mirror of https://github.com/BOINC/boinc.git
597 lines
20 KiB
C++
597 lines
20 KiB
C++
// This file is part of BOINC.
|
|
// http://boinc.berkeley.edu
|
|
// Copyright (C) 2008 University of California
|
|
//
|
|
// BOINC is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU Lesser General Public License
|
|
// as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// BOINC is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
// This file contains functions that can be customized to
|
|
// implement project-specific scheduling policies.
|
|
// The functions are:
|
|
//
|
|
// wu_is_infeasible_custom()
|
|
// Decide whether host can run a job using a particular app version.
|
|
// In addition it can:
|
|
// - set its resource usage and/or FLOPS estimate
|
|
// (by assigning to bav.host_usage)
|
|
// app_plan()
|
|
// Decide whether host can use an app version,
|
|
// and if so what resources it will use
|
|
// app_plan_uses_gpu():
|
|
// Which plan classes use GPUs
|
|
// JOB::get_score():
|
|
// Determine the value of sending a particular job to host;
|
|
// (used only by "matchmaker" scheduling)
|
|
//
|
|
// WARNING: if you modify this file, you must prevent it from
|
|
// being overwritten the next time you update BOINC source code.
|
|
// You can either:
|
|
// 1) write-protect this file, or
|
|
// 2) put this in a differently-named file and change the Makefile.am
|
|
// (and write-protect that)
|
|
// In either case, put your version under source-code control, e.g. SVN
|
|
|
|
#include "str_util.h"
|
|
|
|
#include "sched_config.h"
|
|
#include "sched_main.h"
|
|
#include "sched_msgs.h"
|
|
#include "sched_send.h"
|
|
#include "sched_score.h"
|
|
#include "sched_shmem.h"
|
|
#include "sched_version.h"
|
|
#include "sched_customize.h"
|
|
|
|
bool wu_is_infeasible_custom(WORKUNIT& wu, APP& app, BEST_APP_VERSION& bav) {
|
|
#if 0
|
|
// example: if WU name contains "_v1", don't use CUDA app
|
|
// Note: this is slightly suboptimal.
|
|
// If the host is able to accept both GPU and CPU jobs,
|
|
// we'll skip this job rather than send it for the CPU.
|
|
// Fixing this would require a big architectural change.
|
|
//
|
|
if (strstr(wu.name, "_v1") && bav.host_usage.ncudas) {
|
|
return true;
|
|
}
|
|
#endif
|
|
#if 0
|
|
// example: for CUDA app, wu.batch is the minimum number of processors.
|
|
// Don't send if #procs is less than this.
|
|
//
|
|
if (!strcmp(app.name, "foobar") && bav.host_usage.ncudas) {
|
|
int n = g_request->coproc_cuda->prop.multiProcessorCount;
|
|
if (n < wu.batch) {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
#if 0
|
|
// example: if CUDA app and WU name contains "slow",
|
|
// cut performance estimate in half
|
|
//
|
|
if (bav.host_usage.ncudas) {
|
|
if (!strstr(wu.name, "slow")) {
|
|
bav.host_usage.flops = g_request->coproc_cuda->peak_flops()/10;
|
|
} else {
|
|
bav.host_usage.flops = g_request->coproc_cuda->peak_flops()/5;
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
#define PLAN_CUDA_MIN_DRIVER_VERSION 17700
|
|
#define PLAN_CUDA23_MIN_DRIVER_VERSION 19038
|
|
#define PLAN_CUDA_MIN_RAM (254.*1024*1024)
|
|
#define PLAN_CUDA23_MIN_RAM (384.*1024*1024)
|
|
|
|
bool app_plan(SCHEDULER_REQUEST& sreq, char* plan_class, HOST_USAGE& hu) {
|
|
char buf[256];
|
|
if (!strcmp(plan_class, "mt")) {
|
|
// the following is for an app that:
|
|
// - can use from 1 to 64 threads, and can control this exactly
|
|
// - if it uses N threads, will use .65N cores on average
|
|
// (hence on a uniprocessor we'll use a sequential app
|
|
// if one is available)
|
|
//
|
|
double ncpus = g_wreq->effective_ncpus;
|
|
// number of usable CPUs, taking user prefs into account
|
|
int nthreads = (int)(ncpus/.65);
|
|
if (!nthreads) {
|
|
add_no_work_message("Your computer has too few CPUs");
|
|
return false;
|
|
}
|
|
if (nthreads > 64) nthreads = 64;
|
|
hu.avg_ncpus = nthreads*.65;
|
|
hu.max_ncpus = nthreads;
|
|
sprintf(hu.cmdline, "--nthreads %d", nthreads);
|
|
hu.flops = sreq.host.p_fpops*hu.avg_ncpus;
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Multi-thread app estimate %.2f GFLOPS\n",
|
|
hu.flops/1e9
|
|
);
|
|
}
|
|
return true;
|
|
} else if (strstr(plan_class, "ati")) {
|
|
COPROC_ATI* cp = (COPROC_ATI*)sreq.coprocs.lookup("ATI");
|
|
if (!cp) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Host lacks ATI GPU for plan class ati\n"
|
|
);
|
|
}
|
|
add_no_work_message("Your computer has no ATI GPU");
|
|
return false;
|
|
}
|
|
|
|
int major, minor, release;
|
|
sscanf(cp->version, "%d.%d.%d", &major, &minor, &release);
|
|
int vers = major*1000000 + minor*1000 + release;
|
|
|
|
double min_ram = 250*MEGA;
|
|
|
|
if (!strcmp(plan_class, "ati")) {
|
|
if (vers < 1000000) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] host has CAL version %s, need 1.0+\n",
|
|
cp->version
|
|
);
|
|
}
|
|
add_no_work_message("ATI Catalyst 8.12+ needed to use GPU");
|
|
return false;
|
|
}
|
|
if (!cp->amdrt_detected) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] ati libs found, need amd\n"
|
|
);
|
|
}
|
|
add_no_work_message("Need libraries named amd* to use ATI GPU");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!strcmp(plan_class, "ati13amd")) {
|
|
if (vers < 1003000) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] host has CAL version %s, need 1.3.0 to 1.3.186\n",
|
|
cp->version
|
|
);
|
|
}
|
|
add_no_work_message("ATI Catalyst 9.1+ needed to use GPU");
|
|
return false;
|
|
}
|
|
if (!cp->amdrt_detected) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] ati libs found, need amd\n"
|
|
);
|
|
}
|
|
add_no_work_message("Need libraries named amd* to use ATI GPU");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!strcmp(plan_class, "ati13ati")) {
|
|
if (vers < 1003186) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] host has CAL version %s, need 1.3.186+\n",
|
|
cp->version
|
|
);
|
|
}
|
|
add_no_work_message("ATI Catalyst 9.2+ needed to use GPU");
|
|
return false;
|
|
}
|
|
if (!cp->atirt_detected) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] amd libs found, need ati\n"
|
|
);
|
|
}
|
|
add_no_work_message("Need libraries named ati* to use ATI GPU");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!strcmp(plan_class, "ati14")) {
|
|
if (vers < 1004000) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] host has CAL version %s, need 1.4+\n",
|
|
cp->version
|
|
);
|
|
}
|
|
add_no_work_message("ATI Catalyst 9.7+ needed to use GPU");
|
|
return false;
|
|
}
|
|
if (!cp->atirt_detected) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] amd libs found, need ati\n"
|
|
);
|
|
}
|
|
add_no_work_message("Need libraries named ati* to use ATI GPU");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (cp->attribs.localRAM*MEGA < min_ram) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] ATI mem %dMB < %d\n",
|
|
cp->attribs.localRAM, (int)(min_ram/MEGA)
|
|
);
|
|
}
|
|
sprintf(buf,
|
|
"Your ATI GPU has insufficient memory (need %.0fMB)",
|
|
min_ram/MEGA
|
|
);
|
|
add_no_work_message(buf);
|
|
return false;
|
|
}
|
|
hu.gpu_ram = 200*MEGA;
|
|
|
|
double cpu_frac; // the fraction of the app's FLOPS that are
|
|
// performed by the CPU
|
|
// (GPU is assumed to be idle then)
|
|
double gpu_effic; // when the app is using the GPU,
|
|
// fraction of GPU's peak FLOPS it gets
|
|
|
|
#if 1
|
|
// the following for an app that runs 99% on the GPU
|
|
cpu_frac = .01;
|
|
gpu_effic = .25;
|
|
#endif
|
|
|
|
#if 0
|
|
// the following for SETI@home Astropulse
|
|
cpu_frac = .75;
|
|
gpu_effic = .25;
|
|
#endif
|
|
|
|
double p = sreq.host.p_fpops;
|
|
double g = cp->peak_flops()/5;
|
|
hu.flops = p*g/(cpu_frac*g + (1-cpu_frac)*p);
|
|
|
|
double x = (cpu_frac*g)/(cpu_frac*g + (1-cpu_frac)*p);
|
|
hu.avg_ncpus = x;
|
|
hu.max_ncpus = x;
|
|
|
|
hu.natis = 1;
|
|
//hu.natis = .5; // you can use a fractional GPU if you want
|
|
|
|
// determine priority among variants of ATI
|
|
// 1. ati14
|
|
// 2. ati13ati
|
|
// 3. ati13amd
|
|
// 4. ati
|
|
if (!strcmp(plan_class, "ati13amd")) {
|
|
hu.flops *= 1.01;
|
|
}
|
|
if (!strcmp(plan_class, "ati13ati")) {
|
|
hu.flops *= 1.02;
|
|
}
|
|
if (!strcmp(plan_class, "ati14")) {
|
|
hu.flops *= 1.03;
|
|
}
|
|
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] ATI app estimated %.2f GFLOPS\n", hu.flops/1e9
|
|
);
|
|
}
|
|
return true;
|
|
} else if (strstr(plan_class, "cuda")) {
|
|
// the following is for an app that uses an NVIDIA GPU
|
|
//
|
|
COPROC_CUDA* cp = (COPROC_CUDA*)sreq.coprocs.lookup("CUDA");
|
|
if (!cp) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Host lacks CUDA coprocessor for plan class cuda\n"
|
|
);
|
|
}
|
|
add_no_work_message("Your computer has no NVIDIA GPU");
|
|
return false;
|
|
}
|
|
|
|
// Macs require 6.10.28
|
|
//
|
|
if (strstr(sreq.host.os_name, "Darwin")) {
|
|
if (sreq.core_client_version < 61028) {
|
|
add_no_work_message(
|
|
"CUDA apps require BOINC version 6.10.28 or greater on Mac"
|
|
);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check compute capability
|
|
//
|
|
int v = (cp->prop.major)*100 + cp->prop.minor;
|
|
if (v < 100) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] Compute capability %d < 1.0\n", v
|
|
);
|
|
}
|
|
add_no_work_message(
|
|
"Your NVIDIA GPU lacks the needed compute capability"
|
|
);
|
|
return false;
|
|
}
|
|
|
|
double min_ram;
|
|
|
|
// for CUDA 2.3, we need to check the CUDA RT version.
|
|
// Old BOINC clients report display driver version;
|
|
// newer ones report CUDA RT version
|
|
//
|
|
if (!strcmp(plan_class, "cuda_fermi")) {
|
|
int compute_capability = cp->prop.major*100 + cp->prop.minor;
|
|
if (compute_capability < 200) {
|
|
add_no_work_message("Fermi-class GPU needed");
|
|
return false;
|
|
}
|
|
if (cp->cuda_version < 3000) {
|
|
add_no_work_message("CUDA version 2.3 needed");
|
|
return false;
|
|
}
|
|
min_ram = PLAN_CUDA23_MIN_RAM;
|
|
} else if (!strcmp(plan_class, "cuda23")) {
|
|
if (cp->cuda_version) {
|
|
if (cp->cuda_version < 2030) {
|
|
add_no_work_message("CUDA version 2.3 needed");
|
|
return false;
|
|
}
|
|
} else if (cp->display_driver_version) {
|
|
if (cp->display_driver_version < PLAN_CUDA23_MIN_DRIVER_VERSION) {
|
|
sprintf(buf, "NVIDIA display driver %d or later needed",
|
|
PLAN_CUDA23_MIN_DRIVER_VERSION
|
|
);
|
|
add_no_work_message(buf);
|
|
return false;
|
|
}
|
|
} else {
|
|
// pre-6.10 Linux clients report neither CUDA nor driver
|
|
// version; they'll end up here
|
|
//
|
|
add_no_work_message("CUDA version 2.3 needed");
|
|
return false;
|
|
}
|
|
min_ram = PLAN_CUDA23_MIN_RAM;
|
|
} else {
|
|
if (cp->display_driver_version && cp->display_driver_version < PLAN_CUDA_MIN_DRIVER_VERSION) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] NVIDIA driver version %d < PLAN_CUDA_MIN_DRIVER_VERSION\n",
|
|
cp->display_driver_version
|
|
);
|
|
}
|
|
sprintf(buf, "NVIDIA driver version %d or later needed",
|
|
PLAN_CUDA_MIN_DRIVER_VERSION
|
|
);
|
|
add_no_work_message(buf);
|
|
return false;
|
|
}
|
|
min_ram = PLAN_CUDA_MIN_RAM;
|
|
}
|
|
|
|
if (cp->prop.dtotalGlobalMem < min_ram) {
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] CUDA mem %d < %d\n",
|
|
cp->prop.dtotalGlobalMem, min_ram
|
|
);
|
|
}
|
|
sprintf(buf,
|
|
"Your NVIDIA GPU has insufficient memory (need %.0fMB)",
|
|
min_ram/MEGA
|
|
);
|
|
add_no_work_message(buf);
|
|
return false;
|
|
}
|
|
hu.gpu_ram = min_ram - 16*MEGA;
|
|
|
|
double cpu_frac; // the fraction of the app's FLOPS that are
|
|
// performed by the CPU
|
|
// (GPU is assumed to be idle then)
|
|
double gpu_effic; // when the app is using the GPU,
|
|
// fraction of GPU's peak FLOPS it gets
|
|
|
|
#if 1
|
|
// the following for an app that runs 99% on the GPU
|
|
cpu_frac = .01;
|
|
gpu_effic = .25;
|
|
#endif
|
|
|
|
#if 0
|
|
cpu_frac = .75;
|
|
gpu_effic = .25;
|
|
#endif
|
|
|
|
double p = sreq.host.p_fpops;
|
|
double g = cp->peak_flops()/5;
|
|
hu.flops = p*g/(cpu_frac*g + (1-cpu_frac)*p);
|
|
|
|
double x = (cpu_frac*g)/(cpu_frac*g + (1-cpu_frac)*p);
|
|
hu.avg_ncpus = x;
|
|
hu.max_ncpus = x;
|
|
|
|
hu.ncudas = 1;
|
|
//hu.ncudas = .5; // you can use a fractional GPU if you want
|
|
|
|
if (!strcmp(plan_class, "cuda23")) {
|
|
hu.flops *= 1.01;
|
|
}
|
|
|
|
if (config.debug_version_select) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[version] CUDA app estimated %.2f GFLOPS (clock %d count %d)\n",
|
|
hu.flops/1e9, cp->prop.clockRate,
|
|
cp->prop.multiProcessorCount
|
|
);
|
|
}
|
|
return true;
|
|
} else if (!strcmp(plan_class, "nci")) {
|
|
// The following is for a non-CPU-intensive application.
|
|
// Say that we'll use 1% of a CPU.
|
|
// This will cause the client (6.7+) to run it at non-idle priority
|
|
//
|
|
hu.avg_ncpus = .01;
|
|
hu.max_ncpus = .01;
|
|
hu.flops = sreq.host.p_fpops*1.01;
|
|
// The *1.01 is needed to ensure that we'll send this app
|
|
// version rather than a non-plan-class one
|
|
return true;
|
|
} else if (!strcmp(plan_class, "sse3")) {
|
|
// the following is for an app that requires a processor with SSE3,
|
|
// and will run 10% faster if so
|
|
//
|
|
downcase_string(sreq.host.p_features);
|
|
if (!strstr(sreq.host.p_features, "sse3")) {
|
|
add_no_work_message("Your CPU lacks SSE3");
|
|
return false;
|
|
}
|
|
hu.avg_ncpus = 1;
|
|
hu.max_ncpus = 1;
|
|
hu.flops = 1.1*sreq.host.p_fpops;
|
|
return true;
|
|
}
|
|
log_messages.printf(MSG_CRITICAL,
|
|
"Unknown plan class: %s\n", plan_class
|
|
);
|
|
return false;
|
|
}
|
|
|
|
// the following is used to enforce limits on in-progress jobs
|
|
// for GPUs and CPUs (see handle_request.cpp)
|
|
//
|
|
bool app_plan_uses_gpu(const char* plan_class) {
|
|
if (strstr(plan_class, "cuda")) {
|
|
return true;
|
|
}
|
|
if (strstr(plan_class, "ati")) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// compute a "score" for sending this job to this host.
|
|
// Return false if the WU is infeasible.
|
|
// Otherwise set est_time and disk_usage.
|
|
//
|
|
bool JOB::get_score() {
|
|
WORKUNIT wu;
|
|
int retval;
|
|
|
|
WU_RESULT& wu_result = ssp->wu_results[index];
|
|
wu = wu_result.workunit;
|
|
app = ssp->lookup_app(wu.appid);
|
|
|
|
score = 0;
|
|
|
|
// Find the best app version to use.
|
|
//
|
|
bavp = get_app_version(wu, true);
|
|
if (!bavp) return false;
|
|
|
|
retval = wu_is_infeasible_fast(
|
|
wu, wu_result.res_server_state, wu_result.res_priority,
|
|
wu_result.res_report_deadline,
|
|
*app, *bavp
|
|
);
|
|
if (retval) {
|
|
if (config.debug_send) {
|
|
log_messages.printf(MSG_NORMAL,
|
|
"[send] [HOST#%d] [WU#%d %s] WU is infeasible: %s\n",
|
|
g_reply->host.id, wu.id, wu.name, infeasible_string(retval)
|
|
);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
score = 1;
|
|
|
|
#if 0
|
|
// example: for CUDA app, wu.batch is the minimum number of processors.
|
|
// add min/actual to score
|
|
// (this favors sending jobs that need lots of procs to GPUs that have them)
|
|
// IF YOU USE THIS, USE THE PART IN wu_is_infeasible_custom() ALSO
|
|
//
|
|
if (!strcmp(app->name, "foobar") && bavp->host_usage.ncudas) {
|
|
int n = g_request->coproc_cuda->prop.multiProcessorCount;
|
|
score += ((double)wu.batch)/n;
|
|
}
|
|
#endif
|
|
|
|
// check if user has selected apps,
|
|
// and send beta work to beta users
|
|
//
|
|
if (app->beta && !config.distinct_beta_apps) {
|
|
if (g_wreq->allow_beta_work) {
|
|
score += 1;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (app_not_selected(wu)) {
|
|
if (!g_wreq->allow_non_preferred_apps) {
|
|
return false;
|
|
} else {
|
|
// Allow work to be sent, but it will not get a bump in its score
|
|
}
|
|
} else {
|
|
score += 1;
|
|
}
|
|
}
|
|
|
|
// if job needs to get done fast, send to fast/reliable host
|
|
//
|
|
if (g_wreq->reliable && (wu_result.need_reliable)) {
|
|
score += 1;
|
|
}
|
|
|
|
// if job already committed to an HR class,
|
|
// try to send to host in that class
|
|
//
|
|
if (wu_result.infeasible_count) {
|
|
score += 1;
|
|
}
|
|
|
|
// Favor jobs that will run fast
|
|
//
|
|
score += bavp->host_usage.flops/1e9;
|
|
|
|
// match large jobs to fast hosts
|
|
//
|
|
if (config.job_size_matching) {
|
|
double host_stdev = (g_reply->host.p_fpops - ssp->perf_info.host_fpops_mean)/ ssp->perf_info.host_fpops_stdev;
|
|
double diff = host_stdev - wu_result.fpops_size;
|
|
score -= diff*diff;
|
|
}
|
|
|
|
// TODO: If user has selected some apps but will accept jobs from others,
|
|
// try to send them jobs from the selected apps
|
|
//
|
|
|
|
est_time = estimate_duration(wu, *bavp);
|
|
disk_usage = wu.rsc_disk_bound;
|
|
return true;
|
|
}
|