mirror of https://github.com/BOINC/boinc.git
410 lines
13 KiB
C++
410 lines
13 KiB
C++
// This file is part of BOINC.
|
|
// http://boinc.berkeley.edu
|
|
// Copyright (C) 2008 University of California
|
|
//
|
|
// BOINC is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU Lesser General Public License
|
|
// as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// BOINC is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Structures representing coprocessors (e.g. GPUs);
|
|
// used in both client and server.
|
|
//
|
|
// Notes:
|
|
//
|
|
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
|
|
// 2) The design treats each resource type as a pool of identical devices;
|
|
// for example, there is a single "CUDA long-term debt" per project,
|
|
// and a scheduler request contains a request (#instances, instance-seconds)
|
|
// for CUDA jobs.
|
|
// In reality, the instances of a resource type can have different properties:
|
|
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
|
|
// How to resolve this discrepancy?
|
|
//
|
|
// Prior to 21 Apr 09 we identified the fastest instance
|
|
// and pretended that the others were identical to it.
|
|
// This approach has a serious flaw:
|
|
// suppose that the fastest instance has characteristics
|
|
// (version, RAM etc.) that satisfy the project's requirements,
|
|
// but other instances to not.
|
|
// Then BOINC executes jobs on GPUs that can't handle them,
|
|
// the jobs fail, the host is punished, etc.
|
|
//
|
|
// We could treat each GPU has a separate resource,
|
|
// with its own set of debts, backoffs, etc.
|
|
// However, this would imply tying jobs to instances,
|
|
// which is undesirable from a scheduling viewpoint.
|
|
// It would also be a big code change in both client and server.
|
|
//
|
|
// Instead, (as of 21 Apr 09) our approach is to identify a
|
|
// "most capable" instance, which in the case of CUDA is based on
|
|
// a) compute capability
|
|
// b) driver version
|
|
// c) RAM size
|
|
// d) est. FLOPS
|
|
// (in decreasing priority).
|
|
// We ignore and don't use any instances that are less capable
|
|
// on any of these axes.
|
|
//
|
|
// This design avoids running coprocessor apps on instances
|
|
// that are incapable of handling them, and it involves no server changes.
|
|
// Its drawback is that, on systems with multiple and differing GPUs,
|
|
// it may not use some GPUs that actually could be used.
|
|
|
|
#ifndef _COPROC_
|
|
#define _COPROC_
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cstring>
|
|
|
|
#ifdef _USING_FCGI_
|
|
#include "boinc_fcgi.h"
|
|
#endif
|
|
|
|
#include "miofile.h"
|
|
#include "error_numbers.h"
|
|
#include "parse.h"
|
|
#include "cal_boinc.h"
|
|
#include "cl_boinc.h"
|
|
|
|
#define MAX_COPROC_INSTANCES 64
|
|
#define MAX_RSC 8
|
|
// max # of processing resources types
|
|
|
|
#define MAX_OPENCL_PLATFORMS 16
|
|
|
|
#define GPU_TYPE_NVIDIA "NVIDIA"
|
|
#define GPU_TYPE_ATI "ATI"
|
|
|
|
// represents a requirement for a coproc.
|
|
// This is a parsed version of the <coproc> elements in an <app_version>
|
|
// (used in client only)
|
|
//
|
|
struct COPROC_REQ {
|
|
char type[256]; // must be unique
|
|
double count;
|
|
int parse(XML_PARSER&);
|
|
};
|
|
|
|
// For now, there will be some duplication between the values present in
|
|
// the OPENCL_DEVICE_PROP struct and the NVIDA and / or ATI structs
|
|
struct OPENCL_DEVICE_PROP {
|
|
cl_device_id device_id;
|
|
char name[256]; // Device name
|
|
char vendor[256]; // Device vendor (NVIDIA, ATI, AMD, etc.)
|
|
cl_uint vendor_id; // OpenCL ID of device vendor
|
|
cl_bool available; // Is this device available?
|
|
cl_device_fp_config hp_fp_config; // Half precision floating point capabilities
|
|
cl_device_fp_config sp_fp_config; // Single precision floating point capabilities
|
|
cl_device_fp_config dp_fp_config; // Double precision floating point capabilities
|
|
cl_bool little_endian; // TRUE if little-endian
|
|
cl_device_exec_capabilities exec_capab; // Execution capabilities
|
|
char extensions[1024]; // List of device extensions
|
|
cl_ulong global_RAM; // Size of global memory
|
|
cl_ulong local_RAM; // Size of local memory
|
|
cl_uint max_clock_freq; // Max configured clock frequencin in MHz
|
|
cl_uint max_cores; // Max number of parallel computer cores
|
|
char openCL_platform_version[64]; // Version of OpenCL platform for this device
|
|
char openCL_device_version[64]; // OpenCL version supported by device; example: "OpenCL 1.1 beta"
|
|
char openCL_driver_version[32]; // For example: "CLH 1.0"
|
|
int device_num; // temp used in scan process
|
|
};
|
|
|
|
|
|
// represents a set of identical coprocessors on a particular computer.
|
|
// Abstract class;
|
|
// objects will always be a derived class (COPROC_CUDA, COPROC_ATI)
|
|
// Used in both client and server.
|
|
//
|
|
struct COPROC {
|
|
char type[256]; // must be unique
|
|
int count; // how many are present
|
|
double peak_flops;
|
|
double used; // how many are in use (used by client)
|
|
bool have_cuda; // True if this GPU supports CUDA on this computer
|
|
bool have_cal; // True if this GPU supports CAL on this computer
|
|
bool have_opencl; // True if this GPU supports openCL on this computer
|
|
|
|
// the following are used in both client and server for work-fetch info
|
|
//
|
|
double req_secs;
|
|
// how many instance-seconds of work requested
|
|
double req_instances;
|
|
// client is requesting enough jobs to use this many instances
|
|
double estimated_delay;
|
|
// resource will be saturated for this long
|
|
|
|
// temps used in client (enforce_schedule())
|
|
// to keep track of what fraction of each instance is in use
|
|
// during instance assignment
|
|
//
|
|
double usage[MAX_COPROC_INSTANCES];
|
|
double pending_usage[MAX_COPROC_INSTANCES];
|
|
|
|
// the device number of each instance
|
|
// These are not sequential if we omit instances (see above)
|
|
//
|
|
int device_nums[MAX_COPROC_INSTANCES];
|
|
int device_num; // temp used in scan process
|
|
cl_device_id opencl_device_ids[MAX_COPROC_INSTANCES];
|
|
int opencl_device_count;
|
|
bool running_graphics_app[MAX_COPROC_INSTANCES];
|
|
// is this GPU running a graphics app (NVIDIA only)
|
|
double available_ram[MAX_COPROC_INSTANCES];
|
|
bool available_ram_unknown[MAX_COPROC_INSTANCES];
|
|
// couldn't get available RAM; don't start new apps on this instance
|
|
double available_ram_fake[MAX_COPROC_INSTANCES];
|
|
|
|
double last_print_time;
|
|
|
|
OPENCL_DEVICE_PROP opencl_prop;
|
|
|
|
#ifndef _USING_FCGI_
|
|
void write_xml(MIOFILE&);
|
|
void write_request(MIOFILE&);
|
|
int parse(XML_PARSER&);
|
|
void opencl_write_xml(MIOFILE&);
|
|
#endif
|
|
int parse_opencl(XML_PARSER&);
|
|
|
|
inline void clear() {
|
|
// can't just memcpy() - trashes vtable
|
|
type[0] = 0;
|
|
count = 0;
|
|
peak_flops = 0;
|
|
used = 0;
|
|
have_cuda = false;
|
|
have_cal = false;
|
|
have_opencl = false;
|
|
req_secs = 0;
|
|
req_instances = 0;
|
|
opencl_device_count = 0;
|
|
estimated_delay = 0;
|
|
for (int i=0; i<MAX_COPROC_INSTANCES; i++) {
|
|
device_nums[i] = 0;
|
|
opencl_device_ids[i] = 0;
|
|
running_graphics_app[i] = true;
|
|
available_ram[i] = 0;
|
|
available_ram_fake[i] = 0;
|
|
available_ram_unknown[i] = true;
|
|
}
|
|
memset(&opencl_prop, 0, sizeof(opencl_prop));
|
|
}
|
|
inline void clear_usage() {
|
|
for (int i=0; i<count; i++) {
|
|
usage[i] = 0;
|
|
pending_usage[i] = 0;
|
|
}
|
|
}
|
|
COPROC(const char* t){
|
|
clear();
|
|
strcpy(type, t);
|
|
}
|
|
COPROC() {
|
|
clear();
|
|
}
|
|
void print_available_ram();
|
|
};
|
|
|
|
// based on cudaDeviceProp from /usr/local/cuda/include/driver_types.h
|
|
// doesn't have to match exactly since we get the attributes one at a time.
|
|
//
|
|
struct CUDA_DEVICE_PROP {
|
|
char name[256];
|
|
int deviceHandle;
|
|
unsigned int totalGlobalMem;
|
|
// not used on the server; dtotalGlobalMem is used instead
|
|
// (since some boards have >= 4GB)
|
|
int sharedMemPerBlock;
|
|
int regsPerBlock;
|
|
int warpSize;
|
|
int memPitch;
|
|
int maxThreadsPerBlock;
|
|
int maxThreadsDim[3];
|
|
int maxGridSize[3];
|
|
int clockRate;
|
|
int totalConstMem;
|
|
int major; // compute capability
|
|
int minor;
|
|
int textureAlignment;
|
|
int deviceOverlap;
|
|
int multiProcessorCount;
|
|
double dtotalGlobalMem; // not defined in client
|
|
};
|
|
|
|
struct COPROC_NVIDIA : public COPROC {
|
|
int cuda_version; // CUDA runtime version
|
|
int display_driver_version;
|
|
CUDA_DEVICE_PROP prop;
|
|
|
|
#ifndef _USING_FCGI_
|
|
void write_xml(MIOFILE&, bool include_request);
|
|
#endif
|
|
COPROC_NVIDIA(): COPROC(GPU_TYPE_NVIDIA){}
|
|
void get(
|
|
bool use_all,
|
|
std::vector<std::string>&, std::vector<std::string>&,
|
|
std::vector<int>& ignore_devs
|
|
);
|
|
void description(char*);
|
|
void clear();
|
|
int parse(XML_PARSER&);
|
|
void get_available_ram();
|
|
void set_peak_flops() {
|
|
int flops_per_clock=0, cores_per_proc=0;
|
|
switch (prop.major) {
|
|
case 1:
|
|
flops_per_clock = 3;
|
|
cores_per_proc = 8;
|
|
break;
|
|
case 2:
|
|
flops_per_clock = 2;
|
|
switch (prop.minor) {
|
|
case 0:
|
|
cores_per_proc = 32;
|
|
break;
|
|
default:
|
|
cores_per_proc = 48;
|
|
break;
|
|
}
|
|
}
|
|
// clock rate is scaled down by 1000
|
|
//
|
|
double x = (1000.*prop.clockRate) * prop.multiProcessorCount * cores_per_proc * flops_per_clock;
|
|
peak_flops = (x>0)?x:5e10;
|
|
}
|
|
|
|
bool check_running_graphics_app();
|
|
bool matches(OPENCL_DEVICE_PROP& OpenCLprop);
|
|
void fake(int driver_version, double ram, int count);
|
|
|
|
};
|
|
|
|
struct COPROC_ATI : public COPROC {
|
|
char name[256];
|
|
char version[50];
|
|
int version_num;
|
|
// based on CAL version (not driver version)
|
|
// encoded as 1000000*major + 1000*minor + release
|
|
bool atirt_detected;
|
|
bool amdrt_detected;
|
|
CALdeviceattribs attribs;
|
|
CALdeviceinfo info;
|
|
#ifndef _USING_FCGI_
|
|
void write_xml(MIOFILE&, bool include_request);
|
|
#endif
|
|
COPROC_ATI(): COPROC(GPU_TYPE_ATI){}
|
|
void get(
|
|
bool use_all,
|
|
std::vector<std::string>&, std::vector<std::string>&,
|
|
std::vector<int>& ignore_devs
|
|
);
|
|
void description(char*);
|
|
void clear();
|
|
int parse(XML_PARSER&);
|
|
void get_available_ram();
|
|
bool matches(OPENCL_DEVICE_PROP& OpenCLprop);
|
|
void set_peak_flops() {
|
|
double x = attribs.numberOfSIMD * attribs.wavefrontSize * 2.5 * attribs.engineClock * 1.e6;
|
|
// clock is in MHz
|
|
peak_flops = (x>0)?x:5e10;
|
|
}
|
|
void fake(double, int);
|
|
};
|
|
|
|
struct COPROCS {
|
|
int n_rsc;
|
|
COPROC coprocs[MAX_RSC];
|
|
COPROC_NVIDIA nvidia;
|
|
COPROC_ATI ati;
|
|
|
|
void write_xml(MIOFILE& out, bool include_request);
|
|
void get(
|
|
bool use_all, std::vector<std::string> &descs,
|
|
std::vector<std::string> &warnings,
|
|
std::vector<int>& ignore_nvidia_dev,
|
|
std::vector<int>& ignore_ati_dev
|
|
);
|
|
void get_opencl(bool use_all, std::vector<std::string> &warnings,
|
|
std::vector<int>& ignore_nvidia_dev,
|
|
std::vector<int>& ignore_ati_dev
|
|
);
|
|
cl_int get_opencl_info(
|
|
OPENCL_DEVICE_PROP& prop,
|
|
cl_uint device_index,
|
|
std::vector<std::string> &warnings
|
|
);
|
|
int parse(XML_PARSER&);
|
|
void summary_string(char*, int);
|
|
|
|
// Copy a coproc set, possibly setting usage to zero.
|
|
// used in round-robin simulator and CPU scheduler,
|
|
// to avoid messing w/ master copy
|
|
//
|
|
void clone(COPROCS& c, bool copy_used) {
|
|
n_rsc = c.n_rsc;
|
|
for (int i=0; i<n_rsc; i++) {
|
|
coprocs[i] = c.coprocs[i];
|
|
if (!copy_used) {
|
|
coprocs[i].used = 0;
|
|
}
|
|
}
|
|
}
|
|
void clear() {
|
|
n_rsc = 0;
|
|
for (int i=0; i<MAX_RSC; i++) {
|
|
coprocs[i].clear();
|
|
}
|
|
nvidia.clear();
|
|
ati.clear();
|
|
COPROC c;
|
|
strcpy(c.type, "CPU");
|
|
add(c);
|
|
}
|
|
inline void clear_usage() {
|
|
for (int i=0; i<n_rsc; i++) {
|
|
coprocs[i].clear_usage();
|
|
}
|
|
}
|
|
inline bool none() {
|
|
return (n_rsc == 1);
|
|
}
|
|
inline int ndevs() {
|
|
int n=0;
|
|
for (int i=1; i<n_rsc; i++) {
|
|
n += coprocs[i].count;
|
|
}
|
|
return n;
|
|
}
|
|
inline bool have_nvidia() {
|
|
return (nvidia.count > 0);
|
|
}
|
|
inline bool have_ati() {
|
|
return (ati.count > 0);
|
|
}
|
|
int add(COPROC& c) {
|
|
if (n_rsc >= MAX_RSC) return ERR_BUFFER_OVERFLOW;
|
|
coprocs[n_rsc++] = c;
|
|
return 0;
|
|
}
|
|
COPROCS() {
|
|
n_rsc = 0;
|
|
nvidia.count = 0;
|
|
ati.count = 0;
|
|
COPROC c;
|
|
strcpy(c.type, "CPU");
|
|
add(c);
|
|
}
|
|
};
|
|
|
|
#endif
|