boinc/client/cs_scheduler.C

692 lines
21 KiB
C

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// High-level logic for communicating with scheduling servers,
// and for merging the result of a scheduler RPC into the client state
// The scheduler RPC mechanism is in scheduler_op.C
#include "cpp.h"
#include <stdio.h>
#include <math.h>
#include <time.h>
#ifdef _WIN32
#include <string.h>
#else
#include <strings.h>
#endif
#include "crypt.h"
#include "error_numbers.h"
#include "file_names.h"
#include "filesys.h"
#include "parse.h"
#include "util.h"
#include "message.h"
#include "scheduler_op.h"
#include "client_state.h"
// quantities like avg CPU time decay by a factor of e every week
//
#define EXP_DECAY_RATE (1./(SECONDS_PER_DAY*7))
const int SECONDS_BEFORE_REPORTING_MIN_RPC_TIME_AGAIN = 60*60;
const int SECONDS_BEFORE_REPORT_DEADLINE_TO_REPORT = 60*60*6;
// estimate the days of work remaining
//
void CLIENT_STATE::current_work_buf_days(double& work_buf, int& nactive_results) {
unsigned int i;
RESULT* rp;
double seconds_remaining=0, x;
nactive_results = 0;
for (i=0; i<results.size(); i++) {
rp = results[i];
// Don't count result if we've already computed it,
// or if it had an error
//
if (rp->state >= RESULT_COMPUTE_DONE) continue;
if (rp->ready_to_report) continue;
nactive_results++;
// TODO: subtract time already finished for WUs in progress
seconds_remaining += estimate_cpu_time(*rp->wup) * (1.0-get_percent_done(rp));
}
x = seconds_remaining / SECONDS_PER_DAY;
x /= host_info.p_ncpus;
x /= time_stats.active_frac;
work_buf = x;
}
// seconds of CPU work needed to come up to the max buffer level
//
double CLIENT_STATE::work_needed_secs() {
double x;
int n;
current_work_buf_days(x, n);
if (x > global_prefs.work_buf_max_days) return 0;
// TODO: take into account preference # CPUS
double y = (global_prefs.work_buf_max_days - x)*SECONDS_PER_DAY;
y *= time_stats.active_frac;
y *= host_info.p_ncpus;
return y;
}
// update exponentially-averaged CPU times of all projects
//
void CLIENT_STATE::update_avg_cpu(PROJECT* p) {
time_t now = time(0);
double deltat = now - p->exp_avg_mod_time;
if (deltat > 0) {
if (p->exp_avg_cpu != 0) {
p->exp_avg_cpu *= exp(deltat*EXP_DECAY_RATE);
}
p->exp_avg_mod_time = now;
}
}
void PROJECT::set_min_rpc_time(time_t future_time) {
if (future_time > min_rpc_time) {
min_rpc_time = future_time;
}
min_report_min_rpc_time = 0; // report immediately
}
// Return true iff we should not contact the project yet.
// Print a message to the user if we haven't recently
//
bool PROJECT::waiting_until_min_rpc_time(time_t now) {
if (min_rpc_time > now ) {
if (now >= min_report_min_rpc_time) {
min_report_min_rpc_time = now + SECONDS_BEFORE_REPORTING_MIN_RPC_TIME_AGAIN;
msg_printf(
this, MSG_ERROR,
"Deferring communication with project for %s\n",
timediff_format(min_rpc_time - now).c_str()
);
}
return true;
}
return false;
}
// find a project that needs its master file parsed
//
PROJECT* CLIENT_STATE::next_project_master_pending() {
unsigned int i;
PROJECT* p;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->waiting_until_min_rpc_time(now)) continue;
if (p->master_url_fetch_pending) {
return p;
}
}
return 0;
}
// find a project that needs to contact its scheduling server
//
PROJECT* CLIENT_STATE::next_project_sched_rpc_pending() {
unsigned int i;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
if (projects[i]->waiting_until_min_rpc_time(now)) continue;
if (projects[i]->sched_rpc_pending) {
return projects[i];
}
}
return 0;
}
// return the next project after "old", in debt order,
// that is eligible for a scheduler RPC
// It excludes projects that have (p->master_url_fetch_pending) set to true.
// Such projects will be returned by next_project_master_pending routine.
//
PROJECT* CLIENT_STATE::next_project(PROJECT* old) {
PROJECT* p, *pbest;
int best = 999;
time_t now = time(0);
unsigned int i;
pbest = 0;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->master_url_fetch_pending) continue;
if (p->waiting_until_min_rpc_time(now)) continue;
if (old && p->debt_order <= old->debt_order) continue;
if (p->debt_order < best) {
pbest = p;
best = p->debt_order;
}
}
return pbest;
}
// Compute the "resource debt" of each project.
// This is used to determine what project we will focus on next,
// based on the user-specified resource share.
// TODO: this counts only CPU time. Should reflect disk/network usage too.
//
void CLIENT_STATE::compute_resource_debts() {
unsigned int i, j;
PROJECT* p, *pbest=0;
double best;
for (i=0; i<projects.size(); i++) {
p = projects[i];
update_avg_cpu(p);
if (p->exp_avg_cpu == 0) {
p->resource_debt = p->resource_share;
} else {
p->resource_debt = p->resource_share/p->exp_avg_cpu;
}
p->debt_order = -1;
}
// put in decreasing order. Should use qsort or some stdlib thang
//
for (i=0; i<projects.size(); i++) {
best = -2;
for (j=0; j<projects.size(); j++) {
p = projects[j];
if (p->debt_order >= 0) continue;
if (p->resource_debt > best) {
best = p->resource_debt;
pbest = p;
}
}
pbest->debt_order = i;
}
}
int CLIENT_STATE::read_trickle_files(PROJECT* project, FILE* f) {
char project_dir[256], *p, *q, result_name[256], fname[256];
char* file_contents, path[256];
string fn;
time_t t;
int retval;
get_project_dir(project, project_dir);
DirScanner ds(project_dir);
// look for file names of the form trickle_X_Y
// where X is a result name
// and Y is a timestamp
//
while (ds.scan(fn)) {
strcpy(fname, fn.c_str());
if (strstr(fname, "trickle_") != fname) continue;
q = fname + strlen("trickle_");
p = strrchr(fname, '_');
if (p <= q) continue;
*p = 0;
strcpy(result_name, q);
t = atoi(p+1);
sprintf(path, "%s%s%s", project_dir, PATH_SEPARATOR, fname);
retval = read_file_malloc(path, file_contents);
if (retval) continue;
fprintf(f,
" <trickle>\n"
" <result>%s</result>\n"
" <time>%d</time>\n"
" <text>\n"
"%s\n"
" </text>\n"
" </trickle>\n",
result_name,
(int)t,
file_contents
);
free(file_contents);
}
return 0;
}
int CLIENT_STATE::remove_trickle_files(PROJECT* project) {
char project_dir[256], path[256], fname[256];
string fn;
get_project_dir(project, project_dir);
DirScanner ds(project_dir);
while (ds.scan(fn)) {
strcpy(fname, fn.c_str());
if (strstr(fname, "trickle_") != fname) continue;
sprintf(path, "%s%s%s", project_dir, PATH_SEPARATOR, fname);
boinc_delete_file(path);
}
return 0;
}
// Prepare the scheduler request. This writes the request in XML to a
// file (SCHED_OP_REQUEST_FILE) which is later sent to the scheduling
// server
//
int CLIENT_STATE::make_scheduler_request(PROJECT* p, double work_req) {
FILE* f = boinc_fopen(SCHED_OP_REQUEST_FILE, "wb");
unsigned int i;
RESULT* rp;
int retval;
double size;
if (!f) return ERR_FOPEN;
fprintf(f,
"<scheduler_request>\n"
" <authenticator>%s</authenticator>\n"
" <hostid>%d</hostid>\n"
" <rpc_seqno>%d</rpc_seqno>\n"
" <platform_name>%s</platform_name>\n"
" <core_client_major_version>%d</core_client_major_version>\n"
" <core_client_minor_version>%d</core_client_minor_version>\n"
" <work_req_seconds>%f</work_req_seconds>\n",
p->authenticator,
p->hostid,
p->rpc_seqno,
p->anonymous_platform?"anonymous":platform_name,
core_client_major_version,
core_client_minor_version,
work_req
);
if (p->anonymous_platform) {
fprintf(f, " <app_versions>\n");
for (i=0; i<app_versions.size(); i++) {
APP_VERSION* avp = app_versions[i];
if (avp->project != p) continue;
avp->write(f);
}
fprintf(f, " </app_versions>\n");
}
if (!project_disk_usage(p, size)) {
fprintf(f, "<project_disk_usage>%f</project_disk_usage>\n", size);
}
if (!total_disk_usage(size)) {
fprintf(f, "<total_disk_usage>%f</total_disk_usage>\n", size);
}
if (strlen(p->code_sign_key)) {
fprintf(f, "<code_sign_key>\n%s</code_sign_key>\n", p->code_sign_key);
}
// insert global preferences if present
//
if (boinc_file_exists(GLOBAL_PREFS_FILE_NAME)) {
FILE* fprefs = fopen(GLOBAL_PREFS_FILE_NAME, "r");
if (fprefs) {
copy_stream(fprefs, f);
fclose(fprefs);
}
}
fprintf(f, "<projects>\n");
for (i=0; i<projects.size(); i++ ) {
PROJECT* project = projects[i];
fprintf(f,
" <project>\n"
" <master_url>%s</master_url>\n"
" <resource_share>%f</resource_share>\n"
" </project>\n",
project->master_url,
project->resource_share
);
}
fprintf(f, "</projects>\n");
retval = time_stats.write(f, true);
if (retval) return retval;
retval = net_stats.write(f, true);
if (retval) return retval;
retval = host_info.write(f);
if (retval) return retval;
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->project == p && rp->ready_to_report) {
rp->write(f, true);
}
}
read_trickle_files(p, f);
fprintf(f, "</scheduler_request>\n");
fclose(f);
return 0;
}
// find a project with results that are overdue to report,
// and which we're allowed to contact.
//
PROJECT* CLIENT_STATE::find_project_with_overdue_results() {
unsigned int i;
RESULT* r;
time_t now = time(0);
for (i=0; i<results.size(); i++) {
r = results[i];
// return the project for this result to report if:
// - we're not backing off a scheduler request for its project
// - we're ready_to_report (compute done; files uploaded)
// - we're almost at the report_deadline (6 hours)
//
if (r->project->waiting_until_min_rpc_time(now)) continue;
// NOTE: early versions of scheduler (<2003/08/07) did not send
// report_deadline (in which case it is 0)
// 'return_results_immediately' is a debug flag that makes the client
// ignore the report deadline when deciding when to report a result
//
if (r->ready_to_report &&
(return_results_immediately ||
r->report_deadline <= now+SECONDS_BEFORE_REPORT_DEADLINE_TO_REPORT))
{
return r->project;
}
}
return 0;
}
// return true if we're allowed to do a scheduler RPC to at least one project
//
bool CLIENT_STATE::some_project_rpc_ok() {
unsigned int i;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
if (projects[i]->min_rpc_time < now) return true;
}
return false;
}
// called from the client's polling loop.
// initiate scheduler RPC activity if needed and possible
//
bool CLIENT_STATE::scheduler_rpc_poll() {
double work_secs, work_buf_days;
int nactive_results;
PROJECT* p;
bool action=false, below_work_buf_min, should_get_work;
switch(scheduler_op->state) {
case SCHEDULER_OP_STATE_IDLE:
if (activities_suspended) break;
if (exit_when_idle && contacted_sched_server) {
should_get_work = false;
} else {
// TODO: the following is a kludge to prevent
// repeated work requests, but it defeats the
// work_buf_min concept
//
//below_work_buf_min = (current_work_buf_days() <= global_prefs.work_buf_min_days);
current_work_buf_days(work_buf_days, nactive_results);
below_work_buf_min = nactive_results < host_info.p_ncpus;
should_get_work = below_work_buf_min && some_project_rpc_ok();
}
if (should_get_work) {
compute_resource_debts();
scheduler_op->init_get_work();
action = true;
} else if ((p=next_project_master_pending())) {
scheduler_op->init_get_work();
action = true;
} else if ((p=next_project_sched_rpc_pending())) {
scheduler_op->init_return_results(p, 0);
action = true;
} else {
p = find_project_with_overdue_results();
if (p) {
compute_resource_debts();
if (p->debt_order == 0) {
work_secs = work_needed_secs();
} else {
work_secs = 0;
}
scheduler_op->init_return_results(p, work_secs);
action = true;
}
}
break;
default:
scheduler_op->poll();
if (scheduler_op->state == SCHEDULER_OP_STATE_IDLE) {
action = true;
}
break;
}
return action;
}
// Handle the reply from a scheduler
//
int CLIENT_STATE::handle_scheduler_reply(
PROJECT* project, char* scheduler_url, int& nresults
) {
SCHEDULER_REPLY sr;
FILE* f;
int retval;
unsigned int i;
bool signature_valid, need_to_install_prefs=false;
char buf[256];
nresults = 0;
contacted_sched_server = true;
ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_SCHED_OP);
scope_messages.printf_file(SCHED_OP_RESULT_FILE, "reply: ");
f = fopen(SCHED_OP_RESULT_FILE, "r");
if (!f) return ERR_FOPEN;
retval = sr.parse(f, project);
fclose(f);
if (retval) return retval;
if (strlen(sr.project_name)) {
safe_strcpy(project->project_name, sr.project_name);
}
if (strlen(sr.user_name)) {
safe_strcpy(project->user_name, sr.user_name);
}
safe_strcpy(project->team_name, sr.team_name);
project->user_total_credit = sr.user_total_credit;
project->user_expavg_credit = sr.user_expavg_credit;
project->user_create_time = sr.user_create_time;
if (strlen(sr.message)) {
sprintf(buf, "Message from server: %s", sr.message);
int prio = (!strcmp(sr.message_priority, "high"))?MSG_ERROR:MSG_INFO;
show_message(project, buf, prio);
}
if (sr.request_delay) {
project->min_rpc_time = time(0) + sr.request_delay;
}
project->host_total_credit = sr.host_total_credit;
project->host_expavg_credit = sr.host_expavg_credit;
if (sr.hostid) {
project->hostid = sr.hostid;
project->host_create_time = sr.host_create_time;
project->rpc_seqno = 0;
}
if (strcmp(host_venue, sr.host_venue)) {
safe_strcpy(host_venue, sr.host_venue);
need_to_install_prefs = true;
}
// if the scheduler reply includes global preferences,
// insert extra elements, write to disk, and parse
//
if (sr.global_prefs_xml) {
f = boinc_fopen(GLOBAL_PREFS_FILE_NAME, "w");
if (!f) return ERR_FOPEN;
fprintf(f,
"<global_preferences>\n"
" <source_project>%s</source_project>\n"
" <source_scheduler>%s</source_scheduler>\n"
"%s"
"</global_preferences>\n",
project->master_url,
scheduler_url,
sr.global_prefs_xml
);
fclose(f);
need_to_install_prefs = true;
}
if (need_to_install_prefs) {
retval = global_prefs.parse_file(host_venue);
if (retval) return retval;
install_global_prefs();
}
// deal with project preferences (should always be there)
// If they've changed, write to account file,
// then parse to get our venue, and pass to running apps
//
if (sr.project_prefs_xml) {
if (strcmp(project->project_prefs.c_str(), sr.project_prefs_xml)) {
project->project_prefs = string(sr.project_prefs_xml);
retval = project->write_account_file();
if (retval) return retval;
project->parse_account_file();
project->parse_preferences_for_user_files();
active_tasks.request_reread_prefs(project);
}
}
// if the scheduler reply includes a code-signing key,
// accept it if we don't already have one from the project.
// Otherwise verify its signature, using the key we already have.
//
if (sr.code_sign_key) {
if (!strlen(project->code_sign_key)) {
safe_strcpy(project->code_sign_key, sr.code_sign_key);
} else {
if (sr.code_sign_key_signature) {
retval = verify_string2(
sr.code_sign_key, sr.code_sign_key_signature,
project->code_sign_key, signature_valid
);
if (!retval && signature_valid) {
safe_strcpy(project->code_sign_key, sr.code_sign_key);
} else {
fprintf(stdout,
"New code signing key from %s doesn't validate\n",
project->project_name
);
}
} else {
fprintf(stdout, "Missing code sign key signature\n");
}
}
}
// copy new entities to client state
//
for (i=0; i<sr.apps.size(); i++) {
APP* app = lookup_app(project, sr.apps[i].name);
if (!app) {
app = new APP;
*app = sr.apps[i];
retval = link_app(project, app);
if (!retval) apps.push_back(app);
}
}
for (i=0; i<sr.file_infos.size(); i++) {
if (!lookup_file_info(project, sr.file_infos[i].name)) {
FILE_INFO* fip = new FILE_INFO;
*fip = sr.file_infos[i];
retval = link_file_info(project, fip);
if (!retval) file_infos.push_back(fip);
}
}
for (i=0; i<sr.app_versions.size(); i++) {
APP* app = lookup_app(project, sr.app_versions[i].app_name);
APP_VERSION* avp = lookup_app_version(app, sr.app_versions[i].version_num);
if (!avp) {
avp = new APP_VERSION;
*avp = sr.app_versions[i];
retval = link_app_version(project, avp);
if (!retval) app_versions.push_back(avp);
}
}
for (i=0; i<sr.workunits.size(); i++) {
if (!lookup_workunit(project, sr.workunits[i].name)) {
WORKUNIT* wup = new WORKUNIT;
*wup = sr.workunits[i];
wup->version_num = choose_version_num(wup->app_name, sr);
retval = link_workunit(project, wup);
if (!retval) {
workunits.push_back(wup);
}
}
}
for (i=0; i<sr.results.size(); i++) {
if (!lookup_result(project, sr.results[i].name)) {
RESULT* rp = new RESULT;
*rp = sr.results[i];
retval = link_result(project, rp);
if (!retval) results.push_back(rp);
rp->state = RESULT_NEW;
nresults++;
} else {
sprintf(buf, "Already have result %s\n", sr.results[i].name);
show_message(project, buf, MSG_ERROR);
}
}
// update records for ack'ed results
//
for (i=0; i<sr.result_acks.size(); i++) {
RESULT* rp = lookup_result(project, sr.result_acks[i].name);
scope_messages.printf("CLIENT_STATE::handle_scheduler_reply(): got ack for result %s\n", sr.result_acks[i].name);
if (rp) {
rp->got_server_ack = true;
} else {
sprintf(buf, "Got ack for result %s, can't find\n",
sr.result_acks[i].name
);
show_message(project, buf, MSG_ERROR);
}
}
// remove acked trickle files
//
if (sr.trickle_ack) {
remove_trickle_files(project);
}
project->sched_rpc_pending = false;
set_client_state_dirty("handle_scheduler_reply");
scope_messages.printf("CLIENT_STATE::handle_scheduler_reply(): State after handle_scheduler_reply():\n");
print_summary();
return 0;
}