boinc/client/work_fetch.h

315 lines
8.6 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Work fetch logic for CPU, GPU, and other processing resources.
// See http://boinc.berkeley.edu/trac/wiki/GpuWorkFetch
#ifndef _WORK_FETCH_
#define _WORK_FETCH_
#include <vector>
extern bool use_rec;
#define USE_REC
extern bool use_hyst_fetch;
#define RSC_TYPE_ANY -1
#define RSC_TYPE_CPU 0
struct PROJECT;
struct RESULT;
struct ACTIVE_TASK;
struct RSC_WORK_FETCH;
struct SCHEDULER_REPLY;
struct APP_VERSION;
// state per (resource, project) pair
//
struct RSC_PROJECT_WORK_FETCH {
// the following are persistent (saved in state file)
double backoff_time;
double backoff_interval;
//#ifndef USE_REC
double long_term_debt;
double short_term_debt;
double anticipated_debt;
// short-term debt, adjusted by scheduled jobs
//#endif
// the following used by debt accounting
double secs_this_debt_interval;
inline void reset_debt_accounting() {
secs_this_debt_interval = 0;
}
double queue_est;
// an estimate of instance-secs of queued work;
// a temp used in computing overall debts
bool anon_skip;
// set if this project is anonymous platform
// and it has no app version that uses this resource
// the following are used by rr_simulation()
//
double runnable_share;
// this project's share relative to projects that have
// nearly runnable jobs for this resource;
// determines processing rate for CPU
double fetchable_share;
// this project's share relative to projects from which
// we could probably get work for this resource;
// determines how many instances this project deserves
bool has_runnable_jobs;
double sim_nused;
double nused_total; // sum of instances over all runnable jobs
int deadlines_missed;
int deadlines_missed_copy;
// copy of the above used during schedule_cpus()
RSC_PROJECT_WORK_FETCH() {
memset(this, 0, sizeof(*this));
}
//#ifndef USE_REC
// whether this project should accumulate debt for this resource
//
bool debt_eligible(PROJECT*, RSC_WORK_FETCH&);
inline void zero_debt() {
long_term_debt = 0;
short_term_debt = 0;
}
//#endif
inline void reset() {
backoff_time = 0;
backoff_interval = 0;
//#ifndef USE_REC
long_term_debt = 0;
short_term_debt = 0;
anticipated_debt = 0;
//#endif
}
bool may_have_work;
bool compute_may_have_work(PROJECT*, int rsc_type);
void backoff(PROJECT*, const char*);
void rr_init(PROJECT*, int rsc_type);
void clear_backoff() {
backoff_time = 0;
backoff_interval = 0;
}
//#ifndef USE_REC
bool overworked();
//#endif
};
// estimate the time a resources will be saturated
// with high-priority jobs.
//
struct BUSY_TIME_ESTIMATOR {
std::vector<double> busy_time;
int ninstances;
inline void reset() {
for (int i=0; i<ninstances; i++) {
busy_time[i] = 0;
}
}
inline void init(int n) {
ninstances = n;
busy_time.resize(n);
reset();
}
// called for each high-priority job.
// Find the least-busy instance, and put this job
// on that and following instances
//
inline void update(double dur, double nused) {
int i, j;
if (nused < 1) return;
double best = busy_time[0];
int ibest = 0;
for (i=1; i<ninstances; i++) {
if (busy_time[i] < best) {
best = busy_time[i];
ibest = i;
}
}
int inused = (int) nused; // ignore fractional usage
for (i=0; i<inused; i++) {
j = (ibest + i) % ninstances;
busy_time[j] += dur;
}
}
// the overall busy time is the busy time of
// the least busy instance
//
inline double get_busy_time() {
if (!ninstances) return 0;
double best = busy_time[0];
for (int i=1; i<ninstances; i++) {
if (busy_time[i] < best) {
best = busy_time[i];
}
}
return best;
}
};
// per-resource state
//
struct RSC_WORK_FETCH {
int rsc_type;
int ninstances;
double relative_speed; // total FLOPS relative to CPU total FLOPS
// the following used/set by rr_simulation():
//
double shortfall;
// seconds of idle instances between now and now+work_buf_total()
double nidle_now;
double sim_nused;
double total_fetchable_share;
// total RS of projects from which we could fetch jobs for this device
double total_runnable_share;
// total RS of projects with runnable jobs for this device
double saturated_time;
// estimated time until resource is not saturated
// used to calculate work request
double deadline_missed_instances;
// instance count for jobs that miss deadline
std::deque<RESULT*> pending;
BUSY_TIME_ESTIMATOR busy_time_estimator;
#ifdef SIM
double estimated_delay;
#endif
void init(int t, int n, double sp) {
rsc_type = t;
ninstances = n;
relative_speed = sp;
busy_time_estimator.init(n);
}
// the following specify the work request for this resource
//
double req_secs;
double req_instances;
// debt accounting
double secs_this_debt_interval;
inline void reset_debt_accounting() {
this->secs_this_debt_interval = 0;
}
void rr_init();
void accumulate_shortfall(double d_time);
void update_saturated_time(double dt);
void update_busy_time(double dur, double nused);
PROJECT* choose_project_hyst();
PROJECT* choose_project(int);
void supplement(PROJECT*);
RSC_PROJECT_WORK_FETCH& project_state(PROJECT*);
//#ifndef USE_REC
void update_long_term_debts();
void update_short_term_debts();
//#endif
void print_state(const char*);
void clear_request();
void set_request(PROJECT*, bool allow_overworked);
bool may_have_work(PROJECT*);
RSC_WORK_FETCH() {
rsc_type = 0;
ninstances = 0;
relative_speed = 0;
shortfall = 0;
nidle_now = 0;
sim_nused = 0;
total_fetchable_share = 0;
total_runnable_share = 0;
saturated_time = 0;
deadline_missed_instances = 0;
}
};
// per project state
//
struct PROJECT_WORK_FETCH {
//#ifdef USE_REC
double rec;
// recent estimated credit
double rec_time;
// when it was last updated
double rec_temp;
// temporary copy used during schedule_cpus()
//#else
double overall_debt;
//#endif
bool can_fetch_work;
bool compute_can_fetch_work(PROJECT*);
bool has_runnable_jobs;
PROJECT_WORK_FETCH() {
memset(this, 0, sizeof(*this));
}
void reset(PROJECT*);
};
// global work fetch state
//
struct WORK_FETCH {
//#ifndef USE_REC
void set_overall_debts();
void zero_debts();
//#endif
PROJECT* choose_project();
// find a project to ask for work
PROJECT* non_cpu_intensive_project_needing_work();
void compute_work_request(PROJECT*);
// we're going to contact this project anyway;
// decide how much work to task for
void accumulate_inst_sec(ACTIVE_TASK*, double dt);
void write_request(FILE*, PROJECT*);
void handle_reply(
PROJECT*, SCHEDULER_REPLY*, std::vector<RESULT*>new_results
);
void set_initial_work_request();
void set_all_requests(PROJECT*);
void set_all_requests_hyst(PROJECT*, int rsc_type);
void print_state();
void init();
void rr_init();
void clear_request();
void compute_shares();
void clear_backoffs(APP_VERSION&);
void request_string(char*);
};
extern RSC_WORK_FETCH rsc_work_fetch[MAX_RSC];
extern WORK_FETCH work_fetch;
extern void set_no_rsc_config();
//#ifdef USE_REC
void project_priority_init();
double project_priority(PROJECT*);
void adjust_rec_sched(RESULT*);
void adjust_rec_work_fetch(RESULT*);
//#endif
#endif