
if (req_instances && !req_secs) {
req_secs = 1;
}
}
void RSC_WORK_FETCH::print_state(const char* name) {
msg_printf(0, MSG_INFO,
"[work_fetch] %s: shortfall %.2f nidle %.2f saturated %.2f busy %.2f",
name,
shortfall, nidle_now, saturated_time,
busy_time_estimator.get_busy_time()
);
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (p->non_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& pwf = project_state(p);
bool no_rsc_pref = p->no_rsc_pref[rsc_type];
bool no_rsc_config = p->no_rsc_config[rsc_type];
bool no_rsc_apps = p->no_rsc_apps[rsc_type];
bool no_rsc_ams = p->no_rsc_ams[rsc_type];
double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0;
msg_printf(p, MSG_INFO,
"[work_fetch] %s: fetch share %.2f rec %.5f prio %.5f backoff dt %.2f int %.2f%s%s%s%s%s%s%s%s%s",
name,
pwf.fetchable_share, p->pwf.rec, p->sched_priority, bt, pwf.backoff_interval,
p->suspended_via_gui?" (susp via GUI)":"",
p->master_url_fetch_pending?" (master fetch pending)":"",
p->min_rpc_time > gstate.now?" (comm deferred)":"",
p->dont_request_more_work?" (no new tasks)":"",
p->too_many_uploading_results?" (too many uploads)":"",
no_rsc_pref?" (blocked by prefs)":"",
no_rsc_apps?" (no apps)":"",
no_rsc_ams?" (blocked by account manager)":"",
no_rsc_config?" (blocked by configuration file)":""
);
}
}
void RSC_WORK_FETCH::clear_request() {
req_secs = 0;
req_instances = 0;
}
/////////////// PROJECT_WORK_FETCH ///////////////
bool PROJECT_WORK_FETCH::compute_can_fetch_work(PROJECT* p) {
if (p->non_cpu_intensive) return false;
if (p->suspended_via_gui) return false;
if (p->master_url_fetch_pending) return false;
if (p->min_rpc_time > gstate.now) return false;
if (p->dont_request_more_work) return false;
if (p->some_download_stalled()) return false;
if (p->some_result_suspended()) return false;
if (p->too_many_uploading_results) return false;
return true;
}
void PROJECT_WORK_FETCH::reset(PROJECT* p) {
for (int i=0; i<coprocs.n_rsc; i++) {
p->rsc_pwf[i].reset();
}
}
/////////////// WORK_FETCH ///////////////
void WORK_FETCH::rr_init() {
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].rr_init();
}
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
p->pwf.can_fetch_work = p->pwf.compute_can_fetch_work(p);
p->pwf.has_runnable_jobs = false;
for (int j=0; j<coprocs.n_rsc; j++) {
p->rsc_pwf[j].rr_init(p, j);
}
}
}
// if the given project is highest-priority among the projects
// eligible for the resource, set request fields
//
void RSC_WORK_FETCH::supplement(PROJECT* pp) {
double x = pp->sched_priority;
for (unsigned i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (p == pp) continue;
if (!p->pwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
if (p->sched_priority > x) {
return;
}
}
// didn't find a better project; ask for work
//
set_request(pp);
}
// we're going to ask the given project for work of the given type.
// (or -1 if none)
// Set requests for this type and perhaps other types
//
void WORK_FETCH::set_all_requests_hyst(PROJECT* p, int rsc_type) {
for (int i=0; i<coprocs.n_rsc; i++) {
if (i == rsc_type) {
rsc_work_fetch[i].set_request(p);
} else {
if (i==0 || gpus_usable) {
rsc_work_fetch[i].supplement(p);
}
}
}
}
void WORK_FETCH::set_all_requests(PROJECT* p) {
for (int i=0; i<coprocs.n_rsc; i++) {
if (i==0 || gpus_usable) {
rsc_work_fetch[i].set_request(p);
}
}
}
void WORK_FETCH::print_state() {
msg_printf(0, MSG_INFO, "[work_fetch] ------- start work fetch state -------");
msg_printf(0, MSG_INFO, "[work_fetch] target work buffer: %.2f + %.2f sec",
gstate.work_buf_min(), gstate.work_buf_additional()
);
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].print_state(rsc_name(i));
}
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (p->non_cpu_intensive) continue;
msg_printf(p, MSG_INFO, "[work_fetch] REC %f", p->pwf.rec);
}
msg_printf(0, MSG_INFO, "[work_fetch] ------- end work fetch state -------");
}
void WORK_FETCH::clear_request() {
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].clear_request();
}
}
// we're going to contact this project for reasons other than work fetch;
// decide if we should piggy-back a work fetch request.
//
void WORK_FETCH::compute_work_request(PROJECT* p) {
clear_request();
if (config.fetch_minimal_work && gstate.had_or_requested_work) return;
if (p->dont_request_more_work) return;
if (p->non_cpu_intensive) {
if (!has_a_job(p)) {
rsc_work_fetch[0].req_secs = 1;
}
return;
}
PROJECT* bestp = choose_project();
if (p != bestp) {
clear_request();
}
}
// see if there's a fetchable non-CPU-intensive project without work
//
PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() {
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (!p->non_cpu_intensive) continue;
if (!p->can_request_work()) continue;
if (p->rsc_pwf[0].backoff_time > gstate.now) continue;
if (has_a_job(p)) continue;
clear_request();
rsc_work_fetch[0].req_secs = 1;
return p;
}
return 0;
}
// choose a project to fetch work from,
// and set the request fields of resource objects
//
PROJECT* WORK_FETCH::choose_project() {
PROJECT* p;
if (log_flags.work_fetch_debug) {
msg_printf(0, MSG_INFO, "[work_fetch] work fetch start");
}
p = non_cpu_intensive_project_needing_work();
if (p) return p;
gstate.compute_nuploading_results();
rr_simulation();
compute_shares();
project_priority_init(true);
// Decrement the priority of projects that have a lot of work queued.
// Specifically, subtract
// (FLOPs queued for P)/(FLOPs of max queue)
// which will generally be between 0 and 1.
// This is a little arbitrary but I can't think of anything better.
//
double max_queued_flops = gstate.work_buf_total()*total_peak_flops();
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
p = rp->project;
p->sched_priority -= rp->estimated_flops_remaining()/max_queued_flops;
}
p = 0;
if (use_hyst_fetch) {
if (gpus_usable) {
for (int i=1; i<coprocs.n_rsc; i++) {
p = rsc_work_fetch[i].choose_project_hyst();
if (p) break;
}
}
if (!p) {
p = rsc_work_fetch[0].choose_project_hyst();
}
} else {
if (gpus_usable) {
for (int i=1; i<coprocs.n_rsc; i++) {
p = rsc_work_fetch[i].choose_project(FETCH_IF_IDLE_INSTANCE);
if (p) break;
}
}
if (!p) {
p = rsc_work_fetch[0].choose_project(FETCH_IF_IDLE_INSTANCE);
}
if (!p && gpus_usable) {
for (int i=1; i<coprocs.n_rsc; i++) {
p = rsc_work_fetch[i].choose_project(FETCH_IF_MAJOR_SHORTFALL);
if (p) break;
}
}
if (!p) {
p = rsc_work_fetch[0].choose_project(FETCH_IF_MAJOR_SHORTFALL);
}
if (!p && gpus_usable) {
for (int i=1; i<coprocs.n_rsc; i++) {
p = rsc_work_fetch[i].choose_project(FETCH_IF_MINOR_SHORTFALL);
if (p) break;
}
}
if (!p) {
p = rsc_work_fetch[0].choose_project(FETCH_IF_MINOR_SHORTFALL);
}
if (!p && gpus_usable) {
for (int i=1; i<coprocs.n_rsc; i++) {
p = rsc_work_fetch[i].choose_project(FETCH_IF_PROJECT_STARVED);
if (p) break;
}
}
if (!p) {
p = rsc_work_fetch[0].choose_project(FETCH_IF_PROJECT_STARVED);
}
}
if (log_flags.work_fetch_debug) {
print_state();
if (!p) {
msg_printf(0, MSG_INFO, "[work_fetch] No project chosen for work fetch");
}
}
return p;
}
void WORK_FETCH::accumulate_inst_sec(ACTIVE_TASK* atp, double dt) {
APP_VERSION* avp = atp->result->avp;
PROJECT* p = atp->result->project;
double x = dt*avp->avg_ncpus;
p->rsc_pwf[0].secs_this_debt_interval += x;
rsc_work_fetch[0].secs_this_debt_interval += x;
int rt = avp->gpu_usage.rsc_type;
if (rt) {
x = dt*avp->gpu_usage.usage;
p->rsc_pwf[rt].secs_this_debt_interval += x;
rsc_work_fetch[rt].secs_this_debt_interval += x;
}
}
// find total and per-project resource shares for each resource
//
void WORK_FETCH::compute_shares() {
unsigned int i;
PROJECT* p;
for (i=0; i<gstate.projects.size(); i++) {
p = gstate.projects[i];
if (p->non_cpu_intensive) continue;
if (!p->pwf.can_fetch_work) continue;
for (int j=0; j<coprocs.n_rsc; j++) {
if (p->rsc_pwf[j].may_have_work) {
rsc_work_fetch[j].total_fetchable_share += p->resource_share;
}
}
}
for (i=0; i<gstate.projects.size(); i++) {
p = gstate.projects[i];
if (p->non_cpu_intensive) continue;
if (!p->pwf.can_fetch_work) continue;
for (int j=0; j<coprocs.n_rsc; j++) {
if (p->rsc_pwf[j].may_have_work) {
p->rsc_pwf[j].fetchable_share = rsc_work_fetch[j].total_fetchable_share?p->resource_share/rsc_work_fetch[j].total_fetchable_share:1;
}
}
}
}
void WORK_FETCH::request_string(char* buf) {
char buf2[256];
sprintf(buf,
"[work_fetch] request: CPU (%.2f sec, %.2f inst)",
rsc_work_fetch[0].req_secs, rsc_work_fetch[0].req_instances
);
for (int i=1; i<coprocs.n_rsc; i++) {
sprintf(buf2, " %s (%.2f sec, %.2f inst)",
rsc_name(i), rsc_work_fetch[i].req_secs, rsc_work_fetch[i].req_instances
);
strcat(buf, buf2);
}
}
void WORK_FETCH::write_request(FILE* f, PROJECT* p) {
double work_req = rsc_work_fetch[0].req_secs;
// if project is anonymous platform, set the overall work req
// to the max of the requests of resource types for which we have versions.
// Otherwise projects with old schedulers won't send us work.
// THIS CAN BE REMOVED AT SOME POINT
//
if (p->anonymous_platform) {
for (int i=1; i<coprocs.n_rsc; i++) {
if (has_coproc_app(p, i)) {
if (rsc_work_fetch[i].req_secs > work_req) {
work_req = rsc_work_fetch[i].req_secs;
}
}
}
}
fprintf(f,
" <work_req_seconds>%f</work_req_seconds>\n"
" <cpu_req_secs>%f</cpu_req_secs>\n"
" <cpu_req_instances>%f</cpu_req_instances>\n"
" <estimated_delay>%f</estimated_delay>\n",
work_req,
rsc_work_fetch[0].req_secs,
rsc_work_fetch[0].req_instances,
rsc_work_fetch[0].req_secs?rsc_work_fetch[0].busy_time_estimator.get_busy_time():0
);
if (log_flags.work_fetch_debug) {
char buf[256];
request_string(buf);
msg_printf(p, MSG_INFO, buf);
}
}
// we just got a scheduler reply with the given jobs; update backoffs
//
void WORK_FETCH::handle_reply(
PROJECT* p, SCHEDULER_REPLY*, vector<RESULT*> new_results
) {
bool got_rsc[MAX_RSC];
for (int i=0; i<coprocs.n_rsc; i++) {
got_rsc[i] = false;
}
// if didn't get any jobs, back off on requested resource types
//
if (!new_results.size()) {
// but not if RPC was requested by project
//
if (p->sched_rpc_pending != RPC_REASON_PROJECT_REQ) {
for (int i=0; i<coprocs.n_rsc; i++) {
if (rsc_work_fetch[i].req_secs) {
p->rsc_pwf[i].backoff(p, rsc_name(i));
}
}
}
return;
}
// if we did get jobs, clear backoff on resource types
//
for (unsigned int i=0; i<new_results.size(); i++) {
RESULT* rp = new_results[i];
got_rsc[rp->avp->gpu_usage.rsc_type] = true;
}
for (int i=0; i<coprocs.n_rsc; i++) {
if (got_rsc[i]) p->rsc_pwf[i].clear_backoff();
}
}
// set up for initial RPC.
// arrange to always get one job, even if we don't need it or can't handle it.
// (this is probably what user wants)
//
void WORK_FETCH::set_initial_work_request() {
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].req_secs = 1;
rsc_work_fetch[i].req_instances = 0;
rsc_work_fetch[i].busy_time_estimator.reset();
}
}
// called once, at client startup
//
void WORK_FETCH::init() {
rsc_work_fetch[0].init(0, gstate.ncpus, 1);
double cpu_flops = gstate.host_info.p_fpops;
// use 20% as a rough estimate of GPU efficiency
for (int i=1; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].init(
i, coprocs.coprocs[i].count,
coprocs.coprocs[i].count*0.2*coprocs.coprocs[i].peak_flops/cpu_flops
);
}
// see what resources anon platform projects can use
//
unsigned int i, j;
for (i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
if (!p->anonymous_platform) continue;
for (int k=0; k<coprocs.n_rsc; k++) {
p->rsc_pwf[k].anon_skip = true;
}
for (j=0; j<gstate.app_versions.size(); j++) {
APP_VERSION* avp = gstate.app_versions[j];
if (avp->project != p) continue;
p->rsc_pwf[avp->gpu_usage.rsc_type].anon_skip = false;
}
}
}
// clear backoff for app's resource
//
void WORK_FETCH::clear_backoffs(APP_VERSION& av) {
av.project->rsc_pwf[av.gpu_usage.rsc_type].clear_backoff();
}
////////////////////////
void CLIENT_STATE::compute_nuploading_results() {
unsigned int i;
for (i=0; i<projects.size(); i++) {
projects[i]->nuploading_results = 0;
projects[i]->too_many_uploading_results = false;
}
for (i=0; i<results.size(); i++) {
RESULT* rp = results[i];
if (rp->state() == RESULT_FILES_UPLOADING) {
rp->project->nuploading_results++;
}
}
int n = gstate.ncpus;
for (int j=1; j<coprocs.n_rsc; j++) {
if (coprocs.coprocs[j].count > n) {
n = coprocs.coprocs[j].count;
}
}
n *= 2;
for (i=0; i<projects.size(); i++) {
if (projects[i]->nuploading_results > n) {
projects[i]->too_many_uploading_results = true;
}
}
}
bool PROJECT::runnable(int rsc_type) {
if (suspended_via_gui) return false;
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->project != this) continue;
if (rsc_type != RSC_TYPE_ANY) {
if (rp->avp->gpu_usage.rsc_type != rsc_type) {
continue;
}
}
if (rp->runnable()) return true;
}
return false;
}
bool PROJECT::uploading() {
for (unsigned int i=0; i<gstate.file_xfers->file_xfers.size(); i++) {
FILE_XFER& fx = *gstate.file_xfers->file_xfers[i];
if (fx.fip->project == this && fx.is_upload) {
return true;
}
}
return false;
}
bool PROJECT::downloading() {
if (suspended_via_gui) return false;
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->project != this) continue;
if (rp->downloading()) return true;
}
return false;
}
bool PROJECT::has_results() {
for (unsigned i=0; i<gstate.results.size(); i++) {
RESULT *rp = gstate.results[i];
if (rp->project == this) return true;
}
return false;
}
bool PROJECT::some_result_suspended() {
unsigned int i;
for (i=0; i<gstate.results.size(); i++) {
RESULT *rp = gstate.results[i];
if (rp->project != this) continue;
if (rp->suspended_via_gui) return true;
}
return false;
}
bool PROJECT::can_request_work() {
if (suspended_via_gui) return false;
if (master_url_fetch_pending) return false;
if (min_rpc_time > gstate.now) return false;
if (dont_request_more_work) return false;
if (gstate.in_abort_sequence) return false;
return true;
}
bool PROJECT::potentially_runnable() {
if (runnable(RSC_TYPE_ANY)) return true;
if (can_request_work()) return true;
if (downloading()) return true;
return false;
}
bool PROJECT::nearly_runnable() {
if (runnable(RSC_TYPE_ANY)) return true;
if (downloading()) return true;
return false;
}
// whether this task can be run right now
//
bool RESULT::runnable() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
if (state() != RESULT_FILES_DOWNLOADED) return false;
if (coproc_missing) return false;
if (schedule_backoff > gstate.now) return false;
return true;
}
// whether this task should be included in RR simulation
// Like runnable, except downloading backoff is OK
// Schedule-backoff is not OK;
// we should be able to get GPU jobs from project A
// even if project B has backed-off jobs.
//
bool RESULT::nearly_runnable() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
switch (state()) {
case RESULT_FILES_DOWNLOADED:
case RESULT_FILES_DOWNLOADING:
break;
default:
return false;
}
if (coproc_missing) return false;
if (schedule_backoff > gstate.now) return false;
return true;
}
// Return true if the result is waiting for its files to download,
// and nothing prevents this from happening soon
//
bool RESULT::downloading() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
if (state() > RESULT_FILES_DOWNLOADING) return false;
if (some_download_stalled()) return false;
return true;
}
double RESULT::estimated_duration_uncorrected() {
return wup->rsc_fpops_est/avp->flops;
}
// estimate how long a result will take on this host
//
double RESULT::estimated_duration() {
return estimated_duration_uncorrected()*project->duration_correction_factor;
}
double RESULT::estimated_time_remaining() {
if (computing_done()) return 0;
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this);
if (atp) {
#ifdef SIM
return sim_flops_left/avp->flops;
#else
return atp->est_dur() - atp->elapsed_time;
#endif
}
return estimated_duration();
}
// Returns the estimated total elapsed time of this task.
// Compute this as a weighted average of estimates based on
// 1) the workunit's flops count (static estimate)
// 2) the current elapsed time and fraction done (dynamic estimate)
//
double ACTIVE_TASK::est_dur() {
if (fraction_done >= 1) return elapsed_time;
double wu_est = result->estimated_duration();
if (fraction_done <= 0) return wu_est;
if (wu_est < elapsed_time) wu_est = elapsed_time;
double frac_est = fraction_done_elapsed_time / fraction_done;
double fraction_left = 1-fraction_done;
double wu_weight = fraction_left * fraction_left * fraction_left;
double fd_weight = 1 - wu_weight;
double x = fd_weight*frac_est + wu_weight*wu_est;
#if 0
if (log_flags.rr_simulation) {
msg_printf(result->project, MSG_INFO,
"[rr_sim] %s frac_est %f = %f/%f",
result->name, frac_est, fraction_done_elapsed_time, fraction_done
);
msg_printf(result->project, MSG_INFO,
"[rr_sim] %s dur: %.2f = %.3f*%.2f + %.3f*%.2f",
result->name, x, fd_weight, frac_est, wu_weight, wu_est
);
}
#endif
return x;
}
// the fraction of time BOINC is processing
//
double CLIENT_STATE::overall_cpu_frac() {
double x = time_stats.on_frac * time_stats.active_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
double CLIENT_STATE::overall_gpu_frac() {
double x = time_stats.on_frac * time_stats.gpu_active_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
// called when benchmarks change
//
void CLIENT_STATE::scale_duration_correction_factors(double factor) {
if (factor <= 0) return;
for (unsigned int i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
p->duration_correction_factor *= factor;
}
if (log_flags.dcf_debug) {
msg_printf(NULL, MSG_INFO,
"[dcf] scaling all duration correction factors by %f",
factor
);
}
}
// Choose a new host CPID.
// If using account manager, do scheduler RPCs
// to all acct-mgr-attached projects to propagate the CPID
//
void CLIENT_STATE::generate_new_host_cpid() {
host_info.generate_host_cpid();
for (unsigned int i=0; i<projects.size(); i++) {
if (projects[i]->attached_via_acct_mgr) {
projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ;
projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID");
}
}
}