mirror of https://github.com/BOINC/boinc.git
317 lines
10 KiB
C++
317 lines
10 KiB
C++
// This file is part of BOINC.
|
|
// http://boinc.berkeley.edu
|
|
// Copyright (C) 2008 University of California
|
|
//
|
|
// BOINC is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU Lesser General Public License
|
|
// as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// BOINC is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
// This file contains functions that can be customized to
|
|
// implement project-specific scheduling policies.
|
|
// The functions are:
|
|
//
|
|
// wu_is_infeasible_custom()
|
|
// Decide whether host can run a job using a particular app version
|
|
// app_plan()
|
|
// Decide whether host can use an app version,
|
|
// and if so what resources it will use
|
|
// app_plan_uses_gpu():
|
|
// Which plan classes use GPUs
|
|
// JOB::get_score():
|
|
// Determine the value of sending a particular job to host;
|
|
// (used only by "matchmaker" scheduling)
|
|
//
|
|
// WARNING: if you modify this file, you must prevent it from
|
|
// being overwritten the next time you update BOINC source code.
|
|
// You can either:
|
|
// 1) write-protect this file, or
|
|
// 2) put this in a differently-named file and change the Makefile.am
|
|
// (and write-protect that)
|
|
// In either case, put your version under source-code control, e.g. SVN
|
|
|
|
#include "str_util.h"
|
|
|
|
#include "sched_config.h"
|
|
#include "sched_main.h"
|
|
#include "sched_msgs.h"
|
|
#include "sched_send.h"
|
|
#include "sched_score.h"
|
|
#include "sched_shmem.h"
|
|
#include "sched_version.h"
|
|
#include "sched_customize.h"
|
|
|
|
bool wu_is_infeasible_custom(WORKUNIT& wu, APP& app, BEST_APP_VERSION& bav) {
|
|
#if 0
|
|
// example: for CUDA app, wu.batch is the minimum number of processors.
|
|
// Don't send if #procs is less than this.
|
|
//
|
|
if (!strcmp(app.name, "foobar") && bav.host_usage.ncudas) {
|
|
if (!g_request->coproc_cuda) {
|
|
log_messages.printf(MSG_CRITICAL,
|
|
"[HOST#%d] expected CUDA device\n", g_reply->host.id
|
|
);
|
|
return true;
|
|
}
|
|
int n = g_request->coproc_cuda->prop.multiProcessorCount;
|
|
if (n < wu.batch) {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
int app_plan(SCHEDULER_REQUEST& sreq, char* plan_class, HOST_USAGE& hu) {
|
|
if (!strcmp(plan_class, "mt")) {
|
|
// the following is for an app that:
|
|
// - can use from 1 to 64 threads, and can control this exactly
|
|
// - if it uses N threads, will use .65N cores on average
|
|
// (hence on a uniprocessor we'll use a sequential app
|
|
// if one is available)
|
|
//
|
|
double ncpus = g_wreq->effective_ncpus;
|
|
// number of usable CPUs, taking user prefs into account
|
|
int nthreads = (int)(ncpus/.65);
|
|
if (!nthreads) return PLAN_REJECT_INSUFFICIENT_CPUS;
|
|
if (nthreads > 64) nthreads = 64;
|
|
hu.avg_ncpus = nthreads*.65;
|
|
hu.max_ncpus = nthreads;
|
|
sprintf(hu.cmdline, "--nthreads %d", nthreads);
|
|
hu.flops = sreq.host.p_fpops*hu.avg_ncpus;
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Multi-thread app estimate %.2f GFLOPS\n",
|
|
hu.flops/1e9
|
|
);
|
|
}
|
|
return 0;
|
|
} else if (strstr(plan_class, "cuda")) {
|
|
// the following is for an app that uses a CUDA GPU
|
|
//
|
|
COPROC_CUDA* cp = (COPROC_CUDA*)sreq.coprocs.lookup("CUDA");
|
|
if (!cp) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Host lacks CUDA coprocessor for plan class cuda\n"
|
|
);
|
|
}
|
|
return PLAN_REJECT_CUDA_NO_DEVICE;
|
|
}
|
|
|
|
// check compute capability
|
|
//
|
|
int v = (cp->prop.major)*100 + cp->prop.minor;
|
|
if (v < 100) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Compute capability %d < 1.0\n", v
|
|
);
|
|
}
|
|
return PLAN_REJECT_NVIDIA_COMPUTE_CAPABILITY;
|
|
}
|
|
|
|
// for CUDA 2.3, we need to check the CUDA RT version.
|
|
// Old BOINC clients report display driver version;
|
|
// newer ones report CUDA RT version
|
|
//
|
|
if (!strcmp(plan_class, "cuda23")) {
|
|
if (cp->cuda_version) {
|
|
if (cp->cuda_version < 2030) {
|
|
return PLAN_REJECT_CUDA_VERSION;
|
|
}
|
|
} else if (cp->display_driver_version) {
|
|
if (cp->display_driver_version < PLAN_CUDA_MIN_DRIVER_VERSION) {
|
|
return PLAN_REJECT_CUDA_VERSION;
|
|
}
|
|
} else {
|
|
return PLAN_REJECT_CUDA_VERSION;
|
|
}
|
|
} else {
|
|
if (cp->display_driver_version && cp->display_driver_version < PLAN_CUDA_MIN_DRIVER_VERSION) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] NVIDIA driver version %d < PLAN_CUDA_MIN_DRIVER_VERSION\n",
|
|
cp->display_driver_version
|
|
);
|
|
}
|
|
return PLAN_REJECT_NVIDIA_DRIVER_VERSION;
|
|
}
|
|
}
|
|
|
|
if (cp->prop.dtotalGlobalMem < PLAN_CUDA_MIN_RAM) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] CUDA mem %d < %d\n",
|
|
cp->prop.dtotalGlobalMem, PLAN_CUDA_MIN_RAM
|
|
);
|
|
}
|
|
return PLAN_REJECT_CUDA_MEM;
|
|
}
|
|
hu.flops = cp->flops_estimate();
|
|
|
|
// assume we'll need 0.5% as many CPU FLOPS as GPU FLOPS
|
|
// to keep the GPU fed.
|
|
//
|
|
double x = (hu.flops*0.005)/sreq.host.p_fpops;
|
|
hu.avg_ncpus = x;
|
|
hu.max_ncpus = x;
|
|
|
|
hu.ncudas = 1;
|
|
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] CUDA app estimated %.2f GFLOPS (clock %d count %d)\n",
|
|
hu.flops/1e9, cp->prop.clockRate,
|
|
cp->prop.multiProcessorCount
|
|
);
|
|
}
|
|
return 0;
|
|
} else if (!strcmp(plan_class, "nci")) {
|
|
// The following is for a non-CPU-intensive application.
|
|
// Say that we'll use 1% of a CPU.
|
|
// This will cause the client (6.7+) to run it at non-idle priority
|
|
//
|
|
hu.avg_ncpus = .01;
|
|
hu.max_ncpus = .01;
|
|
hu.flops = sreq.host.p_fpops*1.01;
|
|
// The *1.01 is needed to ensure that we'll send this app
|
|
// version rather than a non-plan-class one
|
|
return 0;
|
|
} else if (!strcmp(plan_class, "sse3")) {
|
|
// the following is for an app that requires a processor with SSE3,
|
|
// and will run 10% faster if so
|
|
//
|
|
downcase_string(sreq.host.p_features);
|
|
if (!strstr(sreq.host.p_features, "sse3")) {
|
|
return PLAN_REJECT_CPU_FEATURE;
|
|
}
|
|
hu.avg_ncpus = 1;
|
|
hu.max_ncpus = 1;
|
|
hu.flops = 1.1*sreq.host.p_fpops;
|
|
return 0;
|
|
}
|
|
log_messages.printf(MSG_CRITICAL,
|
|
"Unknown plan class: %s\n", plan_class
|
|
);
|
|
return PLAN_REJECT_UNKNOWN;
|
|
}
|
|
|
|
// the following is used to enforce limits on in-progress jobs
|
|
// for GPUs and CPUs (see handle_request.cpp)
|
|
//
|
|
bool app_plan_uses_gpu(const char* plan_class) {
|
|
if (!strcmp(plan_class, "cuda")) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// compute a "score" for sending this job to this host.
|
|
// Return false if the WU is infeasible.
|
|
// Otherwise set est_time and disk_usage.
|
|
//
|
|
bool JOB::get_score() {
|
|
WORKUNIT wu;
|
|
int retval;
|
|
|
|
WU_RESULT& wu_result = ssp->wu_results[index];
|
|
wu = wu_result.workunit;
|
|
app = ssp->lookup_app(wu.appid);
|
|
|
|
score = 0;
|
|
|
|
// Find the best app version to use.
|
|
//
|
|
bavp = get_app_version(wu, true);
|
|
if (!bavp) return false;
|
|
|
|
retval = wu_is_infeasible_fast(wu, *app, *bavp);
|
|
if (retval) {
|
|
if (config.debug_send) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[send] [HOST#%d] [WU#%d %s] WU is infeasible: %s\n",
|
|
g_reply->host.id, wu.id, wu.name, infeasible_string(retval)
|
|
);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
score = 1;
|
|
|
|
#if 0
|
|
// example: for CUDA app, wu.batch is the minimum number of processors.
|
|
// add min/actual to score
|
|
// (this favors sending jobs that need lots of procs to GPUs that have them)
|
|
// IF YOU USE THIS, USE THE PART IN wu_is_infeasible_custom() ALSO
|
|
//
|
|
if (!strcmp(app->name, "foobar") && bavp->host_usage.ncudas) {
|
|
int n = g_request->coproc_cuda->prop.multiProcessorCount;
|
|
score += ((double)wu.batch)/n;
|
|
}
|
|
#endif
|
|
|
|
// check if user has selected apps,
|
|
// and send beta work to beta users
|
|
//
|
|
if (app->beta && !config.distinct_beta_apps) {
|
|
if (g_wreq->allow_beta_work) {
|
|
score += 1;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (app_not_selected(wu)) {
|
|
if (!g_wreq->allow_non_preferred_apps) {
|
|
return false;
|
|
} else {
|
|
// Allow work to be sent, but it will not get a bump in its score
|
|
}
|
|
} else {
|
|
score += 1;
|
|
}
|
|
}
|
|
|
|
// if job needs to get done fast, send to fast/reliable host
|
|
//
|
|
if (g_wreq->reliable && (wu_result.need_reliable)) {
|
|
score += 1;
|
|
}
|
|
|
|
// if job already committed to an HR class,
|
|
// try to send to host in that class
|
|
//
|
|
if (wu_result.infeasible_count) {
|
|
score += 1;
|
|
}
|
|
|
|
// Favor jobs that will run fast
|
|
//
|
|
score += bavp->host_usage.flops/1e9;
|
|
|
|
// match large jobs to fast hosts
|
|
//
|
|
if (config.job_size_matching) {
|
|
double host_stdev = (g_reply->host.p_fpops - ssp->perf_info.host_fpops_mean)/ ssp->perf_info.host_fpops_stdev;
|
|
double diff = host_stdev - wu_result.fpops_size;
|
|
score -= diff*diff;
|
|
}
|
|
|
|
// TODO: If user has selected some apps but will accept jobs from others,
|
|
// try to send them jobs from the selected apps
|
|
//
|
|
|
|
est_time = estimate_duration(wu, *bavp);
|
|
disk_usage = wu.rsc_disk_bound;
|
|
return true;
|
|
}
|