boinc/client/cs_apps.C

684 lines
21 KiB
C

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2005 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// The "policy" part of task execution is here.
// The "mechanism" part is in app.C
//
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifndef _WIN32
#include <cassert>
#include <csignal>
#endif
#include "md5_file.h"
#include "util.h"
#include "error_numbers.h"
#include "file_names.h"
#include "filesys.h"
#include "shmem.h"
#include "log_flags.h"
#include "client_msgs.h"
#include "client_state.h"
using std::vector;
#define MAX_DEBT (86400)
// maximum project debt
// Quit running applications, quit benchmarks,
// write the client_state.xml file
// (in principle we could also terminate net_xfers here,
// e.g. flush buffers, but why bother)
//
int CLIENT_STATE::quit_activities() {
int retval;
retval = active_tasks.exit_tasks();
if (retval) {
msg_printf(NULL, MSG_ERROR, "CLIENT_STATE.quit_activities: exit_tasks failed\n");
}
retval = write_state_file();
if (retval) {
msg_printf(NULL, MSG_ERROR, "CLIENT_STATE.quit_activities: write_state_file failed\n");
}
abort_cpu_benchmarks();
return 0;
}
// Handle a task that has finished.
// Mark its output files as present, and delete scratch files.
// Don't delete input files because they might be shared with other WUs.
// Update state of result record.
//
int CLIENT_STATE::app_finished(ACTIVE_TASK& at) {
RESULT* rp = at.result;
FILE_INFO* fip;
unsigned int i;
char path[256];
int retval;
double size;
double task_cpu_time;
bool had_error = false;
// scan the output files, check if missing or too big
// Don't bother doing this if result was aborted via GUI
if (rp->exit_status != ERR_ABORTED_VIA_GUI) {
for (i=0; i<rp->output_files.size(); i++) {
fip = rp->output_files[i].file_info;
if (fip->uploaded) continue;
get_pathname(fip, path);
retval = file_size(path, size);
if (retval) {
// an output file is unexpectedly absent.
//
fip->status = retval;
had_error = true;
} else if (size > fip->max_nbytes) {
// Note: this is only checked when the application finishes.
// The total disk space is checked while the application is running.
//
msg_printf(
rp->project, MSG_INFO,
"Output file %s for result %s exceeds size limit.",
fip->name, rp->name
);
msg_printf(
rp->project, MSG_INFO,
"File size: %f bytes. Limit: %f bytes",
size, fip->max_nbytes
);
fip->delete_file();
fip->status = ERR_FILE_TOO_BIG;
had_error = true;
} else {
if (!fip->upload_when_present && !fip->sticky) {
fip->delete_file(); // sets status to NOT_PRESENT
} else {
retval = md5_file(path, fip->md5_cksum, fip->nbytes);
if (retval) {
fip->status = retval;
had_error = true;
} else {
fip->status = FILE_PRESENT;
}
}
}
}
}
if (rp->exit_status != 0) {
had_error = true;
}
if (had_error) {
rp->state = RESULT_COMPUTE_ERROR;
} else {
rp->state = RESULT_FILES_UPLOADING;
// if success, update average CPU time per result for project
//
PROJECT* p = rp->project;
update_average(
dtime()-rp->final_cpu_time,
// KLUDGE - should be result start time
rp->final_cpu_time,
CPU_HALF_LIFE,
p->exp_avg_cpu,
p->exp_avg_mod_time
);
}
task_cpu_time = at.current_cpu_time - at.cpu_time_at_last_sched;
at.result->project->work_done_this_period += task_cpu_time;
cpu_sched_work_done_this_period += task_cpu_time;
return 0;
}
// clean up after finished apps
//
bool CLIENT_STATE::handle_finished_apps(double now) {
unsigned int i;
ACTIVE_TASK* atp;
bool action = false;
static double last_time = 0;
if (now - last_time < 1.0) return false;
last_time = now;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_TASK);
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
switch (atp->task_state) {
case PROCESS_EXITED:
case PROCESS_WAS_SIGNALED:
case PROCESS_EXIT_UNKNOWN:
case PROCESS_COULDNT_START:
case PROCESS_ABORTED:
msg_printf(atp->wup->project, MSG_INFO,
"Computation for result %s finished", atp->result->name
);
scope_messages.printf(
"CLIENT_STATE::handle_finished_apps(): task finished; pid %d, status %d\n",
atp->pid, atp->result->exit_status
);
app_finished(*atp);
active_tasks.remove(atp);
delete atp;
set_client_state_dirty("handle_running_apps");
action = true;
}
}
return action;
}
// Returns true if all the input files for a result are present
// (both WU and app version)
// false otherwise
//
bool CLIENT_STATE::input_files_available(RESULT* rp) {
WORKUNIT* wup = rp->wup;
FILE_INFO* fip;
unsigned int i;
APP_VERSION* avp;
FILE_REF fr;
PROJECT* project = rp->project;
avp = wup->avp;
for (i=0; i<avp->app_files.size(); i++) {
fr = avp->app_files[i];
fip = fr.file_info;
if (fip->status != FILE_PRESENT) return false;
// don't check file size for anonymous platform
//
if (!project->anonymous_platform) {
if (fip->verify_file(false)) return false;
}
}
for (i=0; i<wup->input_files.size(); i++) {
fip = wup->input_files[i].file_info;
if (fip->status != FILE_PRESENT) return false;
if (fip->verify_file(false)) return false;
}
return true;
}
// Choose a "best" runnable result for each project
//
// Values are returned in project->next_runnable_result
// (skip projects for which this is already non-NULL)
//
// Don't choose results with already_selected == true;
// mark chosen results as already_selected.
//
// The preference order:
// 1. results with active tasks that are running
// 2. results with active tasks that are preempted (but have a process)
// 3. results with active tasks that have no process
// 4. results with no active task
//
void CLIENT_STATE::assign_results_to_projects() {
unsigned int i;
RESULT* rp;
PROJECT* project;
// scan results with an ACTIVE_TASK
//
for (i=0; i<active_tasks.active_tasks.size(); ++i) {
ACTIVE_TASK *atp = active_tasks.active_tasks[i];
if (atp->result->suspended_via_gui) continue;
if (atp->result->already_selected) continue;
project = atp->wup->project;
if (project->suspended_via_gui) continue;
if (!project->next_runnable_result) {
project->next_runnable_result = atp->result;
continue;
}
// see if this task is "better" than the one currently
// selected for this project
//
ACTIVE_TASK *next_atp = lookup_active_task_by_result(
project->next_runnable_result
);
assert(next_atp != NULL);
if ((next_atp->task_state == PROCESS_UNINITIALIZED && atp->process_exists())
|| (next_atp->scheduler_state == CPU_SCHED_PREEMPTED
&& atp->scheduler_state == CPU_SCHED_SCHEDULED)
) {
project->next_runnable_result = atp->result;
}
}
// Now consider results that don't have an active task
//
for (i=0; i<results.size(); i++) {
rp = results[i];
project = rp->wup->project;
if (project->suspended_via_gui) continue;
if (project->next_runnable_result) continue;
if (rp->already_selected) continue;
if (rp->suspended_via_gui) continue;
if (rp->state != RESULT_FILES_DOWNLOADED) continue;
if (lookup_active_task_by_result(rp)) continue;
project->next_runnable_result = rp;
}
// mark selected results, so CPU scheduler won't try to consider
// a result more than once
//
for (i=0; i<projects.size(); i++) {
project = projects[i];
if (project->next_runnable_result) {
project->next_runnable_result->already_selected = true;
}
}
}
// if there's not an active task for the result, make one
//
int CLIENT_STATE::schedule_result(RESULT* rp) {
ACTIVE_TASK *atp = lookup_active_task_by_result(rp);
if (!atp) {
atp = new ACTIVE_TASK;
atp->init(rp);
atp->slot = active_tasks.get_free_slot();
get_slot_dir(atp->slot, atp->slot_dir);
active_tasks.active_tasks.push_back(atp);
}
atp->next_scheduler_state = CPU_SCHED_SCHEDULED;
return 0;
}
// Schedule an active task for the project with the largest anticipated debt
// among those that have a runnable result.
// Return true iff a task was scheduled.
//
bool CLIENT_STATE::schedule_largest_debt_project(double expected_pay_off) {
PROJECT *best_project = NULL;
double best_debt = 0;
bool first = true;
unsigned int i;
for (i=0; i<projects.size(); i++) {
PROJECT* p = projects[i];
if (!p->next_runnable_result) continue;
if (p->non_cpu_intensive) continue;
if (first || p->anticipated_debt > best_debt) {
first = false;
best_project = p;
best_debt = p->anticipated_debt;
}
}
if (!best_project) return false;
schedule_result(best_project->next_runnable_result);
best_project->anticipated_debt -= expected_pay_off;
best_project->next_runnable_result = 0;
return true;
}
// Schedule the active task with the earliest deadline
// Return true iff a task was scheduled.
//
bool CLIENT_STATE::schedule_earliest_deadline_result(double expected_pay_off) {
PROJECT *best_project = NULL;
RESULT *best_result = NULL;
double earliest_deadline=0;
bool first = true;
unsigned int i;
for (i=0; i < results.size(); ++i) {
RESULT *r = results[i];
if (r->state != RESULT_FILES_DOWNLOADED) continue;
if (r->suspended_via_gui) continue;
if (r->project->suspended_via_gui) continue;
if (r->project->non_cpu_intensive) continue;
if (r->already_selected) continue;
if (first || r->report_deadline < earliest_deadline) {
first = false;
best_project = r->project;
best_result = r;
earliest_deadline = r->report_deadline;
}
}
if (!best_result) return false;
msg_printf(0, MSG_INFO, "earliest deadline: %f %s", earliest_deadline, best_result->name);
schedule_result(best_result);
best_result->already_selected = true;
best_project->anticipated_debt -= expected_pay_off;
best_project->next_runnable_result = 0;
return true;
}
// Schedule active tasks to be run and preempted.
//
// This is called every second in the do_something() loop
// (with must_reschedule=false)
// and whenever all the input files for a result finish downloading
// (with must_reschedule=true)
//
bool CLIENT_STATE::schedule_cpus(double now) {
double expected_pay_off;
ACTIVE_TASK *atp;
PROJECT *p;
bool some_app_started = false, first;
double local_total_resource_share;
int retval, j;
double min_debt=0;
double vm_limit, elapsed_time;
unsigned int i;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_TASK);
if (projects.size() == 0) return false;
if (results.size() == 0) return false;
// Reschedule every cpu_sched_period seconds,
// or if must_schedule_cpus is set
// (meaning a new result is available, or a CPU has been freed).
//
elapsed_time = now - cpu_sched_last_time;
if (must_schedule_cpus) {
must_schedule_cpus = false;
msg_printf(0, MSG_INFO, "schedule_cpus: must schedule");
} else {
if (elapsed_time < (global_prefs.cpu_scheduling_period_minutes*60)) {
return false;
}
msg_printf(0, MSG_INFO, "schedule_cpus: time %f", elapsed_time);
}
cpu_sched_last_time = now;
// mark file xfer results as completed;
// TODO: why do this here??
//
handle_file_xfer_apps();
// clear temporary variables
//
for (i=0; i<projects.size(); i++) {
projects[i]->next_runnable_result = NULL;
}
for (i=0; i<results.size(); i++) {
results[i]->already_selected = false;
}
set_cpu_scheduler_modes();
// do work accounting for active tasks
//
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
//double task_cpu_time = atp->current_cpu_time - atp->cpu_time_at_last_sched;
double task_cpu_time = elapsed_time;
atp->result->project->work_done_this_period += task_cpu_time;
cpu_sched_work_done_this_period += task_cpu_time;
atp->next_scheduler_state = CPU_SCHED_PREEMPTED;
}
// compute total resource share among projects with runnable results
//
assign_results_to_projects(); // see which projects have work
local_total_resource_share = 0;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->non_cpu_intensive) continue;
if (p->next_runnable_result) {
local_total_resource_share += projects[i]->resource_share;
}
}
// adjust project debts
// reset debts for projects with no runnable results
// reset temporary fields
//
first = true;
double total_long_term_debt = 0;
int count_cpu_intensive = 0;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->non_cpu_intensive) continue;
count_cpu_intensive++;
double debt_inc =
(p->resource_share/local_total_resource_share)
* cpu_sched_work_done_this_period
- p->work_done_this_period;
p->long_term_debt += debt_inc;
total_long_term_debt += p->long_term_debt;
if (!p->next_runnable_result) {
p->debt = 0;
p->anticipated_debt = 0;
} else {
p->debt += debt_inc;
if (first) {
first = false;
min_debt = p->debt;
} else if (p->debt < min_debt) {
min_debt = p->debt;
}
}
scope_messages.printf(
"CLIENT_STATE::schedule_cpus(): overall project debt; project '%s', debt '%f'\n",
p->project_name, p->debt
);
}
double avg_long_term_debt = total_long_term_debt / count_cpu_intensive;
// Normalize debts to zero
//
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->non_cpu_intensive) continue;
if (p->next_runnable_result) {
p->debt -= min_debt;
if (p->debt > MAX_DEBT) {
p->debt = MAX_DEBT;
}
p->anticipated_debt = p->debt;
//msg_printf(p, MSG_INFO, "debt %f", p->debt);
p->next_runnable_result = NULL;
}
p->long_term_debt -= avg_long_term_debt;
}
// schedule tasks for projects in order of decreasing anticipated debt
//
for (i=0; i<results.size(); i++) {
results[i]->already_selected = false;
}
expected_pay_off = cpu_sched_work_done_this_period / ncpus;
for (j=0; j<ncpus; j++) {
if (cpu_earliest_deadline_first) {
if (!schedule_earliest_deadline_result(expected_pay_off)) break;
} else {
assign_results_to_projects();
if (!schedule_largest_debt_project(expected_pay_off)) break;
}
}
// schedule non CPU intensive tasks
//
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->non_cpu_intensive && p->next_runnable_result) {
schedule_result(p->next_runnable_result);
}
}
// preempt, start, and resume tasks
//
vm_limit = (global_prefs.vm_max_used_pct/100.)*host_info.m_swap;
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
//msg_printf(p, MSG_INFO, "result %s state %d", atp->result->name, atp->scheduler_state);
if (atp->scheduler_state == CPU_SCHED_SCHEDULED
&& atp->next_scheduler_state == CPU_SCHED_PREEMPTED
) {
bool preempt_by_quit = !global_prefs.leave_apps_in_memory;
preempt_by_quit |= active_tasks.vm_limit_exceeded(vm_limit);
// if app hasn't checkpointed yet, always leave it in memory
//
if (atp->checkpoint_cpu_time == 0) {
preempt_by_quit = false;
}
atp->preempt(preempt_by_quit);
} else if (atp->scheduler_state != CPU_SCHED_SCHEDULED
&& atp->next_scheduler_state == CPU_SCHED_SCHEDULED
) {
retval = atp->resume_or_start();
if (retval) {
report_result_error(
*(atp->result), "Couldn't start or resume: %d", retval
);
// if we couldn't run something, reschedule
//
request_schedule_cpus("start failed");
continue;
}
atp->scheduler_state = CPU_SCHED_SCHEDULED;
some_app_started = true;
}
atp->cpu_time_at_last_sched = atp->current_cpu_time;
}
// reset work accounting
// doing this at the end of schedule_cpus() because
// work_done_this_period's can change as apps finish
//
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->work_done_this_period = 0;
}
cpu_sched_work_done_this_period = 0;
if (some_app_started) {
app_started = now;
}
// debts and active_tasks can only change if some project had a runnable result
// (and thus if local_total_resource_share is positive)
//
if (local_total_resource_share > 0) {
set_client_state_dirty("schedule_cpus");
return true;
} else {
return false;
}
}
// This is called when the client is initialized.
// Try to restart any tasks that were running when we last shut down.
//
int CLIENT_STATE::restart_tasks() {
return active_tasks.restart_tasks(ncpus);
}
void CLIENT_STATE::set_ncpus() {
if (host_info.p_ncpus > 0) {
ncpus = host_info.p_ncpus;
} else {
ncpus = 1;
}
if (ncpus > global_prefs.max_cpus) ncpus = global_prefs.max_cpus;
}
inline double force_fraction(double f) {
if (f < 0) return 0;
if (f > 1) return 1;
return f;
}
double CLIENT_STATE::get_fraction_done(RESULT* result) {
ACTIVE_TASK* atp = active_tasks.lookup_result(result);
return atp ? force_fraction(atp->fraction_done) : 0.0;
}
// Decide which app version to use for a WU.
// Return -1 if can't find one
//
int CLIENT_STATE::choose_version_num(char* app_name, SCHEDULER_REPLY& sr) {
unsigned int i;
int best = -1;
APP_VERSION* avp;
// First look in the scheduler reply
//
for (i=0; i<sr.app_versions.size(); i++) {
avp = &sr.app_versions[i];
if (!strcmp(app_name, avp->app_name)) {
return avp->version_num;
}
}
// If not there, use the latest one in our state
//
for (i=0; i<app_versions.size(); i++) {
avp = app_versions[i];
if (strcmp(avp->app_name, app_name)) continue;
if (avp->version_num < best) continue;
best = avp->version_num;
}
if (best < 0) {
msg_printf(0, MSG_ERROR, "CLIENT_STATE::latest_version_num: no version\n");
}
return best;
}
// handle file-transfer applications
//
void CLIENT_STATE::handle_file_xfer_apps() {
unsigned int i;
for (i=0; i<results.size(); i++) {
RESULT* rp = results[i];
if (rp->wup->avp->app_files.size() == 0 && rp->state == RESULT_FILES_DOWNLOADED) {
rp->state = RESULT_FILES_UPLOADING;
rp->reset_files();
}
}
}
void CLIENT_STATE::request_schedule_cpus(const char* where) {
must_schedule_cpus = true;
msg_printf(0, MSG_INFO, "request_reschedule_cpus: %s", where);
}
const char *BOINC_RCSID_7bf63ad771 = "$Id$";