boinc/lib/util.cpp

577 lines
14 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
#if defined(_WIN32) && !defined(__STDWX_H__)
#include "boinc_win.h"
#elif defined(_WIN32) && defined(__STDWX_H__)
#include "stdwx.h"
#endif
#ifdef _WIN32
#include "win_util.h"
#ifdef _MSC_VER
#define finite _finite
#endif
#endif
#ifndef M_LN2
#define M_LN2 0.693147180559945309417
#endif
#ifndef _WIN32
#include "config.h"
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <sys/types.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <signal.h>
#include <sys/resource.h>
#include <errno.h>
#include <string>
#include <cstring>
#include <math.h>
#if HAVE_IEEEFP_H
#include <ieeefp.h>
extern "C" {
int finite(double);
}
#endif
#endif
#include "error_numbers.h"
#include "common_defs.h"
#include "filesys.h"
#include "base64.h"
#include "mfile.h"
#include "miofile.h"
#include "parse.h"
#include "util.h"
using std::min;
using std::string;
using std::vector;
#define EPOCHFILETIME_SEC (11644473600.)
#define TEN_MILLION 10000000.
#ifdef GCL_SIMULATOR
double simtime;
#endif
// return time of day (seconds since 1970) as a double
//
double dtime() {
#ifdef GCL_SIMULATOR
return simtime;
#else
#ifdef _WIN32
LARGE_INTEGER time;
FILETIME sysTime;
double t;
GetSystemTimeAsFileTime(&sysTime);
time.LowPart = sysTime.dwLowDateTime;
time.HighPart = sysTime.dwHighDateTime; // Time is in 100 ns units
t = (double)time.QuadPart; // Convert to 1 s units
t /= TEN_MILLION; /* In seconds */
t -= EPOCHFILETIME_SEC; /* Offset to the Epoch time */
return t;
#else
struct timeval tv;
gettimeofday(&tv, 0);
return tv.tv_sec + (tv.tv_usec/1.e6);
#endif
#endif
}
// return time today 0:00 in seconds since 1970 as a double
//
double dday() {
double now=dtime();
return (now-fmod(now, SECONDS_PER_DAY));
}
// sleep for a specified number of seconds
//
void boinc_sleep(double seconds) {
#ifdef _WIN32
::Sleep((int)(1000*seconds));
#else
double end_time = dtime() + seconds - 0.01;
// sleep() and usleep() can be interrupted by SIGALRM,
// so we may need multiple calls
//
while (1) {
if (seconds >= 1) {
sleep((unsigned int) seconds);
} else {
usleep((int)fmod(seconds*1000000, 1000000));
}
seconds = end_time - dtime();
if (seconds <= 0) break;
}
#endif
}
void push_unique(string s, vector<string>& v) {
for (unsigned int i=0; i<v.size();i++) {
if (s == v[i]) return;
}
v.push_back(s);
}
#ifdef _WIN32
int boinc_thread_cpu_time(HANDLE thread_handle, double& cpu) {
FILETIME creationTime, exitTime, kernelTime, userTime;
if (GetThreadTimes(
thread_handle, &creationTime, &exitTime, &kernelTime, &userTime)
) {
ULARGE_INTEGER tKernel, tUser;
LONGLONG totTime;
tKernel.LowPart = kernelTime.dwLowDateTime;
tKernel.HighPart = kernelTime.dwHighDateTime;
tUser.LowPart = userTime.dwLowDateTime;
tUser.HighPart = userTime.dwHighDateTime;
totTime = tKernel.QuadPart + tUser.QuadPart;
// Runtimes in 100-nanosecond units
cpu = totTime / 1.e7;
} else {
return -1;
}
return 0;
}
int boinc_process_cpu_time(HANDLE process_handle, double& cpu) {
FILETIME creationTime, exitTime, kernelTime, userTime;
if (GetProcessTimes(
process_handle, &creationTime, &exitTime, &kernelTime, &userTime)
) {
ULARGE_INTEGER tKernel, tUser;
LONGLONG totTime;
tKernel.LowPart = kernelTime.dwLowDateTime;
tKernel.HighPart = kernelTime.dwHighDateTime;
tUser.LowPart = userTime.dwLowDateTime;
tUser.HighPart = userTime.dwHighDateTime;
totTime = tKernel.QuadPart + tUser.QuadPart;
// Runtimes in 100-nanosecond units
cpu = totTime / 1.e7;
} else {
return -1;
}
return 0;
}
static void get_elapsed_time(double& cpu) {
static double start_time;
double now = dtime();
if (start_time) {
cpu = now - start_time;
} else {
cpu = 0;
}
start_time = now;
}
int boinc_calling_thread_cpu_time(double& cpu) {
if (boinc_thread_cpu_time(GetCurrentThread(), cpu)) {
get_elapsed_time(cpu);
}
return 0;
}
#else
// Unix: pthreads doesn't provide an API for getting per-thread CPU time,
// so just get the process's CPU time
//
int boinc_calling_thread_cpu_time(double &cpu_t) {
struct rusage ru;
int retval = getrusage(RUSAGE_SELF, &ru);
if (retval) return ERR_GETRUSAGE;
cpu_t = (double)ru.ru_utime.tv_sec + ((double)ru.ru_utime.tv_usec) / 1e6;
cpu_t += (double)ru.ru_stime.tv_sec + ((double)ru.ru_stime.tv_usec) / 1e6;
return 0;
}
#endif
// Update an estimate of "units per day" of something (credit or CPU time).
// The estimate is exponentially averaged with a given half-life
// (i.e. if no new work is done, the average will decline by 50% in this time).
// This function can be called either with new work,
// or with zero work to decay an existing average.
//
// NOTE: if you change this, also change update_average in
// html/inc/credit.inc
//
void update_average(
double now,
double work_start_time, // when new work was started
// (or zero if no new work)
double work, // amount of new work
double half_life,
double& avg, // average work per day (in and out)
double& avg_time // when average was last computed
) {
if (avg_time) {
// If an average R already exists, imagine that the new work was done
// entirely between avg_time and now.
// That gives a rate R'.
// Replace R with a weighted average of R and R',
// weighted so that we get the right half-life if R' == 0.
//
// But this blows up if avg_time == now; you get 0*(1/0)
// So consider the limit as diff->0,
// using the first-order Taylor expansion of
// exp(x)=1+x+O(x^2).
// So to the lowest order in diff:
// weight = 1 - diff ln(2) / half_life
// so one has
// avg += (1-weight)*(work/diff_days)
// avg += [diff*ln(2)/half_life] * (work*SECONDS_PER_DAY/diff)
// notice that diff cancels out, leaving
// avg += [ln(2)/half_life] * work*SECONDS_PER_DAY
double diff, diff_days, weight;
diff = now - avg_time;
if (diff<0) diff=0;
diff_days = diff/SECONDS_PER_DAY;
weight = exp(-diff*M_LN2/half_life);
avg *= weight;
if ((1.0-weight) > 1.e-6) {
avg += (1-weight)*(work/diff_days);
} else {
avg += M_LN2*work*SECONDS_PER_DAY/half_life;
}
} else if (work) {
// If first time, average is just work/duration
//
double dd = (now - work_start_time)/SECONDS_PER_DAY;
avg = work/dd;
}
avg_time = now;
}
#ifndef _USING_FCGI_
#ifndef _WIN32
// (linux) return current CPU time of the given process
//
double linux_cpu_time(int pid) {
FILE *file;
char file_name[24];
unsigned long utime = 0, stime = 0;
int n;
sprintf(file_name,"/proc/%d/stat",pid);
if ((file = fopen(file_name,"r")) != NULL) {
n = fscanf(file,"%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%lu%lu",&utime,&stime);
fclose(file);
if (n != 2) return 0;
}
return (double)(utime + stime)/100;
}
#endif
#endif
void boinc_crash() {
#ifdef _WIN32
DebugBreak();
#else
abort();
#endif
}
// read file (at most max_len chars, if nonzero) into malloc'd buf
//
int read_file_malloc(const char* path, char*& buf, size_t max_len, bool tail) {
int retval;
double size;
retval = file_size(path, size);
if (retval) return retval;
// Note: the fseek() below won't work unless we use binary mode in fopen
#ifndef _USING_FCGI_
FILE *f = fopen(path, "rb");
#else
FCGI_FILE *f = FCGI::fopen(path, "rb");
#endif
if (!f) return ERR_FOPEN;
#ifndef _USING_FCGI_
if (max_len && size > max_len) {
if (tail) {
fseek(f, (long)size-(long)max_len, SEEK_SET);
}
size = max_len;
}
#endif
size_t isize = (size_t)size;
buf = (char*)malloc(isize+1);
if (!buf) {
fclose(f);
return ERR_MALLOC;
}
size_t n = fread(buf, 1, isize, f);
buf[n] = 0;
fclose(f);
return 0;
}
// read file (at most max_len chars, if nonzero) into string
//
int read_file_string(
const char* path, string& result, size_t max_len, bool tail
) {
result.erase();
int retval;
char* buf;
retval = read_file_malloc(path, buf, max_len, tail);
if (retval) return retval;
result = buf;
free(buf);
return 0;
}
// chdir into the given directory, and run a program there.
// If nsecs is nonzero, make sure it's still running after that many seconds.
//
// argv is set up Unix-style, i.e. argv[0] is the program name
//
#ifdef _WIN32
int run_program(
const char* dir, const char* file, int argc, char *const argv[], double nsecs, HANDLE& id
) {
int retval;
PROCESS_INFORMATION process_info;
STARTUPINFOA startup_info;
char cmdline[1024];
char error_msg[1024];
unsigned long status;
memset(&process_info, 0, sizeof(process_info));
memset(&startup_info, 0, sizeof(startup_info));
startup_info.cb = sizeof(startup_info);
strcpy(cmdline, "");
for (int i=0; i<argc; i++) {
strcat(cmdline, argv[i]);
if (i<argc-1) {
strcat(cmdline, " ");
}
}
retval = CreateProcessA(
file,
cmdline,
NULL,
NULL,
FALSE,
0,
NULL,
dir,
&startup_info,
&process_info
);
if (!retval) {
windows_error_string(error_msg, sizeof(error_msg));
fprintf(stderr, "CreateProcess failed: '%s'\n", error_msg);
return -1; // CreateProcess returns 1 if successful, false if it failed.
}
if (nsecs) {
boinc_sleep(nsecs);
if (GetExitCodeProcess(process_info.hProcess, &status)) {
if (status != STILL_ACTIVE) {
return -1;
}
}
}
id = process_info.hProcess;
return 0;
}
#else
int run_program(
const char* dir, const char* file, int , char *const argv[], double nsecs, int& id
) {
int retval;
int pid = fork();
if (pid == 0) {
if (dir) {
retval = chdir(dir);
if (retval) return retval;
}
execv(file, argv);
#ifdef _USING_FCGI_
FCGI::perror("execv");
#else
perror("execv");
#endif
exit(errno);
}
if (nsecs) {
boinc_sleep(3);
if (waitpid(pid, 0, WNOHANG) == pid) {
return -1;
}
}
id = pid;
return 0;
}
#endif
#ifdef _WIN32
void kill_program(HANDLE pid) {
TerminateProcess(pid, 0);
}
#else
void kill_program(int pid) {
kill(pid, SIGKILL);
}
#endif
#ifdef _WIN32
int get_exit_status(HANDLE pid_handle) {
unsigned long status=1;
while (1) {
if (GetExitCodeProcess(pid_handle, &status)) {
if (status == STILL_ACTIVE) {
boinc_sleep(1);
} else {
break;
}
}
}
return (int) status;
}
bool process_exists(HANDLE h) {
unsigned long status=1;
if (GetExitCodeProcess(h, &status)) {
if (status == STILL_ACTIVE) return true;
}
return false;
}
#else
int get_exit_status(int pid) {
int status;
waitpid(pid, &status, 0);
return status;
}
bool process_exists(int pid) {
int p = waitpid(pid, 0, WNOHANG);
if (p == pid) return false; // process has exited
if (p == -1) return false; // PID doesn't exist
return true;
}
#endif
#ifdef _WIN32
static int get_client_mutex(const char*) {
char buf[MAX_PATH] = "";
// Global mutex on Win2k and later
//
if (IsWindows2000Compatible()) {
strcpy(buf, "Global\\");
}
strcat(buf, RUN_MUTEX);
HANDLE h = CreateMutexA(NULL, true, buf);
if ((h==0) || (GetLastError() == ERROR_ALREADY_EXISTS)) {
return ERR_ALREADY_RUNNING;
}
#else
static int get_client_mutex(const char* dir) {
char path[MAXPATHLEN];
static FILE_LOCK file_lock;
sprintf(path, "%s/%s", dir, LOCK_FILE_NAME);
int retval = file_lock.lock(path);
if (retval == ERR_FCNTL) {
return ERR_ALREADY_RUNNING;
} else if (retval) {
return retval;
}
#endif
return 0;
}
int wait_client_mutex(const char* dir, double timeout) {
double start = dtime();
int retval = 0;
while (1) {
retval = get_client_mutex(dir);
if (!retval) return 0;
boinc_sleep(1);
if (dtime() - start > timeout) break;
}
return retval;
}
bool boinc_is_finite(double x) {
#if defined (HPUX_SOURCE)
return _Isfinite(x);
return false;
#else
return finite(x) != 0;
#endif
}
#define PI2 (2*3.1415926)
// generate normal random numbers using Box-Muller.
// this generates 2 at a time, so cache the other one
//
double rand_normal() {
static bool cached;
static double cached_value;
if (cached) {
cached = false;
return cached_value;
}
double u1 = drand();
double u2 = drand();
double z = sqrt(-2*log(u1));
cached_value = z*sin(PI2*u2);
cached = true;
return z*cos(PI2*u2);
}