boinc/api/boinc_api.C

502 lines
13 KiB
C

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// Code that's in the BOINC app library (but NOT in the core client)
// graphics-related code goes in graphics_api.C, not here
#ifdef _WIN32
#include "stdafx.h"
#endif
#ifndef _WIN32
#include "config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#include <sys/resource.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <string>
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#include <fcntl.h>
#include <algorithm>
#include <sys/types.h>
using namespace std;
#endif
#include "diagnostics.h"
#include "parse.h"
#include "shmem.h"
#include "util.h"
#include "filesys.h"
#include "error_numbers.h"
#include "app_ipc.h"
#include "boinc_api.h"
static APP_INIT_DATA aid;
APP_CLIENT_SHM *app_client_shm;
static double timer_period = 1.0/50.0; // 50 Hz timer
static double time_until_checkpoint;
static double time_until_fraction_done_update;
static double fraction_done;
static double last_checkpoint_cpu_time;
static bool ready_to_checkpoint = false;
static bool this_process_active;
static bool time_to_quit = false;
static double last_wu_cpu_time;
static bool standalone = false;
static double initial_wu_cpu_time;
static bool have_new_trickle_up = false;
#ifdef _WIN32
HANDLE hErrorNotification;
HANDLE hQuitRequest;
HANDLE hSuspendRequest;
HANDLE hResumeRequest;
HANDLE hSharedMem;
HANDLE worker_thread_handle;
MMRESULT timer_id;
#endif
//
// Forward declare implementation functions.
//
static void setup_shared_mem();
static void cleanup_shared_mem();
static int update_app_progress(double frac_done, double cpu_t, double cp_cpu_t, double ws_t);
static int set_timer(double period);
// Standard BOINC APIs
//
int boinc_init(bool standalone_ /* = false */) {
FILE* f;
int retval;
#ifdef _WIN32
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&worker_thread_handle,
0,
FALSE,
DUPLICATE_SAME_ACCESS
);
#endif
// Store startup mode for later use.
standalone = standalone_;
// Parse initial data file.
retval = boinc_parse_init_data_file();
if (retval) return retval;
// copy the WU CPU time to a separate var,
// since we may reread the structure again later.
//
initial_wu_cpu_time = aid.wu_cpu_time;
if (boinc_file_exists(FD_INIT_FILE)) {
f = boinc_fopen(FD_INIT_FILE, "r");
if (f) {
parse_fd_init_file(f);
fclose(f);
}
}
time_until_checkpoint = aid.checkpoint_period;
last_checkpoint_cpu_time = aid.wu_cpu_time;
time_until_fraction_done_update = aid.fraction_done_update_period;
this_process_active = true;
last_wu_cpu_time = aid.wu_cpu_time;
set_timer(timer_period);
setup_shared_mem();
return 0;
}
int boinc_finish(int status) {
double cur_mem;
boinc_thread_cpu_time(last_checkpoint_cpu_time, cur_mem);
last_checkpoint_cpu_time += aid.wu_cpu_time;
update_app_progress(fraction_done, last_checkpoint_cpu_time, last_checkpoint_cpu_time, cur_mem);
#ifdef _WIN32
// Stop the timer
timeKillEvent(timer_id);
CloseHandle(worker_thread_handle);
#endif
cleanup_shared_mem();
if (status == 0) {
FILE* f = fopen(BOINC_FINISH_CALLED_FILE, "w");
if (f) fclose(f);
}
exit(status);
return 0;
}
bool boinc_is_standalone() {
return standalone;
}
// parse the init data file.
// This is done at startup, and also if a "reread prefs" message is received
//
int boinc_parse_init_data_file() {
FILE* f;
int retval;
// If in standalone mode, use init files if they're there,
// but don't demand that they exist
//
if (!boinc_file_exists(INIT_DATA_FILE)) {
if (standalone) {
safe_strncpy(aid.project_preferences, "", sizeof(aid.project_preferences));
safe_strncpy(aid.user_name, "Unknown user", sizeof(aid.user_name));
safe_strncpy(aid.team_name, "Unknown team", sizeof(aid.team_name));
aid.wu_cpu_time = 1000;
aid.user_total_credit = 1000;
aid.user_expavg_credit = 500;
aid.host_total_credit = 1000;
aid.host_expavg_credit = 500;
aid.checkpoint_period = DEFAULT_CHECKPOINT_PERIOD;
aid.fraction_done_update_period = DEFAULT_FRACTION_DONE_UPDATE_PERIOD;
} else {
fprintf(stderr,
"boinc_parse_init_data_file(): can't open init data file\n"
);
return ERR_FOPEN;
}
} else {
f = boinc_fopen(INIT_DATA_FILE, "r");
retval = parse_init_data_file(f, aid);
fclose(f);
if (retval) {
fprintf(stderr,
"boinc_parse_init_data_file(): can't parse init data file\n"
);
return retval;
}
}
return 0;
}
// communicate to the core client (via shared mem)
// the current CPU time and fraction done
//
static int update_app_progress(
double frac_done, double cpu_t, double cp_cpu_t, double ws_t
) {
char msg_buf[SHM_SEG_SIZE];
if (!app_client_shm) return 0;
sprintf(msg_buf,
"<fraction_done>%2.8f</fraction_done>\n"
"<current_cpu_time>%10.4f</current_cpu_time>\n"
"<checkpoint_cpu_time>%.15e</checkpoint_cpu_time>\n"
"<working_set_size>%f</working_set_size>\n",
frac_done, cpu_t, cp_cpu_t, ws_t
);
if (have_new_trickle_up) {
strcat(msg_buf, "<have_new_trickle_up/>\n");
have_new_trickle_up = false;
}
return app_client_shm->send_msg(msg_buf, APP_CORE_WORKER_SEG);
}
int boinc_get_init_data(APP_INIT_DATA& app_init_data) {
app_init_data = aid;
return 0;
}
// this can be called from the graphics thread
//
int boinc_wu_cpu_time(double& cpu_t) {
cpu_t = last_wu_cpu_time;
return 0;
}
#ifdef _WIN32
int boinc_thread_cpu_time(HANDLE thread_handle, double& cpu, double& ws) {
FILETIME creationTime,exitTime,kernelTime,userTime;
static bool first = true;
static DWORD first_count = 0;
if (first) {
first_count = GetTickCount();
first = false;
}
if (GetThreadTimes(
thread_handle, &creationTime, &exitTime, &kernelTime, &userTime)
) {
ULARGE_INTEGER tKernel, tUser;
LONGLONG totTime;
tKernel.LowPart = kernelTime.dwLowDateTime;
tKernel.HighPart = kernelTime.dwHighDateTime;
tUser.LowPart = userTime.dwLowDateTime;
tUser.HighPart = userTime.dwHighDateTime;
totTime = tKernel.QuadPart + tUser.QuadPart;
// Runtimes in 100-nanosecond units
cpu = totTime / 1.e7;
ws = 0;
} else {
// TODO: Handle timer wraparound
DWORD cur = GetTickCount();
cpu = ((cur - first_count)/1000.);
ws = 0;
}
return 0;
}
int boinc_worker_thread_cpu_time(double& cpu, double& ws) {
return boinc_thread_cpu_time(worker_thread_handle, cpu, ws);
}
int boinc_thread_cpu_time(double& cpu, double& ws) {
return boinc_thread_cpu_time(GetCurrentThread(), cpu, ws);
}
#else
#ifdef HAVE_SYS_RESOURCE_H
int boinc_worker_thread_cpu_time(double &cpu_t, double &ws_t) {
int retval;
struct rusage ru;
retval = getrusage(RUSAGE_SELF, &ru);
if (retval) {
fprintf(stderr, "error: could not get CPU time\n");
return ERR_GETRUSAGE;
}
// Sum the user and system time spent in this process
cpu_t = (double)ru.ru_utime.tv_sec + (((double)ru.ru_utime.tv_usec) / ((double)1000000.0));
cpu_t += (double)ru.ru_stime.tv_sec + (((double)ru.ru_stime.tv_usec) / ((double)1000000.0));
ws_t = ru.ru_idrss; // TODO: fix this (mult by page size)
return 0;
}
int boinc_thread_cpu_time(double& cpu, double& ws) {
return boinc_worker_thread_cpu_time(cpu, ws);
}
#endif
#endif // _WIN32
#ifdef _WIN32
static void CALLBACK on_timer(UINT uTimerID, UINT uMsg, DWORD dwUser, DWORD dw1, DWORD dw2) {
#else
static void on_timer(int a) {
#endif
if (!ready_to_checkpoint) {
time_until_checkpoint -= timer_period;
if (time_until_checkpoint <= 0) {
ready_to_checkpoint = true;
}
}
if (this_process_active) {
time_until_fraction_done_update -= timer_period;
if (time_until_fraction_done_update <= 0) {
double cur_cpu;
double cur_mem;
boinc_worker_thread_cpu_time(cur_cpu, cur_mem);
last_wu_cpu_time = cur_cpu + initial_wu_cpu_time;
update_app_progress(fraction_done, last_wu_cpu_time, last_checkpoint_cpu_time, cur_mem);
time_until_fraction_done_update = aid.fraction_done_update_period;
}
}
}
static int set_timer(double period) {
int retval=0;
#ifdef _WIN32
char buf[256];
// Use Windows multimedia timer, since it is more accurate
// than SetTimer and doesn't require an associated event loop
//
timer_id = timeSetEvent(
(int)(period*1000), // uDelay
(int)(period*1000), // uResolution
on_timer, // lpTimeProc
NULL, // dwUser
TIME_PERIODIC // fuEvent
);
sprintf(buf, "%s%s", QUIT_PREFIX, aid.comm_obj_name);
hQuitRequest = OpenEvent(EVENT_ALL_ACCESS, FALSE, buf);
#endif
#if HAVE_SIGNAL_H
#if HAVE_SYS_TIME_H
struct sigaction sa;
itimerval value;
sa.sa_handler = on_timer;
sa.sa_flags = SA_RESTART;
retval = sigaction(SIGALRM, &sa, NULL);
if (retval) {
perror("boinc set_timer() sigaction");
return retval;
}
value.it_value.tv_sec = (int)period;
value.it_value.tv_usec = ((int)(period*1000000))%1000000;
value.it_interval = value.it_value;
retval = setitimer(ITIMER_REAL, &value, NULL);
if (retval) {
perror("boinc set_timer() setitimer");
}
#endif
#endif
return retval;
}
static void setup_shared_mem() {
if (standalone) {
fprintf(stderr, "Standalone mode, so not using shared memory.\n");
return;
}
app_client_shm = new APP_CLIENT_SHM;
#ifdef _WIN32
char buf[256];
sprintf(buf, "%s%s", SHM_PREFIX, aid.comm_obj_name);
hSharedMem = attach_shmem(buf, (void**)&app_client_shm->shm);
if (hSharedMem == NULL) {
delete app_client_shm;
app_client_shm = NULL;
}
#endif
#ifdef HAVE_SYS_SHM_H
#ifdef HAVE_SYS_IPC_H
if (attach_shmem(aid.shm_key, (void**)&app_client_shm->shm)) {
delete app_client_shm;
app_client_shm = NULL;
}
#endif
#endif
}
static void cleanup_shared_mem() {
if (!app_client_shm) return;
#ifdef _WIN32
detach_shmem(hSharedMem, app_client_shm->shm);
#endif
#ifdef HAVE_SYS_SHM_H
#ifdef HAVE_SYS_IPC_H
detach_shmem(app_client_shm->shm);
#endif
#endif
delete app_client_shm;
app_client_shm = NULL;
}
int boinc_send_trickle_up(char* p) {
FILE* f = boinc_fopen(TRICKLE_UP_FILENAME, "wb");
if (!f) return ERR_FOPEN;
size_t n = fwrite(p, strlen(p), 1, f);
fclose(f);
if (n != 1) return ERR_WRITE;
have_new_trickle_up = true;
return 0;
}
bool boinc_time_to_checkpoint() {
#ifdef _WIN32
DWORD eventState;
// Check if core client has requested us to exit
eventState = WaitForSingleObject(hQuitRequest, 0L);
switch (eventState) {
case WAIT_OBJECT_0:
case WAIT_ABANDONED:
time_to_quit = true;
break;
}
#endif
// If the application has received a quit request it should checkpoint
//
if (time_to_quit) {
return true;
}
return ready_to_checkpoint;
}
int boinc_checkpoint_completed() {
double cur_cpu, cur_mem;
boinc_thread_cpu_time(cur_cpu, cur_mem);
last_wu_cpu_time = cur_cpu + aid.wu_cpu_time;
last_checkpoint_cpu_time = last_wu_cpu_time;
update_app_progress(fraction_done, last_checkpoint_cpu_time, last_checkpoint_cpu_time, cur_mem);
ready_to_checkpoint = false;
time_until_checkpoint = aid.checkpoint_period;
// If it's time to quit, call boinc_finish which will exit the app properly
//
if (time_to_quit) {
fprintf(stderr, "Received quit request from core client\n");
boinc_finish(ERR_QUIT_REQUEST);
}
return 0;
}
int boinc_fraction_done(double x) {
fraction_done = x;
return 0;
}
int boinc_child_start() {
this_process_active = false;
return 0;
}
int boinc_child_done(double cpu) {
this_process_active = true;
return 0;
}