mirror of https://github.com/BOINC/boinc.git
302 lines
9.2 KiB
C++
302 lines
9.2 KiB
C++
// This file is part of BOINC.
|
|
// http://boinc.berkeley.edu
|
|
// Copyright (C) 2008 University of California
|
|
//
|
|
// BOINC is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU Lesser General Public License
|
|
// as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// BOINC is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Structures representing coprocessors (e.g. GPUs);
|
|
// used in both client and server.
|
|
//
|
|
// Notes:
|
|
//
|
|
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
|
|
// 2) The design treats each resource type as a pool of identical devices;
|
|
// for example, there is a single "CUDA long-term debt" per project,
|
|
// and a scheduler request contains a request (#instances, instance-seconds)
|
|
// for CUDA jobs.
|
|
// In reality, the instances of a resource type can have different properties:
|
|
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
|
|
// How to resolve this discrepancy?
|
|
//
|
|
// Prior to 21 Apr 09 we identified the fastest instance
|
|
// and pretended that the others were identical to it.
|
|
// This approach has a serious flaw:
|
|
// suppose that the fastest instance has characteristics
|
|
// (version, RAM etc.) that satisfy the project's requirements,
|
|
// but other instances to not.
|
|
// Then BOINC executes jobs on GPUs that can't handle them,
|
|
// the jobs fail, the host is punished, etc.
|
|
//
|
|
// We could treat each GPU has a separate resource,
|
|
// with its own set of debts, backoffs, etc.
|
|
// However, this would imply tying jobs to instances,
|
|
// which is undesirable from a scheduling viewpoint.
|
|
// It would also be a big code change in both client and server.
|
|
//
|
|
// Instead, (as of 21 Apr 09) our approach is to identify a
|
|
// "most capable" instance, which in the case of CUDA is based on
|
|
// a) compute capability
|
|
// b) driver version
|
|
// c) RAM size
|
|
// d) est. FLOPS
|
|
// (in decreasing priority).
|
|
// We ignore and don't use any instances that are less capable
|
|
// on any of these axes.
|
|
//
|
|
// This design avoids running coprocessor apps on instances
|
|
// that are incapable of handling them, and it involves no server changes.
|
|
// Its drawback is that, on systems with multiple and differing GPUs,
|
|
// it may not use some GPUs that actually could be used.
|
|
|
|
#ifndef _COPROC_
|
|
#define _COPROC_
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cstring>
|
|
|
|
#ifdef _USING_FCGI_
|
|
#include "boinc_fcgi.h"
|
|
#endif
|
|
|
|
#include "miofile.h"
|
|
#include "cal_boinc.h"
|
|
|
|
#define MAX_COPROC_INSTANCES 64
|
|
|
|
// represents a requirement for a coproc.
|
|
// This is a parsed version of the <coproc> elements in an <app_version>
|
|
// (used in client only)
|
|
//
|
|
struct COPROC_REQ {
|
|
char type[256]; // must be unique
|
|
double count;
|
|
int parse(MIOFILE&);
|
|
};
|
|
|
|
// represents a set of identical coprocessors on a particular computer.
|
|
// Abstract class;
|
|
// objects will always be a derived class (COPROC_CUDA, COPROC_ATI)
|
|
// Used in both client and server.
|
|
//
|
|
struct COPROC {
|
|
char type[256]; // must be unique
|
|
int count; // how many are present
|
|
double peak_flops;
|
|
double used; // how many are in use (used by client)
|
|
|
|
// the following are used in both client and server for work-fetch info
|
|
//
|
|
double req_secs;
|
|
// how many instance-seconds of work requested
|
|
double req_instances;
|
|
// client is requesting enough jobs to use this many instances
|
|
double estimated_delay;
|
|
// resource will be saturated for this long
|
|
|
|
// temps used in client (enforce_schedule())
|
|
// to keep track of what fraction of each instance is in use
|
|
// during instance assignment
|
|
//
|
|
double usage[MAX_COPROC_INSTANCES];
|
|
double pending_usage[MAX_COPROC_INSTANCES];
|
|
|
|
// the device number of each instance
|
|
// These are not sequential if we omit instances (see above)
|
|
//
|
|
int device_nums[MAX_COPROC_INSTANCES];
|
|
int device_num; // temp used in scan process
|
|
bool running_graphics_app[MAX_COPROC_INSTANCES];
|
|
// is this GPU running a graphics app (NVIDIA only)
|
|
double available_ram[MAX_COPROC_INSTANCES];
|
|
bool available_ram_unknown[MAX_COPROC_INSTANCES];
|
|
// couldn't get available RAM; don't start new apps on this instance
|
|
double available_ram_fake[MAX_COPROC_INSTANCES];
|
|
|
|
double last_print_time;
|
|
|
|
#ifndef _USING_FCGI_
|
|
virtual void write_xml(MIOFILE&);
|
|
void write_request(MIOFILE&);
|
|
#endif
|
|
inline void clear() {
|
|
// can't just memcpy() - trashes vtable
|
|
type[0] = 0;
|
|
count = 0;
|
|
used = 0;
|
|
req_secs = 0;
|
|
req_instances = 0;
|
|
estimated_delay = 0;
|
|
for (int i=0; i<MAX_COPROC_INSTANCES; i++) {
|
|
device_nums[i] = 0;
|
|
running_graphics_app[i] = true;
|
|
available_ram[i] = 0;
|
|
available_ram_fake[i] = 0;
|
|
available_ram_unknown[i] = true;
|
|
}
|
|
}
|
|
inline void clear_usage() {
|
|
for (int i=0; i<count; i++) {
|
|
usage[i] = 0;
|
|
pending_usage[i] = 0;
|
|
}
|
|
}
|
|
COPROC(const char* t){
|
|
clear();
|
|
strcpy(type, t);
|
|
}
|
|
COPROC() {
|
|
clear();
|
|
}
|
|
virtual ~COPROC(){}
|
|
void print_available_ram();
|
|
};
|
|
|
|
// based on cudaDeviceProp from /usr/local/cuda/include/driver_types.h
|
|
// doesn't have to match exactly since we get the attributes one at a time.
|
|
//
|
|
struct CUDA_DEVICE_PROP {
|
|
char name[256];
|
|
unsigned int totalGlobalMem;
|
|
// not used on the server; dtotalGlobalMem is used instead
|
|
// (since some boards have >= 4GB)
|
|
int sharedMemPerBlock;
|
|
int regsPerBlock;
|
|
int warpSize;
|
|
int memPitch;
|
|
int maxThreadsPerBlock;
|
|
int maxThreadsDim[3];
|
|
int maxGridSize[3];
|
|
int clockRate;
|
|
int totalConstMem;
|
|
int major; // compute capability
|
|
int minor;
|
|
int textureAlignment;
|
|
int deviceOverlap;
|
|
int multiProcessorCount;
|
|
double dtotalGlobalMem; // not defined in client
|
|
};
|
|
|
|
struct COPROC_CUDA : public COPROC {
|
|
int cuda_version; // CUDA runtime version
|
|
int display_driver_version;
|
|
CUDA_DEVICE_PROP prop;
|
|
|
|
#ifndef _USING_FCGI_
|
|
virtual void write_xml(MIOFILE&, bool include_request);
|
|
#endif
|
|
COPROC_CUDA(): COPROC("CUDA"){}
|
|
virtual ~COPROC_CUDA(){}
|
|
void get(
|
|
bool use_all,
|
|
std::vector<std::string>&, std::vector<std::string>&,
|
|
std::vector<int>& ignore_devs
|
|
);
|
|
void description(char*);
|
|
void clear();
|
|
int parse(MIOFILE&);
|
|
void get_available_ram();
|
|
void set_peak_flops() {
|
|
// clock rate is scaled down by 1000;
|
|
// each processor has 8 or 32 cores;
|
|
// each core can do 2 ops per clock
|
|
//
|
|
int cores_per_proc = (prop.major>=2)?32:8;
|
|
double x = (1000.*prop.clockRate) * prop.multiProcessorCount * cores_per_proc * 2.;
|
|
peak_flops = x?x:5e10;
|
|
}
|
|
|
|
bool check_running_graphics_app();
|
|
void fake(int driver_version, double ram, int count);
|
|
|
|
};
|
|
|
|
struct COPROC_ATI : public COPROC {
|
|
char name[256];
|
|
char version[50];
|
|
int version_num;
|
|
// based on CAL version (not driver version)
|
|
// encoded as 1000000*major + 1000*minor + release
|
|
bool atirt_detected;
|
|
bool amdrt_detected;
|
|
CALdeviceattribs attribs;
|
|
CALdeviceinfo info;
|
|
#ifndef _USING_FCGI_
|
|
virtual void write_xml(MIOFILE&, bool include_request);
|
|
#endif
|
|
COPROC_ATI(): COPROC("ATI"){}
|
|
virtual ~COPROC_ATI(){}
|
|
void get(
|
|
bool use_all,
|
|
std::vector<std::string>&, std::vector<std::string>&,
|
|
std::vector<int>& ignore_devs
|
|
);
|
|
void description(char*);
|
|
void clear();
|
|
int parse(MIOFILE&);
|
|
void get_available_ram();
|
|
void set_peak_flops() {
|
|
double x = attribs.numberOfSIMD * attribs.wavefrontSize * 2.5 * attribs.engineClock * 1.e6;
|
|
// clock is in MHz
|
|
peak_flops = x?x:5e10;
|
|
}
|
|
void fake(double, int);
|
|
};
|
|
|
|
struct COPROCS {
|
|
COPROC_CUDA cuda;
|
|
COPROC_ATI ati;
|
|
|
|
COPROCS(){}
|
|
~COPROCS(){} // don't delete coprocs; else crash in APP_INIT_DATA logic
|
|
void write_xml(MIOFILE& out, bool include_request);
|
|
void get(
|
|
bool use_all, std::vector<std::string> &descs,
|
|
std::vector<std::string> &warnings,
|
|
std::vector<int>& ignore_cuda_dev,
|
|
std::vector<int>& ignore_ati_dev
|
|
);
|
|
int parse(MIOFILE&);
|
|
void summary_string(char*, int);
|
|
|
|
// Copy a coproc set, possibly setting usage to zero.
|
|
// used in round-robin simulator and CPU scheduler,
|
|
// to avoid messing w/ master copy
|
|
//
|
|
void clone(COPROCS& c, bool copy_used) {
|
|
cuda = c.cuda;
|
|
ati = c.ati;
|
|
if (!copy_used) {
|
|
cuda.used = 0;
|
|
ati.used = 0;
|
|
}
|
|
}
|
|
inline void clear() {
|
|
cuda.count = 0;
|
|
ati.count = 0;
|
|
}
|
|
inline void clear_usage() {
|
|
cuda.clear_usage();
|
|
ati.clear_usage();
|
|
}
|
|
inline bool none() {
|
|
return (cuda.count==0) && (ati.count==0);
|
|
}
|
|
inline int ndevs() {
|
|
return cuda.count + ati.count;
|
|
}
|
|
};
|
|
|
|
#endif
|