boinc/client/app_control.C

939 lines
27 KiB
C

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2005 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// monitoring and process control of running apps
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#else
#include "config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#if HAVE_SYS_IPC_H
#include <sys/ipc.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#ifdef HAVE_CSIGNAL
#include <csignal>
#elif defined(HAVE_SYS_SIGNAL_H)
#include <sys/signal.h>
#elif defined(HAVE_SIGNAL_H)
#include <signal.h>
#endif
#if HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#endif
using std::vector;
#include "filesys.h"
#include "error_numbers.h"
#include "util.h"
#include "parse.h"
#include "shmem.h"
#include "client_msgs.h"
#include "client_state.h"
#include "file_names.h"
#include "app.h"
bool ACTIVE_TASK::process_exists() {
switch (task_state) {
case PROCESS_EXECUTING:
case PROCESS_SUSPENDED:
case PROCESS_ABORT_PENDING:
return true;
}
return false;
}
// Send a quit message.
//
int ACTIVE_TASK::request_exit() {
if (!app_client_shm.shm) return 1;
process_control_queue.msg_queue_send(
"<quit/>",
app_client_shm.shm->process_control_request
);
return 0;
}
// Send an abort message.
//
int ACTIVE_TASK::request_abort() {
if (!app_client_shm.shm) return 1;
process_control_queue.msg_queue_send(
"<abort/>",
app_client_shm.shm->process_control_request
);
return 0;
}
// Kill the task by OS-specific means.
//
int ACTIVE_TASK::kill_task() {
#ifdef _WIN32
TerminateProcess(pid_handle, -1);
#else
kill(pid, SIGKILL);
#endif
cleanup_task();
return 0;
}
// We have sent a quit request to the process; see if it's exited.
// This is called when the core client exits,
// or when a project is detached or reset
//
bool ACTIVE_TASK::has_task_exited() {
bool exited = false;
if (!process_exists()) return true;
#ifdef _WIN32
unsigned long exit_code;
if (GetExitCodeProcess(pid_handle, &exit_code)) {
if (exit_code != STILL_ACTIVE) {
exited = true;
}
}
#else
// We don't use status
if (waitpid(pid, 0, WNOHANG) == pid) {
exited = true;
}
#endif
if (exited) {
task_state = PROCESS_EXITED;
cleanup_task();
}
return exited;
}
// preempt this task
// called from the CLIENT_STATE::schedule_cpus()
// if quit_task is true do this by quitting
//
int ACTIVE_TASK::preempt(bool quit_task) {
int retval;
// If the app hasn't checkpoint yet, suspend instead of quit
// (accommodate apps that never checkpoint)
//
if (quit_task && (checkpoint_cpu_time>0)) {
pending_suspend_via_quit = true;
retval = request_exit();
if (log_flags.cpu_sched) {
msg_printf(result->project, MSG_INFO,
"[cpu_sched] Preempting %s (removed from memory)",
result->name
);
}
} else {
retval = suspend();
if (log_flags.cpu_sched) {
msg_printf(result->project, MSG_INFO,
"[cpu_sched] Preempting %s (left in memory)",
result->name
);
}
}
return 0;
}
static void limbo_message(ACTIVE_TASK& at) {
msg_printf(at.result->project, MSG_INFO,
"Task %s exited with zero status but no 'finished' file",
at.result->name
);
msg_printf(at.result->project, MSG_INFO,
"If this happens repeatedly you may need to reset the project."
);
}
// deal with a process that has exited, for whatever reason
// (including preemption)
//
#ifdef _WIN32
void ACTIVE_TASK::handle_exited_app(unsigned long exit_code) {
#else
void ACTIVE_TASK::handle_exited_app(int stat) {
#endif
get_app_status_msg();
get_trickle_up_msg();
result->final_cpu_time = current_cpu_time;
if (task_state == PROCESS_ABORT_PENDING) {
task_state = PROCESS_ABORTED;
} else {
#ifdef _WIN32
task_state = PROCESS_EXITED;
if (exit_code) {
char szError[1024];
gstate.report_result_error(
*result,
"%s - exit code %d (0x%x)",
windows_format_error_string(exit_code, szError, sizeof(szError)),
exit_code, exit_code
);
} else {
if (pending_suspend_via_quit) {
pending_suspend_via_quit = false;
task_state = PROCESS_UNINITIALIZED;
close_process_handles();
return;
}
if (!finish_file_present()) {
scheduler_state = CPU_SCHED_PREEMPTED;
task_state = PROCESS_UNINITIALIZED;
close_process_handles();
limbo_message(*this);
goto done;
}
}
result->exit_status = exit_code;
#else
if (WIFEXITED(stat)) {
task_state = PROCESS_EXITED;
result->exit_status = WEXITSTATUS(stat);
if (result->exit_status) {
gstate.report_result_error(
*result,
"process exited with code %d (0x%x)",
result->exit_status, result->exit_status
);
} else {
// check for cases where an app exits
// without it being done from core client's point of view;
// in these cases, don't clean out slot dir
//
if (pending_suspend_via_quit) {
pending_suspend_via_quit = false;
task_state = PROCESS_UNINITIALIZED;
// destroy shm, since restarting app will re-create it
//
cleanup_task();
return;
}
if (!finish_file_present()) {
// The process looks like it exited normally
// but there's no "finish file".
// Assume it was externally killed,
// and arrange for it to get restarted.
//
scheduler_state = CPU_SCHED_PREEMPTED;
task_state = PROCESS_UNINITIALIZED;
cleanup_task();
limbo_message(*this);
goto done;
}
}
if (log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"[task_debug] ACTIVE_TASK::handle_exited_app(): process exited: status %d\n",
result->exit_status
);
}
} else if (WIFSIGNALED(stat)) {
int got_signal = WTERMSIG(stat);
// if the process was externally killed, allow it to restart.
//
switch (got_signal) {
case SIGHUP:
case SIGINT:
case SIGQUIT:
case SIGKILL:
case SIGTERM:
case SIGSTOP:
scheduler_state = CPU_SCHED_PREEMPTED;
task_state = PROCESS_UNINITIALIZED;
limbo_message(*this);
goto done;
}
result->exit_status = stat;
task_state = PROCESS_WAS_SIGNALED;
signal = got_signal;
gstate.report_result_error(
*result, "process got signal %d", signal
);
if (log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"[task_debug] ACTIVE_TASK::handle_exited_app(): process got signal %d\n",
signal
);
}
} else {
task_state = PROCESS_EXIT_UNKNOWN;
result->state = PROCESS_EXIT_UNKNOWN;
}
#endif
}
#ifdef _WIN32
if (app_client_shm.shm) {
detach_shmem(shm_handle, app_client_shm.shm);
app_client_shm.shm = NULL;
}
#endif
// here when task is finished for good
//
copy_output_files();
read_stderr_file();
clean_out_dir(slot_dir);
done:
gstate.request_schedule_cpus("application exited");
gstate.request_work_fetch("application exited");
}
bool ACTIVE_TASK::finish_file_present() {
char path[256];
sprintf(path, "%s/%s", slot_dir, BOINC_FINISH_CALLED_FILE);
return (boinc_file_exists(path) != 0);
}
void ACTIVE_TASK_SET::send_trickle_downs() {
unsigned int i;
ACTIVE_TASK* atp;
bool sent;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (atp->have_trickle_down) {
if (!atp->app_client_shm.shm) continue;
sent = atp->app_client_shm.shm->trickle_down.send_msg("<have_trickle_down/>\n");
if (sent) atp->have_trickle_down = false;
}
if (atp->send_upload_file_status) {
if (!atp->app_client_shm.shm) continue;
sent = atp->app_client_shm.shm->trickle_down.send_msg("<upload_file_status/>\n");
if (sent) atp->send_upload_file_status = false;
}
}
}
void ACTIVE_TASK_SET::send_heartbeats() {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (!atp->app_client_shm.shm) continue;
atp->app_client_shm.shm->heartbeat.send_msg("<heartbeat/>\n");
}
}
void ACTIVE_TASK_SET::process_control_poll() {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (!atp->app_client_shm.shm) continue;
atp->process_control_queue.msg_queue_poll(
atp->app_client_shm.shm->process_control_request
);
}
}
// See if any processes have exited
//
bool ACTIVE_TASK_SET::check_app_exited() {
ACTIVE_TASK* atp;
bool found = false;
#ifdef _WIN32
unsigned long exit_code;
unsigned int i;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (GetExitCodeProcess(atp->pid_handle, &exit_code)) {
if (exit_code != STILL_ACTIVE) {
found = true;
atp->handle_exited_app(exit_code);
}
} else {
if (log_flags.task_debug) {
char errmsg[1024];
msg_printf(0, MSG_INFO,
"[task_debug] ACTIVE_TASK_SET::check_app_exited(): task %s GetExitCodeProcess Failed - GLE %d (0x%x)",
windows_format_error_string(GetLastError(), errmsg, sizeof(errmsg)),
GetLastError(), GetLastError()
);
}
}
}
#else
int pid, stat;
if ((pid = waitpid(0, &stat, WNOHANG)) > 0) {
if (log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"[task_debug] ACTIVE_TASK_SET::check_app_exited(): process %d is done\n",
pid
);
}
atp = lookup_pid(pid);
if (!atp) {
// if we're running benchmarks, exited process
// is probably a benchmark process; don't show error
//
if (!gstate.are_cpu_benchmarks_running()) {
msg_printf(NULL, MSG_ERROR,
"Process %d not found\n",
pid
);
}
return false;
}
atp->handle_exited_app(stat);
found = true;
}
#endif
return found;
}
// if an app has exceeded its maximum CPU time, abort it
//
bool ACTIVE_TASK::check_max_cpu_exceeded() {
if (current_cpu_time > max_cpu_time) {
msg_printf(result->project, MSG_INFO,
"Aborting task %s: exceeded CPU time limit %f\n",
result->name, max_cpu_time
);
abort_task(ERR_RSC_LIMIT_EXCEEDED, "Maximum CPU time exceeded");
return true;
}
return false;
}
// if an app has exceeded its maximum disk usage, abort it
//
bool ACTIVE_TASK::check_max_disk_exceeded() {
double disk_usage;
int retval;
// don't do disk check too often
//
retval = current_disk_usage(disk_usage);
if (retval) {
msg_printf(0, MSG_ERROR,
"Can't get task disk usage: %s", boincerror(retval)
);
} else {
if (disk_usage > max_disk_usage) {
msg_printf(
result->project, MSG_INFO,
"Aborting task %s: exceeded disk limit: %f > %f\n",
result->name, disk_usage, max_disk_usage
);
abort_task(ERR_RSC_LIMIT_EXCEEDED, "Maximum disk usage exceeded");
return true;
}
}
return false;
}
bool ACTIVE_TASK::check_max_mem_exceeded() {
if (max_mem_usage != 0 && procinfo.working_set_size > max_mem_usage) {
#if 0
if (log_flags.mem_usage_debug) {
msg_printf(
result->project, MSG_INFO,
"[mem_usage_debug] Task %s: memory usage %f exceeds limit %f\n",
result->name, procinfo.working_set_size, max_mem_usage
);
}
//abort_task(ERR_RSC_LIMIT_EXCEEDED, "Maximum memory usage exceeded");
#endif
}
return false;
}
bool ACTIVE_TASK_SET::vm_limit_exceeded(double vm_limit) {
unsigned int i;
ACTIVE_TASK *atp;
double total_vm_usage = 0;
for (i=0; i<active_tasks.size(); ++i) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
total_vm_usage += atp->procinfo.swap_size;
}
return (total_vm_usage > vm_limit);
}
// Check if any of the active tasks have exceeded their
// resource limits on disk, CPU time or memory
//
bool ACTIVE_TASK_SET::check_rsc_limits_exceeded() {
unsigned int j;
ACTIVE_TASK *atp;
static double last_disk_check_time = 0;
bool do_disk_check = false;
bool did_anything = false;
// Some slot dirs have lots of files,
// so only check every min(disk_interval, 300) secs
//
double min_interval = gstate.global_prefs.disk_interval;
if (min_interval < 300) min_interval = 300;
if (gstate.now > last_disk_check_time + min_interval) {
do_disk_check = true;
}
for (j=0;j<active_tasks.size();j++) {
atp = active_tasks[j];
if (atp->task_state != PROCESS_EXECUTING) continue;
if (atp->check_max_cpu_exceeded()) did_anything = true;
else if (atp->check_max_mem_exceeded()) did_anything = true;
else if (do_disk_check && atp->check_max_disk_exceeded()) {
did_anything = true;
}
}
if (do_disk_check) {
last_disk_check_time = gstate.now;
}
return did_anything;
}
// If process is running, send it an "abort" message,
// and if it doesn't exit within 5 seconds,
// kill it by OS-specific mechanism (e.g. KILL signal).
// This is done when app has exceeded CPU, disk, or mem limits,
// or when the user has requested it.
//
int ACTIVE_TASK::abort_task(int exit_status, const char* msg) {
if (task_state == PROCESS_EXECUTING || task_state == PROCESS_SUSPENDED) {
task_state = PROCESS_ABORT_PENDING;
abort_time = gstate.now;
request_abort();
} else {
task_state = PROCESS_ABORTED;
}
result->exit_status = exit_status;
gstate.report_result_error(*result, msg);
result->state = RESULT_ABORTED;
return 0;
}
// check for the stderr file, copy to result record
//
bool ACTIVE_TASK::read_stderr_file() {
std::string stderr_file;
char path[256];
sprintf(path, "%s/%s", slot_dir, STDERR_FILE);
if (boinc_file_exists(path) && !read_file_string(path, stderr_file)) {
// truncate stderr output to 63KB;
// it's unlikely that more than that will be useful
//
int max_len = 63*1024;
int len = (int)stderr_file.length();
if (len > max_len) {
stderr_file = stderr_file.substr(len-max_len, len);
}
result->stderr_out += "<stderr_txt>\n";
result->stderr_out += stderr_file;
result->stderr_out += "\n</stderr_txt>\n";
return true;
}
return false;
}
// tell a running app to reread project preferences.
// This is called when project prefs change,
// or when a user file has finished downloading.
//
int ACTIVE_TASK::request_reread_prefs() {
int retval;
link_user_files();
retval = write_app_init_file();
if (retval) return retval;
graphics_request_queue.msg_queue_send(
xml_graphics_modes[MODE_REREAD_PREFS],
app_client_shm.shm->graphics_request
);
return 0;
}
// tell a running app to reread the app_info file
// (e.g. because proxy settings have changed: this is for F@h)
//
int ACTIVE_TASK::request_reread_app_info() {
int retval = write_app_init_file();
if (retval) return retval;
process_control_queue.msg_queue_send(
"<reread_app_info/>",
app_client_shm.shm->process_control_request
);
return 0;
}
// tell all running apps of a project to reread prefs
//
void ACTIVE_TASK_SET::request_reread_prefs(PROJECT* project) {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->result->project != project) continue;
if (!atp->process_exists()) continue;
atp->request_reread_prefs();
}
}
void ACTIVE_TASK_SET::request_reread_app_info() {
for (unsigned int i=0; i<active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks[i];
if (!atp->process_exists()) continue;
atp->request_reread_app_info();
}
}
// send quit signal to all tasks in the project
// (or all tasks, if proj==0).
// If they don't exit in 5 seconds,
// send them a kill signal and wait up to 5 more seconds to exit.
// This is called when the core client exits,
// or when a project is detached or reset
//
int ACTIVE_TASK_SET::exit_tasks(PROJECT* proj) {
request_tasks_exit(proj);
// Wait 5 seconds for them to exit normally; if they don't then kill them
//
if (wait_for_exit(5, proj)) {
kill_tasks(proj);
}
wait_for_exit(5, proj);
// get final checkpoint_cpu_times
//
get_msgs();
gstate.request_schedule_cpus("exit_tasks");
return 0;
}
// Wait up to wait_time seconds for processes to exit
// If proj is zero, wait for all processes, else that project's
// NOTE: it's bad form to sleep, but it would be complex to avoid it here
//
int ACTIVE_TASK_SET::wait_for_exit(double wait_time, PROJECT* proj) {
bool all_exited;
unsigned int i,n;
ACTIVE_TASK *atp;
for (i=0; i<10; i++) {
all_exited = true;
for (n=0; n<active_tasks.size(); n++) {
atp = active_tasks[n];
if (proj && atp->wup->project != proj) continue;
if (!atp->has_task_exited()) {
all_exited = false;
break;
}
}
if (all_exited) return 0;
boinc_sleep(wait_time/10.0);
}
return ERR_NOT_EXITED;
}
int ACTIVE_TASK_SET::abort_project(PROJECT* project) {
vector<ACTIVE_TASK*>::iterator task_iter;
ACTIVE_TASK* atp;
exit_tasks(project);
task_iter = active_tasks.begin();
while (task_iter != active_tasks.end()) {
atp = *task_iter;
if (atp->result->project == project) {
task_iter = active_tasks.erase(task_iter);
delete atp;
} else {
task_iter++;
}
}
project->long_term_debt = 0;
return 0;
}
// Find the ACTIVE_TASK in the current set with the matching PID
//
ACTIVE_TASK* ACTIVE_TASK_SET::lookup_pid(int pid) {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->pid == pid) return atp;
}
return NULL;
}
// Find the ACTIVE_TASK in the current set with the matching result
//
ACTIVE_TASK* ACTIVE_TASK_SET::lookup_result(RESULT* result) {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->result == result) {
return atp;
}
}
return NULL;
}
// suspend all currently running tasks
// called only from CLIENT_STATE::suspend_activities(),
// e.g. because on batteries, time of day, benchmarking, etc.
//
void ACTIVE_TASK_SET::suspend_all(bool leave_apps_in_memory) {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->task_state != PROCESS_EXECUTING) continue;
atp->preempt(!leave_apps_in_memory);
}
}
// resume all currently running tasks
//
void ACTIVE_TASK_SET::unsuspend_all() {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
if (atp->task_state == PROCESS_UNINITIALIZED) {
if (atp->start(false)) {
msg_printf(atp->wup->project, MSG_ERROR,
"Couldn't restart task %s", atp->result->name
);
}
} else if (atp->task_state == PROCESS_SUSPENDED) {
atp->unsuspend();
}
}
}
// Check to see if any tasks are running
// called if benchmarking and waiting for suspends to happen
//
bool ACTIVE_TASK_SET::is_task_executing() {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->task_state == PROCESS_EXECUTING) {
return true;
}
}
return false;
}
// Send quit message to all app processes
// This is called when the core client exits,
// or when a project is detached or reset
//
void ACTIVE_TASK_SET::request_tasks_exit(PROJECT* proj) {
unsigned int i;
ACTIVE_TASK *atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (proj && atp->wup->project != proj) continue;
if (!atp->process_exists()) continue;
atp->request_exit();
}
}
// Send kill signal to all app processes
// Don't wait for them to exit
//
void ACTIVE_TASK_SET::kill_tasks(PROJECT* proj) {
unsigned int i;
ACTIVE_TASK *atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (proj && atp->wup->project != proj) continue;
if (!atp->process_exists()) continue;
atp->kill_task();
}
}
// send a <suspend> message
//
int ACTIVE_TASK::suspend() {
if (!app_client_shm.shm) return 0;
process_control_queue.msg_queue_send(
"<suspend/>",
app_client_shm.shm->process_control_request
);
task_state = PROCESS_SUSPENDED;
return 0;
}
// resume a suspended task
//
int ACTIVE_TASK::unsuspend() {
if (!app_client_shm.shm) return 0;
if (log_flags.cpu_sched) {
msg_printf(0, MSG_INFO, "[cpu_sched] Resuming %s", result->name);
}
process_control_queue.msg_queue_send(
"<resume/>",
app_client_shm.shm->process_control_request
);
task_state = PROCESS_EXECUTING;
return 0;
}
void ACTIVE_TASK::send_network_available() {
if (!app_client_shm.shm) return;
process_control_queue.msg_queue_send(
"<network_available/>",
app_client_shm.shm->process_control_request
);
return;
}
// See if the app has placed a new message in shared mem
// (with CPU done, frac done etc.)
// If so parse it and return true.
//
bool ACTIVE_TASK::get_app_status_msg() {
char msg_buf[MSG_CHANNEL_SIZE];
double fd;
if (!app_client_shm.shm) {
msg_printf(result->project, MSG_INFO,
"Task %s: no shared memory segment", result->name
);
return false;
}
if (!app_client_shm.shm->app_status.get_msg(msg_buf)) {
return false;
}
if (log_flags.app_msg_debug) {
msg_printf(NULL, MSG_INFO, "[app_msg_debug] slot %d msg: %s", slot, msg_buf);
}
want_network = 0;
current_cpu_time = checkpoint_cpu_time = 0.0;
if (parse_double(msg_buf, "<fraction_done>", fd)) {
// fraction_done will be reported as zero
// until the app's first call to boinc_fraction_done().
// So ignore zeros.
//
if (fd) fraction_done = fd;
}
parse_double(msg_buf, "<current_cpu_time>", current_cpu_time);
parse_double(msg_buf, "<checkpoint_cpu_time>", checkpoint_cpu_time);
parse_double(msg_buf, "<fpops_per_cpu_sec>", result->fpops_per_cpu_sec);
parse_double(msg_buf, "<fpops_cumulative>", result->fpops_cumulative);
parse_double(msg_buf, "<intops_per_cpu_sec>", result->intops_per_cpu_sec);
parse_double(msg_buf, "<intops_cumulative>", result->intops_cumulative);
parse_int(msg_buf, "<want_network>", want_network);
return true;
}
bool ACTIVE_TASK::get_trickle_up_msg() {
char msg_buf[MSG_CHANNEL_SIZE];
bool found = false;
int retval;
if (!app_client_shm.shm) return false;
if (app_client_shm.shm->trickle_up.get_msg(msg_buf)) {
if (match_tag(msg_buf, "<have_new_trickle_up/>")) {
retval = move_trickle_file();
if (!retval) {
wup->project->trickle_up_pending = true;
}
}
if (match_tag(msg_buf, "<have_new_upload_file/>")) {
handle_upload_files();
}
found = true;
}
return found;
}
// check for msgs from active tasks.
// Return true if any of them has changed its checkpoint_cpu_time
// (since in that case we need to write state file)
//
bool ACTIVE_TASK_SET::get_msgs() {
unsigned int i;
ACTIVE_TASK *atp;
double old_time;
bool action = false;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
old_time = atp->checkpoint_cpu_time;
if (atp->get_app_status_msg()) {
if (old_time != atp->checkpoint_cpu_time) {
gstate.request_enforce_schedule("Checkpoint reached");
atp->checkpoint_wall_time = gstate.now;
action = true;
if (log_flags.task_debug) {
msg_printf(atp->wup->project, MSG_INFO,
"[task_debug] result %s checkpointed",
atp->result->name
);
}
}
}
atp->get_trickle_up_msg();
}
return action;
}
const char *BOINC_RCSID_10ca137461 = "$Id$";