boinc/sched/transitioner.C

559 lines
19 KiB
C

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// transitioner - handle transitions in the state of a WU
// - a result has become DONE (via timeout or client reply)
// - the WU error mask is set (e.g. by validater)
// - assimilation is finished
//
// cmdline:
// [ -asynch ] be asynchronous
// [ -one_pass ] do one pass, then exit
// [ -d x ] debug level x
// [ -mod n i ] process only WUs with (id mod n) == i
using namespace std;
#include <vector>
#include <unistd.h>
#include <climits>
#include <sys/time.h>
#include "boinc_db.h"
#include "util.h"
#include "backend_lib.h"
#include "sched_config.h"
#include "sched_util.h"
#include "sched_msgs.h"
#define LOCKFILE "transitioner.out"
#define PIDFILE "transitioner.pid"
#define SELECT_LIMIT 1000
#define BATCH_INSERT 1
int startup_time;
SCHED_CONFIG config;
R_RSA_PRIVATE_KEY key;
int mod_n, mod_i;
bool do_mod = false;
int result_suffix(char* name) {
char* p = strrchr(name, '_');
if (p) return atoi(p+1);
return 0;
}
int handle_wu(
DB_TRANSITIONER_ITEM_SET& transitioner,
std::vector<TRANSITIONER_ITEM>& items
) {
int ntotal, nerrors, retval, ninprogress, nsuccess;
int nunsent, ncouldnt_send, nover;
int canonical_result_index, j;
char suffix[256];
time_t now = time(0), x;
bool all_over_and_validated, have_result_to_validate, do_delete;
unsigned int i;
// count up the number of results in various states,
// and check for timed-out results
//
ntotal = 0;
nunsent = 0;
ninprogress = 0;
nover = 0;
nerrors = 0;
nsuccess = 0;
ncouldnt_send = 0;
have_result_to_validate = false;
int rs, max_result_suffix = -1;
TRANSITIONER_ITEM& wu_item = items[0];
for (i=0; i<items.size(); i++) {
TRANSITIONER_ITEM& res_item = items[i];
if (!res_item.res_id) continue;
ntotal++;
rs = result_suffix(res_item.res_name);
if (rs > max_result_suffix) max_result_suffix = rs;
switch (res_item.res_server_state) {
case RESULT_SERVER_STATE_UNSENT:
nunsent++;
break;
case RESULT_SERVER_STATE_IN_PROGRESS:
if (res_item.res_report_deadline < now) {
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] [RESULT#%d %s] result timed out (%d < %d) server_state:IN_PROGRESS=>OVER; outcome:NO_REPLY\n",
wu_item.id, wu_item.name, res_item.res_id, res_item.res_name,
res_item.res_report_deadline, (int)now
);
res_item.res_server_state = RESULT_SERVER_STATE_OVER;
res_item.res_outcome = RESULT_OUTCOME_NO_REPLY;
retval = transitioner.update_result(res_item);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] [RESULT#%d %s] update_result(): %d\n",
wu_item.id, wu_item.name, res_item.res_id,
res_item.res_name, retval
);
}
nover++;
} else {
ninprogress++;
}
break;
case RESULT_SERVER_STATE_OVER:
nover++;
switch (res_item.res_outcome) {
case RESULT_OUTCOME_COULDNT_SEND:
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] [RESULT#%d %s] result couldn't be sent\n",
wu_item.id, wu_item.name, res_item.res_id, res_item.res_name
);
ncouldnt_send++;
break;
case RESULT_OUTCOME_SUCCESS:
if (res_item.res_validate_state == VALIDATE_STATE_INIT) {
have_result_to_validate = true;
}
nsuccess++;
break;
case RESULT_OUTCOME_CLIENT_ERROR:
case RESULT_OUTCOME_VALIDATE_ERROR:
nerrors++;
break;
}
break;
}
}
log_messages.printf(
SCHED_MSG_LOG::DEBUG,
"[WU#%d %s] %d results: unsent %d, in_progress %d, over %d (success %d, error %d, couldnt_send %d)\n",
wu_item.id, wu_item.name, ntotal,
nunsent, ninprogress, nover, nsuccess, nerrors, ncouldnt_send
);
// trigger validation if we have a quorum
// and some result hasn't been validated
//
if (nsuccess >= wu_item.min_quorum && have_result_to_validate) {
wu_item.need_validate = true;
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] need_validate:=>true [nsuccess=%d >= min_quorum=%d]\n",
wu_item.id, wu_item.name, nsuccess, wu_item.min_quorum
);
}
// check for WU error conditions
// NOTE: check on max # of success results is done in validater
//
if (ncouldnt_send > 0) {
wu_item.error_mask |= WU_ERROR_COULDNT_SEND_RESULT;
}
if (nerrors > wu_item.max_error_results) {
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] WU has too many errors (%d errors for %d results)\n",
wu_item.id, wu_item.name, nerrors, (int)items.size()
);
wu_item.error_mask |= WU_ERROR_TOO_MANY_ERROR_RESULTS;
}
if ((int)items.size() > wu_item.max_total_results) {
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] WU has too many total results (%d)\n",
wu_item.id, wu_item.name, (int)items.size()
);
wu_item.error_mask |= WU_ERROR_TOO_MANY_TOTAL_RESULTS;
}
// if this WU had an error, don't send any unsent results,
// and trigger assimilation if needed
//
if (wu_item.error_mask) {
for (i=0; i<items.size(); i++) {
TRANSITIONER_ITEM& res_item = items[i];
if (res_item.res_id) {
bool update_result = false;
if (res_item.res_server_state == RESULT_SERVER_STATE_UNSENT) {
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] [RESULT#%d %s] server_state:UNSENT=>OVER; outcome:=>DIDNT_NEED\n",
wu_item.id, wu_item.name, res_item.res_id, res_item.res_name
);
res_item.res_server_state = RESULT_SERVER_STATE_OVER;
res_item.res_outcome = RESULT_OUTCOME_DIDNT_NEED;
update_result = true;
}
if (res_item.res_validate_state == VALIDATE_STATE_INIT) {
res_item.res_validate_state = VALIDATE_STATE_NO_CHECK;
update_result = true;
}
if (update_result) {
retval = transitioner.update_result(res_item);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] [RESULT#%d %s] result.update() == %d\n",
wu_item.id, wu_item.name, res_item.res_id, res_item.res_name, retval
);
}
}
}
}
if (wu_item.assimilate_state == ASSIMILATE_INIT) {
wu_item.assimilate_state = ASSIMILATE_READY;
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] error_mask:%d assimilate_state:INIT=>READY\n",
wu_item.id, wu_item.name, wu_item.error_mask
);
}
} else if (wu_item.assimilate_state == ASSIMILATE_INIT) {
// If no error, generate new results if needed.
// NOTE: n must be signed
//
int n = wu_item.target_nresults - nunsent - ninprogress - nsuccess;
string values;
char value_buf[MAX_QUERY_LEN];
if (n > 0) {
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] Generating %d more results (%d target - %d unsent - %d in progress - %d success)\n",
wu_item.id, wu_item.name, n, wu_item.target_nresults, nunsent, ninprogress, nsuccess
);
for (j=0; j<n; j++) {
sprintf(suffix, "%d", max_result_suffix+j+1);
char rtfpath[256];
sprintf(rtfpath, "../%s", wu_item.result_template_file);
#ifdef BATCH_INSERT
retval = create_result(
wu_item.id, wu_item.appid, wu_item.name,
rtfpath, suffix, key, config.upload_url, value_buf
);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] create_result() %d\n",
wu_item.id, wu_item.name, retval
);
return retval;
}
if (j==0) {
values = value_buf;
} else {
values += ",";
values += value_buf;
}
#else
retval = create_result(
wu_item.id, wu_item.appid, wu_item.name,
rtfpath, suffix, key, config.upload_url, 0
);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] create_result() %d\n",
wu_item.id, wu_item.name, retval
);
return retval;
}
#endif
}
#ifdef BATCH_INSERT
DB_RESULT r;
retval = r.insert_batch(values.c_str());
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] insert_batch() %d\n",
wu_item.id, wu_item.name, retval
);
return retval;
}
#endif
}
}
// scan results:
// - see if all over and validated
// - look for canonical result
//
canonical_result_index = -1;
all_over_and_validated = true;
for (i=0; i<items.size(); i++) {
TRANSITIONER_ITEM& res_item = items[i];
if (res_item.res_id) {
if (res_item.res_server_state == RESULT_SERVER_STATE_OVER) {
if (res_item.res_outcome == RESULT_OUTCOME_SUCCESS) {
if (res_item.res_validate_state == VALIDATE_STATE_INIT) {
all_over_and_validated = false;
}
}
} else {
all_over_and_validated = false;
}
if (res_item.res_id == wu_item.canonical_resultid) {
canonical_result_index = i;
}
}
}
if (wu_item.canonical_resultid && (canonical_result_index == -1)) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] can't find canonical result\n",
wu_item.id, wu_item.name
);
}
// if WU is assimilated, trigger file deletion
//
if (wu_item.assimilate_state == ASSIMILATE_DONE) {
// can delete input files if all results OVER
//
if (all_over_and_validated && wu_item.file_delete_state == FILE_DELETE_INIT) {
wu_item.file_delete_state = FILE_DELETE_READY;
log_messages.printf(
SCHED_MSG_LOG::DEBUG,
"[WU#%d %s] ASSIMILATE_DONE: file_delete_state:=>READY\n",
wu_item.id, wu_item.name
);
}
// output of error results can be deleted immediately;
// output of success results can be deleted if validated
//
for (i=0; i<items.size(); i++) {
TRANSITIONER_ITEM& res_item = items[i];
// can delete canonical result outputs only if all successful
// results have been validated
//
if (((int)i == canonical_result_index) && !all_over_and_validated) {
continue;
}
if (res_item.res_id) {
do_delete = false;
switch(res_item.res_outcome) {
case RESULT_OUTCOME_CLIENT_ERROR:
do_delete = true;
break;
case RESULT_OUTCOME_SUCCESS:
do_delete = (res_item.res_validate_state != VALIDATE_STATE_INIT);
break;
}
if (do_delete && res_item.res_file_delete_state == FILE_DELETE_INIT) {
log_messages.printf(
SCHED_MSG_LOG::NORMAL,
"[WU#%d %s] [RESULT#%d %s] file_delete_state:=>READY\n",
wu_item.id, wu_item.name, res_item.res_id, res_item.res_name
);
res_item.res_file_delete_state = FILE_DELETE_READY;
retval = transitioner.update_result(res_item);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] [RESULT#%d %s] result.update() == %d\n",
wu_item.id, wu_item.name, res_item.res_id, res_item.res_name, retval
);
}
}
}
}
}
wu_item.transition_time = INT_MAX;
for (i=0; i<items.size(); i++) {
TRANSITIONER_ITEM& res_item = items[i];
if (res_item.res_id) {
if (res_item.res_server_state == RESULT_SERVER_STATE_IN_PROGRESS) {
x = res_item.res_sent_time + wu_item.delay_bound;
if (x < wu_item.transition_time) {
wu_item.transition_time = x;
}
}
}
}
// If transition time is in the past,
// the system is bogged down and behind schedule.
// Make sure we don't process this WU again for at least a day.
//
if (wu_item.transition_time < now + 86400) {
wu_item.transition_time = now + 86400;
}
log_messages.printf(
SCHED_MSG_LOG::DEBUG,
"[WU#%d %s] setting transition_time to %d\n",
wu_item.id, wu_item.name, wu_item.transition_time
);
retval = transitioner.update_workunit(wu_item);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] workunit.update() == %d\n",
wu_item.id, wu_item.name, retval
);
return retval;
}
return 0;
}
bool do_pass() {
int retval;
DB_TRANSITIONER_ITEM_SET transitioner;
std::vector<TRANSITIONER_ITEM> items;
bool did_something = false;
check_stop_daemons();
// loop over entries that are due to be checked
//
while (!transitioner.enumerate((int)time(0), SELECT_LIMIT, items)) {
did_something = true;
TRANSITIONER_ITEM& wu_item = items[0];
// if we are assigned a transitioner number,
// limit which records we should looked at.
// It'll be less expensive to do the check here than in the DB.
// ??? why ???
//
if ((mod_n == 0) || ((mod_n != 0) && (mod_i == (wu_item.id % mod_n)))) {
if (config.use_transactions) {
retval = boinc_db.start_transaction();
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] transitioner.start_transaction() == %d\n",
wu_item.id, wu_item.name, retval
);
}
}
retval = handle_wu(transitioner, items);
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] handle_wu: %d; quitting\n",
wu_item.id, wu_item.name, retval
);
exit(1);
}
if (config.use_transactions) {
retval = boinc_db.commit_transaction();
if (retval) {
log_messages.printf(
SCHED_MSG_LOG::CRITICAL,
"[WU#%d %s] transitioner.commit_transaction() == %d\n",
wu_item.id, wu_item.name, retval
);
}
}
check_stop_daemons();
}
}
return did_something;
}
void main_loop(bool one_pass) {
int retval;
retval = boinc_db.open(config.db_name, config.db_host, config.db_user, config.db_passwd);
if (retval) {
log_messages.printf(SCHED_MSG_LOG::CRITICAL, "boinc_db.open: %d\n", retval);
exit(1);
}
if (one_pass) {
do_pass();
} else {
while (1) {
if (!do_pass()) sleep(1);
}
}
}
int main(int argc, char** argv) {
int i, retval;
bool asynch = false, one_pass=false;
char path[256];
check_stop_daemons();
startup_time = time(0);
for (i=1; i<argc; i++) {
if (!strcmp(argv[i], "-asynch")) {
asynch = true;
} else if (!strcmp(argv[i], "-one_pass")) {
one_pass = true;
} else if (!strcmp(argv[i], "-d")) {
log_messages.set_debug_level(atoi(argv[++i]));
} else if (!strcmp(argv[i], "-mod")) {
mod_n = atoi(argv[++i]);
mod_i = atoi(argv[++i]);
do_mod = true;
}
}
retval = config.parse_file("..");
if (retval) {
log_messages.printf(SCHED_MSG_LOG::CRITICAL, "can't read config file\n");
exit(1);
}
sprintf(path, "%s/upload_private", config.key_dir);
retval = read_key_file(path, key);
if (retval) {
log_messages.printf(SCHED_MSG_LOG::CRITICAL, "can't read key\n");
exit(1);
}
if (asynch) {
if (fork()) {
exit(0);
}
}
// // Call lock_file after fork(), because file locks are not always inherited
// if (lock_file(LOCKFILE)) {
// log_messages.printf(SCHED_MSG_LOG::NORMAL, "Another copy of transitioner is already running\n");
// exit(1);
// }
// write_pid_file(PIDFILE);
log_messages.printf(SCHED_MSG_LOG::NORMAL, "Starting\n");
install_stop_signal_handler();
main_loop(one_pass);
}