boinc/client/work_fetch.h

370 lines
11 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Work fetch logic for CPU, GPU, and other processing resources.
// See http://boinc.berkeley.edu/trac/wiki/GpuWorkFetch
#ifndef BOINC_WORK_FETCH_H
#define BOINC_WORK_FETCH_H
#include <vector>
#include <deque>
#define RSC_TYPE_ANY -1
#define RSC_TYPE_CPU 0
// reasons for not fetching work from a project
//
typedef enum {
PROJECT_REASON_NONE = 0,
PROJECT_REASON_NON_CPU_INTENSIVE,
PROJECT_REASON_SUSPENDED_VIA_GUI,
PROJECT_REASON_MASTER_URL_FETCH_PENDING,
PROJECT_REASON_MIN_RPC_TIME,
PROJECT_REASON_DONT_REQUEST_MORE_WORK,
PROJECT_REASON_DOWNLOAD_STALLED,
PROJECT_REASON_RESULT_SUSPENDED,
PROJECT_REASON_TOO_MANY_UPLOADS,
PROJECT_REASON_NOT_HIGHEST_PRIORITY,
PROJECT_REASON_DONT_NEED,
PROJECT_REASON_TOO_MANY_RUNNABLE,
PROJECT_REASON_MAX_CONCURRENT,
} PROJECT_REASON;
// in case of DONT_NEED, per-resource reason
//
typedef enum {
RSC_REASON_NONE = 0,
RSC_REASON_GPUS_NOT_USABLE,
RSC_REASON_PREFS,
RSC_REASON_CONFIG,
RSC_REASON_NO_APPS,
RSC_REASON_AMS,
RSC_REASON_ZERO_SHARE,
RSC_REASON_BUFFER_FULL,
RSC_REASON_NOT_HIGHEST_PRIO,
RSC_REASON_BACKED_OFF,
RSC_REASON_DEFER_SCHED
} RSC_REASON;
struct PROJECT;
struct RESULT;
struct ACTIVE_TASK;
struct RSC_WORK_FETCH;
struct SCHEDULER_REPLY;
struct APP_VERSION;
typedef long long COPROC_INSTANCE_BITMAP;
// should be at least MAX_COPROC_INSTANCES (64) bits
// state per (resource, project) pair
//
struct RSC_PROJECT_WORK_FETCH {
// the following are persistent (saved in state file)
double backoff_time;
double backoff_interval;
// the following used by REC accounting
double secs_this_rec_interval;
double queue_est;
// an estimate of instance-secs of queued work;
bool anonymous_platform_no_apps;
// set if this project is anonymous platform
// and it has no app version that uses this resource
double fetchable_share;
// this project's share relative to projects from which
// we could probably get work for this resource;
// determines how many instances this project deserves
int n_runnable_jobs;
double sim_nused;
// # of instances used at this point in the simulation
double nused_total; // sum of instances over all runnable jobs
int ncoprocs_excluded;
// number of excluded instances
COPROC_INSTANCE_BITMAP non_excluded_instances;
// bitmap of non-excluded instances
// (i.e. instances this project's jobs can run on)
int deadlines_missed;
int deadlines_missed_copy;
// copy of the above used during schedule_cpus()
std::deque<RESULT*> pending;
// temp during RR_SIM::simulate(); jobs running or waiting to run
std::deque<RESULT*>::iterator pending_iter;
// temp during RR_SIM::pick_jobs_to_run()
bool has_deferred_job;
// This project has a coproc job of the given type for which
// the job is deferred because of a temporary_exit() call.
// Don't fetch more jobs of this type; they might have same problem
RSC_REASON rsc_project_reason;
// If zero, it's OK to ask this project for this type of work.
// If nonzero, the reason why it's not OK
RSC_PROJECT_WORK_FETCH() {
backoff_time = 0;
backoff_interval = 0;
secs_this_rec_interval = 0;
queue_est = 0;
anonymous_platform_no_apps = false;
fetchable_share = 0;
n_runnable_jobs = 0;
sim_nused = 0;
nused_total = 0;
ncoprocs_excluded = 0;
non_excluded_instances = 0;
deadlines_missed = 0;
deadlines_missed_copy = 0;
pending.clear();
has_deferred_job = false;
rsc_project_reason = RSC_REASON_NONE;
}
inline void reset() {
backoff_time = 0;
backoff_interval = 0;
}
inline void reset_rec_accounting() {
secs_this_rec_interval = 0;
}
RSC_REASON compute_rsc_project_reason(PROJECT*, int rsc_type);
void resource_backoff(PROJECT*, const char*);
void rr_init();
void clear_backoff() {
backoff_time = 0;
backoff_interval = 0;
}
};
// estimate the time a resource will be saturated
// with high-priority jobs.
//
struct BUSY_TIME_ESTIMATOR {
std::vector<double> busy_time;
int ninstances;
inline void reset() {
for (int i=0; i<ninstances; i++) {
busy_time[i] = 0;
}
}
inline void init(int n) {
ninstances = n;
busy_time.resize(n);
reset();
}
// called for each high-priority job.
// Find the least-busy instance, and put this job
// on that and following instances
//
inline void update(double dur, double nused) {
if (ninstances==0) return;
int i, j;
if (nused < 1) return;
double best = 0;
int ibest = 0;
for (i=0; i<ninstances; i++) {
if (!i || busy_time[i] < best) {
best = busy_time[i];
ibest = i;
}
}
int inused = (int) nused; // ignore fractional usage
for (i=0; i<inused; i++) {
j = (ibest + i) % ninstances;
busy_time[j] += dur;
}
}
// the overall busy time is the busy time of
// the least busy instance
//
inline double get_busy_time() {
double best = 0;
for (int i=0; i<ninstances; i++) {
if (!i || busy_time[i] < best) {
best = busy_time[i];
}
}
return best;
}
};
// per-resource state
//
struct RSC_WORK_FETCH {
int rsc_type;
int ninstances;
double relative_speed; // total FLOPS relative to CPU total FLOPS
bool has_exclusions;
// the following used/set by rr_simulation():
//
double shortfall;
// seconds of idle instances between now and now+work_buf_total()
double nidle_now;
// # idle instances now (at the beginning of RR sim)
double sim_nused;
COPROC_INSTANCE_BITMAP sim_used_instances;
// bitmap of instances used in simulation,
// taking into account GPU exclusions
COPROC_INSTANCE_BITMAP sim_excluded_instances;
// bitmap of instances not used (i.e. starved because of exclusion)
double total_fetchable_share;
// total RS of projects from which we could fetch jobs for this device
double saturated_time;
// estimated time until resource is not saturated
// used to calculate work request
double deadline_missed_instances;
// instance count for jobs that miss deadline
BUSY_TIME_ESTIMATOR busy_time_estimator;
RSC_REASON dont_fetch_reason;
#ifdef SIM
double estimated_delay;
#endif
// the following specify the work request for this resource
//
double req_secs;
double req_instances;
// REC accounting
double secs_this_rec_interval;
// temp in choose_project()
PROJECT* found_project; // a project able to ask for this work
void init(int t, int n, double sp) {
rsc_type = t;
ninstances = n;
relative_speed = sp;
busy_time_estimator.init(n);
}
void rr_init();
void update_stats(double sim_now, double dt, double buf_end);
void update_busy_time(double dur, double nused);
void supplement(PROJECT*);
RSC_PROJECT_WORK_FETCH& project_state(PROJECT*);
void print_state(const char*);
void clear_request();
void set_request(PROJECT*);
void copy_request(COPROC&);
void set_request_excluded(PROJECT*);
bool may_have_work(PROJECT*);
int cant_fetch(PROJECT*);
bool backed_off(PROJECT*);
bool uses_starved_excluded_instances(PROJECT*);
inline void reset_rec_accounting() {
this->secs_this_rec_interval = 0;
}
RSC_WORK_FETCH() {
rsc_type = 0;
ninstances = 0;
relative_speed = 0;
has_exclusions = false;
shortfall = 0;
nidle_now = 0;
sim_nused = 0;
sim_used_instances = 0;
sim_excluded_instances = 0;
total_fetchable_share = 0;
saturated_time = 0;
deadline_missed_instances = 0;
busy_time_estimator.init(0);
dont_fetch_reason = RSC_REASON_NONE;
#ifdef SIM
estimated_delay = 0.0;
#endif
req_secs = 0.0;
req_instances = 0.0;
secs_this_rec_interval = 0.0;
found_project = NULL;
}
};
// per project state
//
struct PROJECT_WORK_FETCH {
double rec;
// recent estimated credit
double rec_time;
// when it was last updated
double rec_temp;
// temporary copy used during schedule_cpus() and work fetch
double rec_temp_save;
// temporary used during RR simulation
PROJECT_REASON project_reason;
// if nonzero, reason which we can't fetch work from this project
int n_runnable_jobs;
// set by RR simulation
bool at_max_concurrent_limit;
bool request_if_idle_and_uploading;
// Set when a job finishes.
// If we're uploading but a resource is idle, make a work request.
// If this succeeds, clear the flag.
PROJECT_WORK_FETCH() {
memset(this, 0, sizeof(*this));
}
void reset(PROJECT*);
void rr_init(PROJECT*);
void print_state(PROJECT*);
};
// global work fetch state
//
struct WORK_FETCH {
std::vector<PROJECT*> projects_sorted;
// projects in decreasing priority order
void setup();
PROJECT* choose_project();
// Find a project to ask for work.
PROJECT* non_cpu_intensive_project_needing_work();
void piggyback_work_request(PROJECT*);
// we're going to contact this project anyway;
// piggyback a work request if appropriate.
void accumulate_inst_sec(ACTIVE_TASK*, double dt);
void write_request(FILE*, PROJECT*);
void handle_reply(
PROJECT*, SCHEDULER_REPLY*, std::vector<RESULT*>new_results
);
void set_initial_work_request(PROJECT*);
void set_all_requests(PROJECT*);
void set_all_requests_hyst(PROJECT*, int rsc_type);
void print_state();
void init();
void rr_init();
void clear_request();
void compute_shares();
void clear_backoffs(APP_VERSION&);
void request_string(char*, int);
bool requested_work();
void copy_requests();
};
extern RSC_WORK_FETCH rsc_work_fetch[MAX_RSC];
extern WORK_FETCH work_fetch;
extern void project_priority_init(bool for_work_fetch);
extern double project_priority(PROJECT*);
extern void adjust_rec_sched(RESULT*);
extern void adjust_rec_work_fetch(RESULT*);
extern double total_peak_flops();
extern const char* project_reason_string(PROJECT* p, char* buf, int len);
extern const char* rsc_reason_string(RSC_REASON);
#endif