boinc/client/app_control.cpp

1672 lines
52 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// monitoring and process control of running apps
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#include "win_util.h"
#ifndef STATUS_SUCCESS
#define STATUS_SUCCESS 0x0 // may be in ntstatus.h
#endif
#ifndef STATUS_DLL_INIT_FAILED
#define STATUS_DLL_INIT_FAILED 0xC0000142 // may be in ntstatus.h
#endif
#ifndef STATUS_DLL_INIT_FAILED_LOGOFF
#define STATUS_DLL_INIT_FAILED_LOGOFF 0xC000026B // may be in ntstatus.h
#endif
#else
#include "config.h"
#include <string>
#include <unistd.h>
#if HAVE_SYS_IPC_H
#include <sys/ipc.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if HAVE_CSIGNAL
#include <csignal>
#elif HAVE_SYS_SIGNAL_H
#include <sys/signal.h>
#elif HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#include <vector>
#endif
using std::vector;
#include "error_numbers.h"
#include "filesys.h"
#include "parse.h"
#include "shmem.h"
#include "str_replace.h"
#include "str_util.h"
#include "url.h"
#include "util.h"
#include "client_msgs.h"
#include "client_state.h"
#include "file_names.h"
#include "proc_control.h"
#include "result.h"
#include "sandbox.h"
#include "app.h"
// Do periodic checks on running apps:
// - get latest CPU time and % done info
// - check if any has exited, and clean up
// - see if any has exceeded its CPU or disk space limits, and abort it
//
bool ACTIVE_TASK_SET::poll() {
bool action;
unsigned int i;
static double last_time = 0;
if (!gstate.clock_change && gstate.now - last_time < TASK_POLL_PERIOD) return false;
last_time = gstate.now;
action = check_app_exited();
send_heartbeats();
send_trickle_downs();
process_control_poll();
action |= check_rsc_limits_exceeded();
get_msgs();
for (i=0; i<active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks[i];
if (atp->task_state() == PROCESS_ABORT_PENDING) {
if (gstate.now > atp->abort_time + ABORT_TIMEOUT) {
if (log_flags.task_debug) {
msg_printf(atp->result->project, MSG_INFO,
"[task] abort request timed out, killing task %s",
atp->result->name
);
}
atp->kill_running_task(false);
}
}
if (atp->task_state() == PROCESS_QUIT_PENDING) {
if (gstate.now > atp->quit_time + QUIT_TIMEOUT) {
if (log_flags.task_debug) {
msg_printf(atp->result->project, MSG_INFO,
"[task] quit request timed out, killing task %s",
atp->result->name
);
}
atp->kill_running_task(true);
}
}
}
// Check for finish files every 10 sec.
// If we already found a finish file, abort the app;
// it must be hung somewhere in boinc_finish();
//
static double last_finish_check_time = 0;
if (gstate.clock_change || gstate.now - last_finish_check_time > 10) {
last_finish_check_time = gstate.now;
int exit_code;
for (i=0; i<active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks[i];
if (atp->task_state() == PROCESS_UNINITIALIZED) continue;
if (atp->finish_file_time) {
if (gstate.now - atp->finish_file_time > FINISH_FILE_TIMEOUT) {
// process is still there 5 min after it wrote finish file.
// abort the job
// Note: actually we should treat it as successful.
// But this would be tricky.
//
atp->abort_task(EXIT_ABORTED_BY_CLIENT,
"Process still present 5 min after writing finish file; aborting"
);
}
} else if (atp->finish_file_present(exit_code)) {
atp->finish_file_time = gstate.now;
}
}
}
if (action) {
gstate.set_client_state_dirty("ACTIVE_TASK_SET::poll");
}
return action;
}
#if 0
// deprecated; TerminateProcessById() doesn't work if
// the process is running as a different user
//
#ifdef _WIN32
bool ACTIVE_TASK::kill_all_children() {
unsigned int i,j;
std::vector<PROCINFO> ps;
std::vector<PROCINFO> tps;
procinfo_setup(ps);
PROCINFO pi;
pi.id = pid;
tps.push_back(pi);
for (i=0; i < tps.size(); i++) {
PROCINFO tp = tps[i];
for (j=0; j < ps.size(); j++) {
PROCINFO p = ps[j];
if (tp.id == p.parentid) {
if (TerminateProcessById(p.id)) {
tps.push_back(p);
}
}
}
}
return true;
}
#endif
#endif
static void print_descendants(int pid, const vector<int>& desc, const char* where) {
msg_printf(0, MSG_INFO, "%s: PID %d has %d descendants",
where, pid, (int)desc.size()
);
for (unsigned int i=0; i<desc.size(); i++) {
msg_printf(0, MSG_INFO, " PID %d", desc[i]);
}
}
// Send a quit message, start timer, get descendants
//
int ACTIVE_TASK::request_exit() {
if (app_client_shm.shm) {
process_control_queue.msg_queue_send(
"<quit/>",
app_client_shm.shm->process_control_request
);
}
set_task_state(PROCESS_QUIT_PENDING, "request_exit()");
quit_time = gstate.now;
get_descendants(pid, descendants);
if (log_flags.task_debug) {
print_descendants(pid, descendants, "request_exit()");
}
return 0;
}
// Send an abort message, start timer, get descendants
//
int ACTIVE_TASK::request_abort() {
if (app_client_shm.shm) {
process_control_queue.msg_queue_send(
"<abort/>",
app_client_shm.shm->process_control_request
);
}
set_task_state(PROCESS_ABORT_PENDING, "request_abort");
abort_time = gstate.now;
get_descendants(pid, descendants);
if (log_flags.task_debug) {
print_descendants(pid, descendants, "request_abort()");
}
return 0;
}
#ifdef _WIN32
static void kill_app_process(int pid, bool will_restart) {
int retval = 0;
retval = kill_program(pid, will_restart?0:EXIT_ABORTED_BY_CLIENT);
if (retval && log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"[task] kill_program(%d) failed: %s",
pid, boincerror(retval)
);
}
}
#else
static void kill_app_process(int pid, bool) {
int retval = 0;
if (g_use_sandbox) {
retval = kill_via_switcher(pid);
if (retval && log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"[task] kill_via_switcher(%d) failed: %s (%d)",
pid,
(retval>=0) ? strerror(errno) : boincerror(retval), retval
);
}
} else {
retval = kill_program(pid);
if (retval && log_flags.task_debug) {
msg_printf(0, MSG_INFO,
"[task] kill_program(%d) failed: %s",
pid, strerror(errno)
);
}
}
}
#endif
// Kill a task whose main process is still running
// Just kill the main process; shared mem and subsidiary processes
// will be cleaned up after it exits, by cleanup_task();
//
int ACTIVE_TASK::kill_running_task(bool will_restart) {
kill_app_process(pid, will_restart);
return 0;
}
// Kill any remaining subsidiary processes
// of a task whose main process has exited,
// namely:
// - its descendants (as recently enumerated; it's too late to do that now)
// This list will be populated only in the quit and abort cases.
// - its "other" processes, e.g. VMs
//
int ACTIVE_TASK::kill_subsidiary_processes() {
unsigned int i;
for (i=0; i<other_pids.size(); i++) {
kill_app_process(other_pids[i], false);
}
for (i=0; i<descendants.size(); i++) {
kill_app_process(descendants[i], false);
}
return 0;
}
// We have sent a quit request to the process; see if it's exited.
// This is called when the client exits,
// or when a project is detached or reset
//
bool ACTIVE_TASK::has_task_exited() {
bool exited = false;
if (!process_exists()) return true;
#ifdef _WIN32
unsigned long exit_code;
if (GetExitCodeProcess(process_handle, &exit_code)) {
if (exit_code != STILL_ACTIVE) {
exited = true;
}
}
#else
if (waitpid(pid, 0, WNOHANG) == pid) {
exited = true;
}
#endif
if (exited) {
set_task_state(PROCESS_EXITED, "has_task_exited");
cleanup_task();
}
return exited;
}
static void limbo_message(ACTIVE_TASK& at) {
#ifdef _WIN32
if (at.result->exit_status == STATUS_DLL_INIT_FAILED) {
msg_printf(at.result->project, MSG_INFO,
"Task %s exited with a DLL initialization error.",
at.result->name
);
msg_printf(at.result->project, MSG_INFO,
"If this happens repeatedly you may need to reboot your computer."
);
return;
}
#endif
msg_printf(at.result->project, MSG_INFO,
"Task %s exited with zero status but no 'finished' file",
at.result->name
);
msg_printf(at.result->project, MSG_INFO,
"If this happens repeatedly you may need to reset the project."
);
}
// the job just exited. If it's a GPU job,
// clear the "schedule_backoff" field of all other jobs
// that use the GPU type, in case they're waiting for GPU RAM
//
static void clear_schedule_backoffs(ACTIVE_TASK* atp) {
int rt = atp->result->avp->rsc_type();
if (rt == RSC_TYPE_CPU) return;
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (rp->avp->rsc_type() == rt) {
rp->schedule_backoff = 0;
}
}
}
// handle a task that exited prematurely (i.e. no finish file)
//
void ACTIVE_TASK::handle_premature_exit(bool& will_restart) {
// keep count of premature exits;
// if this happens 100 times w/o a checkpoint, abort job
//
premature_exit_count++;
if (premature_exit_count > 100) {
will_restart = false;
set_task_state(PROCESS_ABORTED, "handle_premature_exit");
result->exit_status = ERR_TOO_MANY_EXITS;
gstate.report_result_error(*result, "too many exit(0)s");
result->set_state(RESULT_ABORTED, "handle_premature_exit");
} else {
will_restart = true;
limbo_message(*this);
set_task_state(PROCESS_UNINITIALIZED, "handle_premature_exit");
}
}
// handle a temporary exit
//
void ACTIVE_TASK::handle_temporary_exit(
bool& will_restart, double backoff, const char* reason, bool is_notice
) {
premature_exit_count++;
if (premature_exit_count > 100) {
will_restart = false;
set_task_state(PROCESS_ABORTED, "handle_temporary_exit");
result->exit_status = ERR_TOO_MANY_EXITS;
gstate.report_result_error(*result, "too many boinc_temporary_exit()s");
result->set_state(RESULT_ABORTED, "handle_temporary_exit");
} else {
if (is_notice) {
msg_printf(result->project, MSG_USER_ALERT,
"Task %s postponed for %.f seconds: %s", result->name, backoff, reason
);
} else {
if (log_flags.task) {
msg_printf(result->project, MSG_INFO,
"Task %s postponed for %.f seconds: %s", result->name, backoff, reason
);
}
}
will_restart = true;
result->schedule_backoff = gstate.now + backoff;
safe_strcpy(result->schedule_backoff_reason, reason);
set_task_state(PROCESS_UNINITIALIZED, "handle_temporary_exit");
}
}
void ACTIVE_TASK::copy_final_info() {
result->final_cpu_time = current_cpu_time;
result->final_elapsed_time = elapsed_time;
result->final_peak_working_set_size = peak_working_set_size;
result->final_peak_swap_size = peak_swap_size;
result->final_peak_disk_usage = peak_disk_usage;
result->final_bytes_sent = bytes_sent;
result->final_bytes_received = bytes_received;
}
// deal with a process that has exited, for whatever reason:
// - completion
// - crash
// - quit or abort message sent by client
// - killed by client
//
#ifdef _WIN32
void ACTIVE_TASK::handle_exited_app(unsigned long exit_code) {
if (log_flags.task_debug) {
msg_printf(result->project, MSG_INFO,
"[task] Process for %s exited, exit code %lu, task state %d",
result->name, exit_code, task_state()
);
}
#else
void ACTIVE_TASK::handle_exited_app(int stat) {
if (log_flags.task_debug) {
msg_printf(result->project, MSG_INFO,
"[task] Process for %s exited, status %d, task state %d",
result->name, stat, task_state()
);
}
#endif
char err_msg[4096];
bool will_restart = false;
get_app_status_msg();
get_trickle_up_msg();
copy_final_info();
// if an abort or quit is pending,
// the process may have exited itself, or we may have killed it.
// Ignore exit status.
//
if (task_state() == PROCESS_ABORT_PENDING) {
set_task_state(PROCESS_ABORTED, "handle_exited_app");
} else if (task_state() == PROCESS_QUIT_PENDING) {
set_task_state(PROCESS_UNINITIALIZED, "handle_exited_app");
will_restart = true;
} else {
#ifdef _WIN32
result->exit_status = exit_code;
switch(exit_code) {
case STATUS_SUCCESS:
// if another process killed the app, it looks like exit(0).
// So check for the finish file
//
int e;
if (finish_file_present(e)) {
set_task_state(PROCESS_EXITED, "handle_exited_app");
break;
}
double x;
bool is_notice;
char buf[256];
safe_strcpy(buf, "");
if (temporary_exit_file_present(x, buf, is_notice)) {
handle_temporary_exit(will_restart, x, buf, is_notice);
} else {
handle_premature_exit(will_restart);
}
break;
case 0xc000013a: // control-C??
case 0x40010004: // vista shutdown?? can someone explain this?
case STATUS_DLL_INIT_FAILED:
case STATUS_DLL_INIT_FAILED_LOGOFF:
// This can happen because:
// - The OS is shutting down, and attempting to start
// any new application fails automatically.
// - The OS has run out of desktop heap
// - (reportedly) The computer has just come out of hibernation
//
handle_premature_exit(will_restart);
break;
default:
char szError[1024];
set_task_state(PROCESS_EXITED, "handle_exited_app");
snprintf(err_msg, sizeof(err_msg),
"%s - exit code %lu (0x%x)",
windows_format_error_string(exit_code, szError, sizeof(szError)),
exit_code, exit_code
);
gstate.report_result_error(*result, err_msg);
if (log_flags.task_debug) {
msg_printf(result->project, MSG_INFO,
"[task] Process for %s exited",
result->name
);
msg_printf(result->project, MSG_INFO,
"[task] exit code %d (0x%x): %s",
exit_code, exit_code,
windows_format_error_string(exit_code, szError, sizeof(szError))
);
}
break;
}
#else
if (WIFEXITED(stat)) {
result->exit_status = WEXITSTATUS(stat);
double x;
char buf[256];
bool is_notice;
int e;
if (temporary_exit_file_present(x, buf, is_notice)) {
handle_temporary_exit(will_restart, x, buf, is_notice);
} else {
if (log_flags.task_debug) {
msg_printf(result->project, MSG_INFO,
"[task] process exited with status %d\n",
result->exit_status
);
}
if (result->exit_status) {
set_task_state(PROCESS_EXITED, "handle_exited_app");
snprintf(err_msg, sizeof(err_msg),
"process exited with code %d (0x%x, %d)",
result->exit_status, result->exit_status,
(~0xff)|result->exit_status
);
gstate.report_result_error(*result, err_msg);
} else {
if (finish_file_present(e)) {
set_task_state(PROCESS_EXITED, "handle_exited_app");
} else {
handle_premature_exit(will_restart);
}
}
}
} else if (WIFSIGNALED(stat)) {
int got_signal = WTERMSIG(stat);
if (log_flags.task_debug) {
msg_printf(result->project, MSG_INFO,
"[task] process got signal %d", got_signal
);
}
// if the process was externally killed, let it restart.
//
switch (got_signal) {
case SIGHUP:
case SIGINT:
case SIGQUIT:
case SIGKILL:
case SIGTERM:
case SIGSTOP:
will_restart = true;
set_task_state(PROCESS_UNINITIALIZED, "handle_exited_app");
break;
default:
result->exit_status = stat;
set_task_state(PROCESS_WAS_SIGNALED, "handle_exited_app");
signal = got_signal;
snprintf(err_msg, sizeof(err_msg),
"process got signal %d", signal
);
gstate.report_result_error(*result, err_msg);
}
} else {
result->exit_status = EXIT_UNKNOWN;
set_task_state(PROCESS_EXIT_UNKNOWN, "handle_exited_app");
gstate.report_result_error(*result, "process exit, unknown");
msg_printf(result->project, MSG_INTERNAL_ERROR,
"process exited for unknown reason"
);
}
#endif
}
// get rid of shared-mem segment and kill subsidiary processes
//
cleanup_task();
if (gstate.run_test_app) {
msg_printf(0, MSG_INFO, "test app finished - exiting");
exit(0);
}
if (!will_restart) {
copy_output_files();
int retval = read_stderr_file();
if (retval) {
msg_printf(result->project, MSG_INTERNAL_ERROR,
"read_stderr_file(): %s", boincerror(retval)
);
}
client_clean_out_dir(slot_dir, "handle_exited_app()");
clear_schedule_backoffs(this);
// clear scheduling backoffs of jobs waiting for GPU
}
gstate.request_schedule_cpus("application exited");
gstate.request_work_fetch("application exited");
}
// structure of a finish file (see boinc_api.cpp)):
// exit status (int)
// optional:
// message to show user
// "notice" or blank line
//
bool ACTIVE_TASK::finish_file_present(int &exit_code) {
char path[MAXPATHLEN], buf[1024], buf2[256];
safe_strcpy(buf, "");
safe_strcpy(buf2, "");
exit_code = 0;
sprintf(path, "%s/%s", slot_dir, BOINC_FINISH_CALLED_FILE);
FILE* f = boinc_fopen(path, "r");
if (!f) return false;
char* p = fgets(buf, sizeof(buf), f);
if (p && strlen(buf)) {
int e;
if (sscanf(buf, "%d", &e) == 1) {
exit_code = e;
}
}
p = fgets(buf, sizeof(buf), f);
if (p && strlen(buf)) {
fgets(buf2, sizeof(buf2), f);
msg_printf(result->project,
strstr(buf2, "notice")?MSG_USER_ALERT:MSG_INFO,
"Message from task: %s", buf
);
}
fclose(f);
return true;
}
bool ACTIVE_TASK::temporary_exit_file_present(
double& x, char* buf, bool& is_notice
) {
char path[MAXPATHLEN], buf2[256];
sprintf(path, "%s/%s", slot_dir, TEMPORARY_EXIT_FILE);
FILE* f = boinc_fopen(path, "r");
if (!f) return false;
strcpy(buf, "");
int y;
int n = fscanf(f, "%d", &y);
if (n != 1 || y < 0 || y > 86400) {
x = 300;
} else {
x = y;
}
(void) fgets(buf, 256, f); // read the \n
(void) fgets(buf, 256, f);
strip_whitespace(buf);
is_notice = false;
if (fgets(buf2, 256, f)) {
if (strstr(buf2, "notice")) {
is_notice = true;
}
}
fclose(f);
return true;
}
void ACTIVE_TASK_SET::send_trickle_downs() {
unsigned int i;
ACTIVE_TASK* atp;
bool sent;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (atp->have_trickle_down) {
if (!atp->app_client_shm.shm) continue;
sent = atp->app_client_shm.shm->trickle_down.send_msg("<have_trickle_down/>\n");
if (sent) atp->have_trickle_down = false;
}
if (atp->send_upload_file_status) {
if (!atp->app_client_shm.shm) continue;
sent = atp->app_client_shm.shm->trickle_down.send_msg("<upload_file_status/>\n");
if (sent) atp->send_upload_file_status = false;
}
}
}
void ACTIVE_TASK_SET::send_heartbeats() {
unsigned int i;
ACTIVE_TASK* atp;
char buf[1024];
double ar = gstate.available_ram();
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (!atp->app_client_shm.shm) continue;
snprintf(buf, sizeof(buf), "<heartbeat/>"
"<wss>%e</wss>"
"<max_wss>%e</max_wss>",
atp->procinfo.working_set_size, ar
);
if (gstate.network_suspended) {
safe_strcat(buf, "<network_suspended/>");
}
bool sent = atp->app_client_shm.shm->heartbeat.send_msg(buf);
if (log_flags.heartbeat_debug) {
if (sent) {
msg_printf(atp->result->project, MSG_INFO,
"[heartbeat] Heartbeat sent to task %s",
atp->result->name
);
} else {
msg_printf(atp->result->project, MSG_INFO,
"[heartbeat] Heartbeat to task %s failed, previous message unread",
atp->result->name
);
}
}
}
}
// send queued process-control messages; check for timeout
//
void ACTIVE_TASK_SET::process_control_poll() {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (!atp->app_client_shm.shm) continue;
// if app has had the same message in its send buffer for 180 sec,
// assume it's hung and restart it
//
if (atp->process_control_queue.timeout(180)) {
if (log_flags.task_debug) {
msg_printf(atp->result->project, MSG_INFO,
"Restarting %s - message timeout", atp->result->name
);
}
atp->kill_running_task(true);
} else {
atp->process_control_queue.msg_queue_poll(
atp->app_client_shm.shm->process_control_request
);
}
}
}
// See if any processes have exited
//
bool ACTIVE_TASK_SET::check_app_exited() {
ACTIVE_TASK* atp;
bool found = false;
#ifdef _WIN32
unsigned long exit_code;
unsigned int i;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
if (GetExitCodeProcess(atp->process_handle, &exit_code)) {
if (exit_code != STILL_ACTIVE) {
found = true;
atp->handle_exited_app(exit_code);
}
} else {
if (log_flags.task_debug) {
char errmsg[1024];
msg_printf(atp->result->project, MSG_INFO,
"[task] task %s GetExitCodeProcess() failed - %s GLE %d (0x%x)",
atp->result->name,
windows_format_error_string(
GetLastError(), errmsg, sizeof(errmsg)
),
GetLastError(), GetLastError()
);
}
// The process doesn't seem to be there.
// Mark task as aborted so we don't check it again.
//
atp->cleanup_task();
atp->set_task_state(PROCESS_ABORTED, "check_app_exited");
}
}
#else
int pid, stat;
if ((pid = waitpid(-1, &stat, WNOHANG)) > 0) {
atp = lookup_pid(pid);
if (!atp) {
// if we're running benchmarks, exited process
// is probably a benchmark process; don't show error
//
if (!gstate.benchmarks_running && log_flags.task_debug) {
msg_printf(NULL, MSG_INTERNAL_ERROR,
"Process %d not found\n", pid
);
}
return false;
}
atp->handle_exited_app(stat);
found = true;
}
#endif
return found;
}
// if an app has exceeded its maximum disk usage, abort it
//
bool ACTIVE_TASK::check_max_disk_exceeded() {
double disk_usage;
int retval;
retval = current_disk_usage(disk_usage);
if (retval) {
msg_printf(this->wup->project, MSG_INTERNAL_ERROR,
"Can't get task disk usage: %s", boincerror(retval)
);
} else {
if (disk_usage > max_disk_usage) {
msg_printf(
result->project, MSG_INFO,
"Aborting task %s: exceeded disk limit: %.2fMB > %.2fMB\n",
result->name, disk_usage/MEGA, max_disk_usage/MEGA
);
abort_task(EXIT_DISK_LIMIT_EXCEEDED, "Disk usage limit exceeded");
return true;
}
}
return false;
}
// Check if any of the active tasks have exceeded their
// resource limits on disk, CPU time or memory
//
// TODO: this gets called ever 1 sec,
// but mem and disk usage are computed less often.
// refactor.
//
bool ACTIVE_TASK_SET::check_rsc_limits_exceeded() {
unsigned int i;
ACTIVE_TASK *atp;
static double last_disk_check_time = 0;
bool do_disk_check = false;
bool did_anything = false;
char buf[256];
double ram_left = gstate.available_ram();
double max_ram = gstate.max_available_ram();
// Some slot dirs have lots of files,
// so only check every min(disk_interval, 300) secs
//
double min_interval = gstate.global_prefs.disk_interval;
if (min_interval < 300) min_interval = 300;
if (gstate.clock_change || gstate.now > last_disk_check_time + min_interval) {
do_disk_check = true;
}
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->task_state() != PROCESS_EXECUTING) continue;
if (!atp->result->non_cpu_intensive() && (atp->elapsed_time > atp->max_elapsed_time)) {
sprintf(buf, "exceeded elapsed time limit %.2f (%.2fG/%.2fG)",
atp->max_elapsed_time,
atp->result->wup->rsc_fpops_bound/1e9,
atp->result->avp->flops/1e9
);
msg_printf(atp->result->project, MSG_INFO,
"Aborting task %s: %s", atp->result->name, buf
);
atp->abort_task(EXIT_TIME_LIMIT_EXCEEDED, buf);
did_anything = true;
continue;
}
#if 0
// removing this for now because most projects currently
// have too-low values of workunit.rsc_memory_bound
// (causing lots of aborts)
// and I don't think we can expect projects to provide
// accurate bounds.
//
if (atp->procinfo.working_set_size_smoothed > atp->max_mem_usage) {
sprintf(buf, "working set size > workunit.rsc_memory_bound: %.2fMB > %.2fMB",
atp->procinfo.working_set_size_smoothed/MEGA, atp->max_mem_usage/MEGA
);
msg_printf(atp->result->project, MSG_INFO,
"Aborting task %s: %s",
atp->result->name, buf
);
atp->abort_task(EXIT_MEM_LIMIT_EXCEEDED, buf);
did_anything = true;
continue;
}
#endif
if (atp->procinfo.working_set_size_smoothed > max_ram) {
sprintf(buf, "working set size > client RAM limit: %.2fMB > %.2fMB",
atp->procinfo.working_set_size_smoothed/MEGA, max_ram/MEGA
);
msg_printf(atp->result->project, MSG_INFO,
"Aborting task %s: %s",
atp->result->name, buf
);
atp->abort_task(EXIT_MEM_LIMIT_EXCEEDED, buf);
did_anything = true;
continue;
}
if (do_disk_check || atp->peak_disk_usage == 0) {
if (atp->check_max_disk_exceeded()) {
did_anything = true;
continue;
}
}
// don't count RAM usage of non-CPU-intensive jobs
//
if (!atp->result->non_cpu_intensive()) {
ram_left -= atp->procinfo.working_set_size_smoothed;
}
}
if (ram_left < 0) {
gstate.request_schedule_cpus("RAM usage limit exceeded");
}
if (do_disk_check) {
last_disk_check_time = gstate.now;
}
return did_anything;
}
// If process is running, send it an "abort" message,
// Set a flag so that if it doesn't exit within 5 seconds,
// kill it by OS-specific mechanism (e.g. KILL signal).
// This is done when app has exceeded CPU, disk, or mem limits,
// or when the user has requested it.
// The task won't be restarted.
//
int ACTIVE_TASK::abort_task(int exit_status, const char* msg) {
if (task_state() == PROCESS_EXECUTING || task_state() == PROCESS_SUSPENDED) {
request_abort();
} else {
set_task_state(PROCESS_ABORTED, "abort_task");
}
result->exit_status = exit_status;
gstate.report_result_error(*result, msg);
result->set_state(RESULT_ABORTED, "abort_task");
if (task_state() == PROCESS_ABORTED) {
copy_final_info();
read_stderr_file();
}
return 0;
}
// check for the stderr file, copy to result record
//
int ACTIVE_TASK::read_stderr_file() {
char* buf1, *buf2;
char path[MAXPATHLEN];
// truncate stderr output to the last 63KB;
// it's unlikely that more than that will be useful
//
int max_len = 63*1024;
sprintf(path, "%s/%s", slot_dir, STDERR_FILE);
if (!boinc_file_exists(path)) return 0;
int retval = read_file_malloc(
path, buf1, max_len, !cc_config.stderr_head
);
if (retval) return retval;
// if it's a vbox app, check for string in stderr saying
// the job failed because CPU VM extensions disabled
//
if (strstr(app_version->plan_class, "vbox")) {
if (strstr(buf1, "ERR_CPU_VM_EXTENSIONS_DISABLED")) {
msg_printf(0, MSG_INFO,
"Vbox app stderr indicates CPU VM extensions disabled"
);
gstate.host_info.p_vm_extensions_disabled = true;
}
}
buf2 = (char*)malloc(2*max_len);
if (!buf2) {
free(buf1);
return ERR_MALLOC;
}
non_ascii_escape(buf1, buf2, 2*max_len);
result->stderr_out += "<stderr_txt>\n";
result->stderr_out += buf2;
result->stderr_out += "\n</stderr_txt>\n";
free(buf1);
free(buf2);
return 0;
}
// tell a running app to reread project preferences.
// This is called when project prefs change,
// or when a user file has finished downloading.
//
// TODO: get rid of this function
//
int ACTIVE_TASK::request_reread_prefs() {
int retval;
APP_INIT_DATA aid;
link_user_files();
init_app_init_data(aid);
retval = write_app_init_file(aid);
if (retval) return retval;
#if 0
graphics_request_queue.msg_queue_send(
xml_graphics_modes[MODE_REREAD_PREFS],
app_client_shm.shm->graphics_request
);
#endif
return 0;
}
// tell a running app to reread the app_info file
// (e.g. because proxy settings have changed: this is for F@h)
//
int ACTIVE_TASK::request_reread_app_info() {
APP_INIT_DATA aid;
init_app_init_data(aid);
int retval = write_app_init_file(aid);
if (retval) return retval;
process_control_queue.msg_queue_send(
"<reread_app_info/>",
app_client_shm.shm->process_control_request
);
return 0;
}
// tell all running apps of a project to reread prefs
//
void ACTIVE_TASK_SET::request_reread_prefs(PROJECT* project) {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->result->project != project) continue;
if (!atp->process_exists()) continue;
atp->request_reread_prefs();
}
}
void ACTIVE_TASK_SET::request_reread_app_info() {
for (unsigned int i=0; i<active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks[i];
if (!atp->process_exists()) continue;
atp->request_reread_app_info();
}
}
// send quit message to all tasks in the project
// (or all tasks, if proj is NULL).
// If they don't exit in QUIT_TIMEOUT seconds,
// send them a kill signal and wait up to 5 more seconds to exit.
// This is called when the client exits,
// or when a project is detached or reset
//
int ACTIVE_TASK_SET::exit_tasks(PROJECT* proj) {
if (log_flags.task_debug) {
msg_printf(NULL, MSG_INFO, "[task_debug] requesting tasks to exit");
}
request_tasks_exit(proj);
// Wait for tasks to exit normally; if they don't then kill them
//
if (wait_for_exit(QUIT_TIMEOUT, proj)) {
if (log_flags.task_debug) {
msg_printf(NULL, MSG_INFO,
"[task_debug] all tasks haven't exited after %d sec; killing them",
QUIT_TIMEOUT
);
}
kill_tasks(proj);
if (wait_for_exit(5, proj)) {
if (log_flags.task_debug) {
msg_printf(NULL, MSG_INFO,
"[task_debug] tasks still not exited after 5 secs; giving up"
);
}
} else {
if (log_flags.task_debug) {
msg_printf(NULL, MSG_INFO, "[task_debug] all tasks exited");
}
}
} else {
if (log_flags.task_debug) {
msg_printf(NULL, MSG_INFO, "[task_debug] all tasks exited");
}
}
// get final checkpoint_cpu_times
//
get_msgs();
gstate.request_schedule_cpus("exit_tasks");
return 0;
}
// Wait up to wait_time seconds for processes to exit
// If proj is zero, wait for all processes, else that project's
// NOTE: it's bad form to sleep, but it would be complex to avoid it here
//
int ACTIVE_TASK_SET::wait_for_exit(double wait_time, PROJECT* proj) {
bool all_exited;
unsigned int i,n;
ACTIVE_TASK *atp;
for (i=0; i<10; i++) {
all_exited = true;
for (n=0; n<active_tasks.size(); n++) {
atp = active_tasks[n];
if (proj && atp->wup->project != proj) continue;
if (!atp->has_task_exited()) {
all_exited = false;
break;
}
}
if (all_exited) return 0;
boinc_sleep(wait_time/10.0);
}
return ERR_NOT_EXITED;
}
int ACTIVE_TASK_SET::abort_project(PROJECT* project) {
vector<ACTIVE_TASK*>::iterator task_iter;
ACTIVE_TASK* atp;
exit_tasks(project);
task_iter = active_tasks.begin();
while (task_iter != active_tasks.end()) {
atp = *task_iter;
if (atp->result->project == project) {
client_clean_out_dir(atp->slot_dir, "abort_project()");
remove_project_owned_dir(atp->slot_dir);
task_iter = active_tasks.erase(task_iter);
delete atp;
} else {
++task_iter;
}
}
return 0;
}
// suspend all currently running tasks
// e.g. because on batteries, time of day, benchmarking, CPU throttle, etc.
//
void ACTIVE_TASK_SET::suspend_all(int reason) {
for (unsigned int i=0; i<active_tasks.size(); i++) {
ACTIVE_TASK* atp = active_tasks[i];
// don't suspend if process doesn't exist,
// or if quit/abort is pending.
// If process is currently suspended, proceed;
// the new suspension may require it to be removed from memory.
// E.g. a GPU job may currently be suspended due to CPU throttling,
// and therefore left in memory,
// but this suspension (say, a user request)
// might require it to be removed from memory.
//
switch (atp->task_state()) {
case PROCESS_EXECUTING:
case PROCESS_SUSPENDED:
break;
default:
continue;
}
// special cases for non-CPU-intensive apps
//
if (atp->result->non_cpu_intensive()) {
if (cc_config.dont_suspend_nci) {
continue;
}
if (reason == SUSPEND_REASON_BATTERIES) {
continue;
}
}
// handle CPU throttling separately
//
if (reason == SUSPEND_REASON_CPU_THROTTLE) {
if (atp->result->dont_throttle()) continue;
atp->preempt(REMOVE_NEVER, reason);
continue;
}
#ifdef ANDROID
// On Android, remove apps from memory if on batteries
// no matter what the reason for suspension.
// The message polling in the BOINC runtime system
// imposes an overhead which drains the battery
//
if (gstate.host_info.host_is_running_on_batteries()) {
atp->preempt(REMOVE_ALWAYS);
continue;
}
#endif
switch (reason) {
case SUSPEND_REASON_BENCHMARKS:
atp->preempt(REMOVE_NEVER);
break;
case SUSPEND_REASON_CPU_USAGE:
// If we're suspending because of non-BOINC CPU load,
// don't remove from memory.
// Some systems do a security check when apps are launched,
// which uses a lot of CPU.
// Avoid going into a preemption loop.
//
if (atp->result->non_cpu_intensive()) break;
atp->preempt(REMOVE_NEVER);
break;
case SUSPEND_REASON_BATTERY_OVERHEATED:
case SUSPEND_REASON_BATTERY_CHARGING:
// these conditions can oscillate, so leave apps in mem
//
atp->preempt(REMOVE_NEVER);
break;
default:
atp->preempt(REMOVE_MAYBE_USER);
break;
}
}
}
// resume all currently scheduled tasks
//
void ACTIVE_TASK_SET::unsuspend_all(int reason) {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
if (atp->task_state() == PROCESS_UNINITIALIZED) {
if (atp->resume_or_start(false)) {
msg_printf(atp->wup->project, MSG_INTERNAL_ERROR,
"Couldn't restart task %s", atp->result->name
);
}
} else if (atp->task_state() == PROCESS_SUSPENDED) {
atp->unsuspend(reason);
}
}
}
// Check to see if any tasks are running
// called if benchmarking and waiting for suspends to happen
// or the system needs to suspend itself so we are suspending
// the applications
//
bool ACTIVE_TASK_SET::is_task_executing() {
unsigned int i;
ACTIVE_TASK* atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (atp->task_state() == PROCESS_EXECUTING) {
return true;
}
}
return false;
}
// Send quit message to all app processes
// This is called when the client exits,
// or when a project is detached or reset
//
void ACTIVE_TASK_SET::request_tasks_exit(PROJECT* proj) {
unsigned int i;
ACTIVE_TASK *atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (proj && atp->wup->project != proj) continue;
if (!atp->process_exists()) continue;
atp->request_exit();
}
}
// Send kill signal to all app processes
// Don't wait for them to exit
//
void ACTIVE_TASK_SET::kill_tasks(PROJECT* proj) {
unsigned int i;
ACTIVE_TASK *atp;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (proj && atp->wup->project != proj) continue;
if (!atp->process_exists()) continue;
atp->kill_running_task(true);
}
}
// send a <suspend> message
//
int ACTIVE_TASK::suspend() {
if (!app_client_shm.shm) return 0;
if (task_state() != PROCESS_EXECUTING) {
msg_printf(result->project, MSG_INTERNAL_ERROR,
"ACTIVE_TASK::SUSPEND(): expected task %s to be executing",
result->name
);
}
int n = process_control_queue.msg_queue_purge("<resume/>");
if (n == 0) {
process_control_queue.msg_queue_send(
"<suspend/>",
app_client_shm.shm->process_control_request
);
}
set_task_state(PROCESS_SUSPENDED, "suspend");
return 0;
}
// resume a suspended task
//
int ACTIVE_TASK::unsuspend(int reason) {
if (!app_client_shm.shm) return 0;
if (task_state() != PROCESS_SUSPENDED) {
msg_printf(result->project, MSG_INFO,
"Internal error: expected process %s to be suspended", result->name
);
}
if (log_flags.cpu_sched && reason != SUSPEND_REASON_CPU_THROTTLE) {
msg_printf(result->project, MSG_INFO,
"[cpu_sched] Resuming %s", result->name
);
}
int n = process_control_queue.msg_queue_purge("<suspend/>");
if (n == 0) {
process_control_queue.msg_queue_send(
"<resume/>",
app_client_shm.shm->process_control_request
);
}
set_task_state(PROCESS_EXECUTING, "unsuspend");
return 0;
}
void ACTIVE_TASK::send_network_available() {
if (!app_client_shm.shm) return;
process_control_queue.msg_queue_send(
"<network_available/>",
app_client_shm.shm->process_control_request
);
return;
}
// See if the app has placed a new message in shared mem
// (with CPU done, frac done etc.)
// If so parse it and return true.
//
bool ACTIVE_TASK::get_app_status_msg() {
char msg_buf[MSG_CHANNEL_SIZE];
double fd;
int other_pid;
double dtemp;
static double last_msg_time=0;
if (!app_client_shm.shm) {
msg_printf(result->project, MSG_INFO,
"Task %s: no shared memory segment", result->name
);
return false;
}
if (!app_client_shm.shm->app_status.get_msg(msg_buf)) {
return false;
}
if (log_flags.app_msg_receive) {
msg_printf(this->wup->project, MSG_INFO,
"[app_msg_receive] got msg from slot %d: %s", slot, msg_buf
);
}
want_network = 0;
current_cpu_time = checkpoint_cpu_time = 0.0;
if (parse_double(msg_buf, "<fraction_done>", fd)) {
// fraction_done will be reported as zero
// until the app's first call to boinc_fraction_done().
// So ignore zeros.
//
if (fd) {
fraction_done = fd;
fraction_done_elapsed_time = elapsed_time;
if (!first_fraction_done) {
first_fraction_done = fd;
first_fraction_done_elapsed_time = elapsed_time;
}
if (log_flags.task_debug && (fd<0 || fd>1)) {
if (gstate.now > last_msg_time + 60) {
msg_printf(this->wup->project, MSG_INFO,
"[task_debug] app reported bad fraction done: %f", fd
);
last_msg_time = gstate.now;
}
}
}
}
parse_double(msg_buf, "<current_cpu_time>", current_cpu_time);
parse_double(msg_buf, "<checkpoint_cpu_time>", checkpoint_cpu_time);
parse_double(msg_buf, "<fpops_per_cpu_sec>", result->fpops_per_cpu_sec);
parse_double(msg_buf, "<fpops_cumulative>", result->fpops_cumulative);
parse_double(msg_buf, "<intops_per_cpu_sec>", result->intops_per_cpu_sec);
parse_double(msg_buf, "<intops_cumulative>", result->intops_cumulative);
if (parse_double(msg_buf, "<bytes_sent>", dtemp)) {
if (dtemp > bytes_sent_episode) {
double nbytes = dtemp - bytes_sent_episode;
daily_xfer_history.add(nbytes, true);
bytes_sent += nbytes;
}
bytes_sent_episode = dtemp;
}
if (parse_double(msg_buf, "<bytes_received>", dtemp)) {
if (dtemp > bytes_received_episode) {
double nbytes = dtemp - bytes_received_episode;
daily_xfer_history.add(nbytes, false);
bytes_received += nbytes;
}
bytes_received_episode = dtemp;
}
parse_int(msg_buf, "<want_network>", want_network);
if (parse_int(msg_buf, "<other_pid>", other_pid)) {
// for now, we handle only one of these
other_pids.clear();
other_pids.push_back(other_pid);
}
if (current_cpu_time < 0) {
msg_printf(result->project, MSG_INFO,
"app reporting negative CPU: %f", current_cpu_time
);
current_cpu_time = 0;
}
if (checkpoint_cpu_time < 0) {
msg_printf(result->project, MSG_INFO,
"app reporting negative checkpoint CPU: %f", checkpoint_cpu_time
);
checkpoint_cpu_time = 0;
}
return true;
}
void ACTIVE_TASK::get_graphics_msg() {
char msg_buf[MSG_CHANNEL_SIZE];
if (!app_client_shm.shm) return;
if (app_client_shm.shm->graphics_reply.get_msg(msg_buf)) {
if (log_flags.app_msg_receive) {
msg_printf(this->wup->project, MSG_INFO,
"[app_msg_receive] got msg from slot %d: %s", slot, msg_buf
);
}
parse_str(msg_buf, "<web_graphics_url>", web_graphics_url, sizeof(web_graphics_url));
parse_str(msg_buf, "<remote_desktop_addr>", remote_desktop_addr, sizeof(remote_desktop_addr));
}
}
bool ACTIVE_TASK::get_trickle_up_msg() {
char msg_buf[MSG_CHANNEL_SIZE];
bool found = false;
int retval;
if (!app_client_shm.shm) return false;
if (app_client_shm.shm->trickle_up.get_msg(msg_buf)) {
if (match_tag(msg_buf, "<have_new_trickle_up/>")) {
if (log_flags.app_msg_receive) {
msg_printf(NULL, MSG_INFO,
"[app_msg_receive] got msg from slot %d: %s", slot, msg_buf
);
}
retval = move_trickle_file();
if (!retval) {
wup->project->trickle_up_pending = true;
}
}
if (match_tag(msg_buf, "<have_new_upload_file/>")) {
if (log_flags.app_msg_receive) {
msg_printf(NULL, MSG_INFO,
"[app_msg_receive] got msg from slot %d: %s", slot, msg_buf
);
}
handle_upload_files();
}
found = true;
}
return found;
}
// check for msgs from active tasks,
// and update their elapsed time and other info
//
void ACTIVE_TASK_SET::get_msgs() {
unsigned int i;
ACTIVE_TASK *atp;
double old_time;
static double last_time=0;
double delta_t;
if (!gstate.clock_change && last_time) {
delta_t = gstate.now - last_time;
// Normally this is called every second.
// If delta_t is > 10, we'll assume that a period of hibernation
// or suspension happened, and treat it as zero.
// If negative, must be clock reset. Ignore.
//
if (delta_t > 10 || delta_t < 0) {
delta_t = 0;
}
} else {
delta_t = 0;
}
last_time = gstate.now;
double et_diff = delta_t;
double et_diff_throttle = delta_t * gstate.global_prefs.cpu_usage_limit/100;
for (i=0; i<active_tasks.size(); i++) {
atp = active_tasks[i];
if (!atp->process_exists()) continue;
old_time = atp->checkpoint_cpu_time;
if (atp->scheduler_state == CPU_SCHED_SCHEDULED && !gstate.tasks_suspended) {
double x = atp->result->dont_throttle()?et_diff:et_diff_throttle;
atp->elapsed_time += x;
atp->wup->project->elapsed_time += x;
}
if (atp->get_app_status_msg()) {
if (old_time != atp->checkpoint_cpu_time) {
char buf[512];
sprintf(buf, "%s checkpointed", atp->result->name);
if (atp->overdue_checkpoint) {
gstate.request_schedule_cpus(buf);
}
atp->checkpoint_wall_time = gstate.now;
atp->premature_exit_count = 0;
atp->checkpoint_elapsed_time = atp->elapsed_time;
atp->checkpoint_fraction_done = atp->fraction_done;
atp->checkpoint_fraction_done_elapsed_time = atp->fraction_done_elapsed_time;
if (log_flags.checkpoint_debug) {
msg_printf(atp->wup->project, MSG_INFO,
"[checkpoint] result %s checkpointed",
atp->result->name
);
}
atp->write_task_state_file();
}
}
atp->get_trickle_up_msg();
atp->get_graphics_msg();
}
}
// The job just checkpointed.
// Write some state items to a file in the slot dir
// (this avoids rewriting the state file on each checkpoint)
//
void ACTIVE_TASK::write_task_state_file() {
char path[MAXPATHLEN];
sprintf(path, "%s/%s", slot_dir, TASK_STATE_FILENAME);
FILE* f = boinc_fopen(path, "w");
if (!f) return;
fprintf(f,
"<active_task>\n"
" <project_master_url>%s</project_master_url>\n"
" <result_name>%s</result_name>\n"
" <checkpoint_cpu_time>%f</checkpoint_cpu_time>\n"
" <checkpoint_elapsed_time>%f</checkpoint_elapsed_time>\n"
" <fraction_done>%f</fraction_done>\n"
" <peak_working_set_size>%.0f</peak_working_set_size>\n"
" <peak_swap_size>%.0f</peak_swap_size>\n"
" <peak_disk_usage>%.0f</peak_disk_usage>\n"
"</active_task>\n",
result->project->master_url,
result->name,
checkpoint_cpu_time,
checkpoint_elapsed_time,
checkpoint_fraction_done,
peak_working_set_size,
peak_swap_size,
peak_disk_usage
);
fclose(f);
}
// called on startup; read the task state file in case it's more recent
// than the main state file
//
void ACTIVE_TASK::read_task_state_file() {
char buf[4096], path[MAXPATHLEN], s[1024];
sprintf(path, "%s/%s", slot_dir, TASK_STATE_FILENAME);
FILE* f = boinc_fopen(path, "r");
if (!f) return;
buf[0] = 0;
(void) fread(buf, 1, 4096, f);
fclose(f);
buf[4095] = 0;
double x;
// TODO: use XML parser
// sanity checks - project and result name must match
//
if (!parse_str(buf, "<project_master_url>", s, sizeof(s))) {
msg_printf(wup->project, MSG_INTERNAL_ERROR,
"no project URL in task state file"
);
return;
}
if (!urls_match(s, result->project->master_url)) {
msg_printf(wup->project, MSG_INTERNAL_ERROR,
"wrong project URL in task state file"
);
return;
}
if (!parse_str(buf, "<result_name>", s, sizeof(s))) {
msg_printf(wup->project, MSG_INTERNAL_ERROR,
"no task name in task state file"
);
return;
}
if (strcmp(s, result->name)) {
msg_printf(wup->project, MSG_INTERNAL_ERROR,
"wrong task name in task state file"
);
return;
}
if (parse_double(buf, "<checkpoint_cpu_time>", x)) {
if (x > checkpoint_cpu_time) {
checkpoint_cpu_time = x;
}
}
if (parse_double(buf, "<checkpoint_elapsed_time>", x)) {
if (x > checkpoint_elapsed_time) {
checkpoint_elapsed_time = x;
}
}
if (parse_double(buf, "<peak_working_set_size>", x)) {
peak_working_set_size = x;
}
if (parse_double(buf, "<peak_swap_size>", x)) {
peak_swap_size = x;
}
if (parse_double(buf, "<peak_disk_usage>", x)) {
peak_disk_usage = x;
}
}