boinc/client/rr_sim.cpp

366 lines
12 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Do a simulation of the current workload
// with weighted round-robin (WRR) scheduling.
// Include jobs that are downloading.
//
// For efficiency, we simulate an approximation of WRR.
// We don't model time-slicing.
// Instead we use a continuous model where, at a given point,
// each project has a set of running jobs that uses at most all CPUs
// These jobs are assumed to run at a rate proportionate to their avg_ncpus,
// and each project gets CPU proportionate to its RRS.
//
// For coprocessors, we saturate the resource;
// i.e. with 2 GPUs, we'd let a 1-GPU app and a 2-GPU app run together.
// Otherwise, there'd be the possibility of computing
// a nonzero shortfall inappropriately.
//
// Outputs are changes to global state:
// - deadline misses (per-project count, per-result flag)
// Deadline misses are not counted for tasks
// that are too large to run in RAM right now.
// - resource shortfalls (per-project and total)
// - counts of resources idle now
//
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifdef SIM
#include "sim.h"
#else
#include "client_state.h"
#endif
#include "coproc.h"
#include "client_msgs.h"
// this is here (rather than rr_sim.h) because its inline functions
// refer to RESULT
//
struct RR_SIM_STATUS {
std::vector<RESULT*> active;
double active_ncpus;
double active_cudas;
inline void activate(RESULT* rp, double when) {
if (log_flags.rr_simulation) {
msg_printf(rp->project, MSG_INFO,
"[rr_sim] %.2f: starting %s", when, rp->name
);
}
active.push_back(rp);
cpu_work_fetch.sim_nused += rp->avp->avg_ncpus;
cuda_work_fetch.sim_nused += rp->avp->ncudas;
}
// remove *rpbest from active set,
// and adjust FLOPS left for other results
//
inline void remove_active(RESULT* rpbest) {
vector<RESULT*>::iterator it = active.begin();
while (it != active.end()) {
RESULT* rp = *it;
if (rp == rpbest) {
it = active.erase(it);
} else {
rp->rrsim_flops_left -= rp->rrsim_flops*rpbest->rrsim_finish_delay;
// can be slightly less than 0 due to roundoff
//
if (rp->rrsim_flops_left < -1) {
msg_printf(rp->project, MSG_INTERNAL_ERROR,
"%s: negative FLOPs left %f", rp->name, rp->rrsim_flops_left
);
}
if (rp->rrsim_flops_left < 0) {
rp->rrsim_flops_left = 0;
}
it++;
}
}
cpu_work_fetch.sim_nused -= rpbest->avp->avg_ncpus;
cuda_work_fetch.sim_nused -= rpbest->avp->ncudas;
}
RR_SIM_STATUS() {
active_ncpus = 0;
active_cudas = 0;
}
~RR_SIM_STATUS() {}
};
void RR_SIM_PROJECT_STATUS::activate(RESULT* rp) {
active.push_back(rp);
rp->project->cpu_pwf.sim_nused += rp->avp->avg_ncpus;
rp->project->cuda_pwf.sim_nused += rp->avp->ncudas;
}
void RR_SIM_PROJECT_STATUS::remove_active(RESULT* rp) {
std::vector<RESULT*>::iterator it = active.begin();
while (it != active.end()) {
if (*it == rp) {
it = active.erase(it);
} else {
it++;
}
}
rp->project->cpu_pwf.sim_nused -= rp->avp->avg_ncpus;
rp->project->cuda_pwf.sim_nused -= rp->avp->ncudas;
}
// estimate the rate (FLOPS) that this job will get long-term
// with weighted round-robin scheduling
//
void set_rrsim_flops(RESULT* rp) {
// if it's a coproc job, use app version estimate
if (rp->uses_coprocs()) {
rp->rrsim_flops = rp->avp->flops;
return;
}
PROJECT* p = rp->project;
// first, estimate how many CPU seconds per second this job would get
// running with other jobs of this project, ignoring other factors
//
double x = 1;
if (p->cpu_pwf.sim_nused > gstate.ncpus) {
x = gstate.ncpus/p->cpu_pwf.sim_nused;
}
double r1 = x*rp->avp->avg_ncpus;
// if the project's total CPU usage is more than its share, scale
//
double share_cpus = p->cpu_pwf.runnable_share*gstate.ncpus;
double r2 = r1;
if (p->cpu_pwf.sim_nused > share_cpus) {
r2 *= (share_cpus / p->cpu_pwf.sim_nused);
}
// scale by overall CPU availability
//
double r3 = r2 * gstate.overall_cpu_frac();
rp->rrsim_flops = r3 * gstate.host_info.p_fpops;
#if 0
if (log_flags.rr_simulation) {
msg_printf(p, MSG_INFO,
"[rr_sim] set_rrsim_flops: %f (r1 %f r2 %f r3 %f)",
rp->rrsim_flops, r1, r2, r3
);
}
#endif
}
void CLIENT_STATE::print_deadline_misses() {
unsigned int i;
RESULT* rp;
PROJECT* p;
for (i=0; i<results.size(); i++){
rp = results[i];
if (rp->rr_sim_misses_deadline) {
msg_printf(rp->project, MSG_INFO,
"[cpu_sched_debug] Result %s projected to miss deadline.",
rp->name
);
}
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->rr_sim_status.deadlines_missed) {
msg_printf(p, MSG_INFO,
"[cpu_sched_debug] Project has %d projected deadline misses",
p->rr_sim_status.deadlines_missed
);
}
}
}
void CLIENT_STATE::rr_simulation() {
PROJECT* p, *pbest;
RESULT* rp, *rpbest;
RR_SIM_STATUS sim_status;
unsigned int i;
double ar = available_ram();
work_fetch.rr_init();
if (log_flags.rr_simulation) {
msg_printf(0, MSG_INFO,
"[rr_sim] rr_sim start: work_buf_total %.2f",
work_buf_total()
);
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->non_cpu_intensive) continue;
p->rr_sim_status.clear();
}
// Decide what jobs to include in the simulation,
// and pick the ones that are initially running
//
for (i=0; i<results.size(); i++) {
rp = results[i];
if (!rp->nearly_runnable()) continue;
if (rp->some_download_stalled()) continue;
if (rp->project->non_cpu_intensive) continue;
rp->rrsim_flops_left = rp->estimated_flops_remaining();
if (rp->rrsim_flops_left <= 0) continue;
p = rp->project;
if (rp->uses_cuda()) {
p->cuda_pwf.has_runnable_jobs = true;
if (cuda_work_fetch.sim_nused < coproc_cuda->count) {
sim_status.activate(rp, 0);
p->rr_sim_status.activate(rp);
} else {
cuda_work_fetch.pending.push_back(rp);
}
} else {
p->cpu_pwf.has_runnable_jobs = true;
if (p->cpu_pwf.sim_nused < ncpus) {
sim_status.activate(rp, 0);
p->rr_sim_status.activate(rp);
} else {
p->rr_sim_status.add_pending(rp);
}
}
rp->rr_sim_misses_deadline = false;
}
// note the number of idle instances
//
cpu_work_fetch.nidle_now = ncpus - cpu_work_fetch.sim_nused;
if (cpu_work_fetch.nidle_now < 0) cpu_work_fetch.nidle_now = 0;
if (coproc_cuda) {
cuda_work_fetch.nidle_now = coproc_cuda->count - cuda_work_fetch.sim_nused;
if (cuda_work_fetch.nidle_now < 0) cuda_work_fetch.nidle_now = 0;
}
work_fetch.compute_shares();
// Simulation loop. Keep going until all work done
//
double buf_end = now + work_buf_total();
double sim_now = now;
while (sim_status.active.size()) {
// compute finish times and see which result finishes first
//
rpbest = NULL;
for (i=0; i<sim_status.active.size(); i++) {
rp = sim_status.active[i];
set_rrsim_flops(rp);
rp->rrsim_finish_delay = rp->rrsim_flops_left/rp->rrsim_flops;
if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) {
rpbest = rp;
}
}
pbest = rpbest->project;
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %.2f: %s finishes after %.2f (%.2fG/%.2fG)",
sim_now - now,
rpbest->name, rpbest->rrsim_finish_delay,
rpbest->rrsim_flops_left/1e9, rpbest->rrsim_flops/1e9
);
}
// "rpbest" is first result to finish. Does it miss its deadline?
//
double diff = sim_now + rpbest->rrsim_finish_delay - ((rpbest->computation_deadline()-now)*CPU_PESSIMISM_FACTOR + now);
if (diff > 0) {
ACTIVE_TASK* atp = lookup_active_task_by_result(rpbest);
if (atp && atp->procinfo.working_set_size_smoothed > ar) {
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %s misses deadline but too large to run",
rpbest->name
);
}
} else {
rpbest->rr_sim_misses_deadline = true;
pbest->rr_sim_status.deadlines_missed++;
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %s misses deadline by %.2f",
rpbest->name, diff
);
}
}
}
double end_time = sim_now + rpbest->rrsim_finish_delay;
double x = end_time - gstate.now;
cpu_work_fetch.update_estimated_delay(x);
if (coproc_cuda) {
cuda_work_fetch.update_estimated_delay(x);
}
// increment resource shortfalls
//
if (sim_now < buf_end) {
if (end_time > buf_end) end_time = buf_end;
double d_time = end_time - sim_now;
cpu_work_fetch.accumulate_shortfall(d_time);
if (coproc_cuda) {
cuda_work_fetch.accumulate_shortfall(d_time);
}
}
sim_status.remove_active(rpbest);
pbest->rr_sim_status.remove_active(rpbest);
if (rpbest->uses_cuda()) {
while (1) {
if (cuda_work_fetch.sim_nused >= coproc_cuda->count) break;
if (!cuda_work_fetch.pending.size()) break;
RESULT* rp = cuda_work_fetch.pending[0];
cuda_work_fetch.pending.erase(cuda_work_fetch.pending.begin());
sim_status.activate(rp, sim_now-now);
pbest->rr_sim_status.activate(rp);
}
} else {
while (1) {
if (pbest->cpu_pwf.sim_nused >= ncpus) break;
RESULT* rp = pbest->rr_sim_status.get_pending();
if (!rp) break;
sim_status.activate(rp, sim_now-now);
pbest->rr_sim_status.activate(rp);
}
}
sim_now += rpbest->rrsim_finish_delay;
}
// if simulation ends before end of buffer, take the tail into account
//
if (sim_now < buf_end) {
double d_time = buf_end - sim_now;
cpu_work_fetch.accumulate_shortfall(d_time);
if (coproc_cuda) {
cuda_work_fetch.accumulate_shortfall(d_time);
}
}
}