boinc/client/cs_apps.C

520 lines
16 KiB
C

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// The "policy" part of task execution is here.
// The "mechanism" part is in app.C
//
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifndef _WIN32
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#endif
#include "md5_file.h"
#include "util.h"
#include "error_numbers.h"
#include "file_names.h"
#include "filesys.h"
#include "shmem.h"
#include "log_flags.h"
#include "client_msgs.h"
#include "client_state.h"
using std::vector;
// Quit running applications, quit benchmarks,
// write the client_state.xml file
// (should we also terminate net_xfers here?)
//
int CLIENT_STATE::quit_activities() {
int retval;
retval = active_tasks.exit_tasks();
if (retval) {
msg_printf(NULL, MSG_ERROR, "CLIENT_STATE.quit_activities: exit_tasks failed\n");
}
retval = write_state_file();
if (retval) {
msg_printf(NULL, MSG_ERROR, "CLIENT_STATE.quit_activities: write_state_file failed\n");
}
abort_cpu_benchmarks();
return 0;
}
// Handle a task that has finished.
// Mark its output files as present, and delete scratch files.
// Don't delete input files because they might be shared with other WUs.
// Update state of result record.
//
int CLIENT_STATE::app_finished(ACTIVE_TASK& at) {
RESULT* rp = at.result;
FILE_INFO* fip;
unsigned int i;
char path[256];
int retval;
double size;
double task_cpu_time;
bool had_error = false;
if (at.exit_status != 0 && at.exit_status != ERR_QUIT_REQUEST) {
had_error = true;
}
for (i=0; i<rp->output_files.size(); i++) {
fip = rp->output_files[i].file_info;
get_pathname(fip, path);
retval = file_size(path, size);
if (retval) {
// an output file is unexpectedly absent.
//
fip->status = retval;
had_error = true;
} else if (size > fip->max_nbytes) {
// Note: this is only checked when the application finishes.
// The total disk space is checked while the application is running.
//
msg_printf(
rp->project, MSG_INFO,
"Output file %s for result %s exceeds size limit.",
fip->name, rp->name
);
fip->delete_file();
fip->status = ERR_FILE_TOO_BIG;
had_error = true;
} else {
if (!fip->upload_when_present && !fip->sticky) {
fip->delete_file(); // sets status to NOT_PRESENT
} else {
retval = md5_file(path, fip->md5_cksum, fip->nbytes);
if (retval) {
fip->status = retval;
had_error = true;
} else {
fip->status = FILE_PRESENT;
}
}
}
}
rp->is_active = false;
if (had_error) {
// dead-end state indicating we had an error at end of computation;
// do not move to RESULT_FILES_UPLOADING
rp->state = RESULT_COMPUTE_DONE;
} else {
// can now upload files.
rp->state = RESULT_FILES_UPLOADING;
}
PROJECT* p = rp->project;
update_average(
dtime()-rp->final_cpu_time, // KLUDGE - should be result start time
rp->final_cpu_time,
CPU_HALF_LIFE,
p->exp_avg_cpu,
p->exp_avg_mod_time
);
task_cpu_time = at.current_cpu_time - at.cpu_time_at_last_sched;
at.result->project->work_done_this_period += task_cpu_time;
cpu_sched_work_done_this_period += task_cpu_time;
return 0;
}
// clean up after finished apps
//
bool CLIENT_STATE::handle_finished_apps() {
unsigned int i;
ACTIVE_TASK* atp;
bool action = false;
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_TASK);
for (i=0; i<active_tasks.active_tasks.size(); i++) {
atp = active_tasks.active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_RUNNING) continue;
switch (atp->state) {
case PROCESS_RUNNING:
case PROCESS_ABORT_PENDING:
case PROCESS_IN_LIMBO:
break;
default:
msg_printf(atp->wup->project, MSG_INFO, "Computation for result %s finished", atp->wup->name);
scope_messages.printf(
"CLIENT_STATE::handle_finished_apps(): task finished; pid %d, status %d\n",
atp->pid, atp->exit_status
);
app_finished(*atp);
active_tasks.remove(atp);
delete atp;
set_client_state_dirty("handle_running_apps");
action = true;
}
}
return action;
}
// Returns true if all the input files for a result are available
// locally, false otherwise
//
bool CLIENT_STATE::input_files_available(RESULT* rp) {
WORKUNIT* wup = rp->wup;
FILE_INFO* fip;
unsigned int i;
APP_VERSION* avp;
FILE_REF fr;
PROJECT* project = rp->project;
avp = wup->avp;
for (i=0; i<avp->app_files.size(); i++) {
fr = avp->app_files[i];
fip = fr.file_info;
if (fip->status != FILE_PRESENT) return false;
// don't check file size for anonymous platform
//
if (!project->anonymous_platform) {
if (!fip->verify_existing_file()) return false;
}
}
for (i=0; i<wup->input_files.size(); i++) {
fip = wup->input_files[i].file_info;
if (fip->status != FILE_PRESENT) return false;
if (!fip->verify_existing_file()) return false;
}
return true;
}
// Return true iff there are fewer running tasks than available CPUs
//
bool CLIENT_STATE::have_free_cpu() {
int num_running_tasks = 0;
for (unsigned int i=0; i<active_tasks.active_tasks.size(); ++i) {
if (active_tasks.active_tasks[i]->scheduler_state == CPU_SCHED_RUNNING) {
++num_running_tasks;
}
}
return num_running_tasks < ncpus;
}
// Choose the next runnable result for each project with this
// preference order:
// 1. results with active tasks that are running
// 2. results with active tasks that are preempted (but have a process)
// 3. results with active tasks that have no process
// 4. results with no active task
//
void CLIENT_STATE::assign_results_to_projects() {
// Before assigning a result to an active task, check if that result is a file xfer
// this will be appearent by the lack of files associated with the workunit's app
// Running this function will find these results and mark them as completed.
handle_file_xfer_apps();
for (unsigned int i=0; i<active_tasks.active_tasks.size(); ++i) {
ACTIVE_TASK *atp = active_tasks.active_tasks[i];
if (atp->result->already_selected) continue;
PROJECT *p = atp->wup->project;
if (p->next_runnable_result == NULL) {
p->next_runnable_result = atp->result;
continue;
}
// any next_runnable_result assigned so far should have an active task
ACTIVE_TASK *next_atp = lookup_active_task_by_result(p->next_runnable_result);
//assert(next_atp != NULL);
if ((next_atp->state == PROCESS_UNINITIALIZED
&& atp->state == PROCESS_RUNNING) ||
(next_atp->scheduler_state == CPU_SCHED_PREEMPTED
&& atp->state == CPU_SCHED_RUNNING)
){
p->next_runnable_result = atp->result;
}
}
// Note: !results[i]->is_active is true for results with preempted
// active tasks, but all of those were already been considered in the
// previous loop.
// So p->next_runnable_result will not be NULL if there were any.
for (unsigned int i=0; i<results.size(); ++i) {
if (results[i]->already_selected) continue;
PROJECT *p = results[i]->wup->project;
if (p->next_runnable_result == NULL
&& !results[i]->is_active
&& results[i]->state == RESULT_FILES_DOWNLOADED
){
p->next_runnable_result = results[i];
}
}
// mark selected results, so CPU scheduler won't try to consider
// a result more than once (i.e. for running on another CPU)
//
// also reset debts for projects that are starved (have no
// runnable result)
//
for (unsigned int i=0; i<projects.size(); ++i) {
if (projects[i]->next_runnable_result != NULL)
projects[i]->next_runnable_result->already_selected = true;
else {
projects[i]->debt = 0;
projects[i]->anticipated_debt = 0;
}
}
}
// Schedule an active task for the project with the largest anticipated debt
// among those that have a runnable result. Return true iff a task was
// scheduled.
//
bool CLIENT_STATE::schedule_largest_debt_project(double expected_pay_off) {
PROJECT *best_project = NULL;
double best_debt = 0.; // initial value doesn't matter
bool first = true;
for (unsigned int i=0; i < projects.size(); ++i) {
if (projects[i]->next_runnable_result == NULL) continue;
if (!input_files_available(projects[i]->next_runnable_result)) {
report_result_error(
*(projects[i]->next_runnable_result), ERR_FILE_MISSING,
"One or more missing files"
);
projects[i]->next_runnable_result = NULL;
continue;
}
if (first || projects[i]->anticipated_debt > best_debt) {
first = false;
best_project = projects[i];
best_debt = best_project->anticipated_debt;
}
}
if (!best_project) return false;
ACTIVE_TASK *atp = lookup_active_task_by_result(best_project->next_runnable_result);
if (!atp) {
atp = new ACTIVE_TASK;
atp->init(best_project->next_runnable_result);
atp->slot = active_tasks.get_free_slot();
get_slot_dir(atp->slot, atp->slot_dir);
atp->result->is_active = true;
active_tasks.active_tasks.push_back(atp);
}
best_project->anticipated_debt -= expected_pay_off;
best_project->next_runnable_result = false;
atp->next_scheduler_state = CPU_SCHED_RUNNING;
return true;
}
// Schedule active tasks to be run and preempted.
//
// This is called in the do_something() loop
// (with must_reschedule=false)
// and whenever all the files for a result finish downloading
// (with must_reschedule=true)
//
bool CLIENT_STATE::schedule_cpus(bool must_reschedule) {
double expected_pay_off;
vector<ACTIVE_TASK*>::iterator iter;
bool some_app_started = false;
double total_resource_share = 0;
int retval, elapsed_time;
unsigned int i;
elapsed_time = time(NULL) - cpu_sched_last_time;
if ((elapsed_time < cpu_sched_period
&& !have_free_cpu()
&& !must_reschedule)
|| projects.size() < 1
|| results.size() < 1
) {
return false;
}
// finish work accounting for active tasks, reset temporary fields
for (i=0; i < active_tasks.active_tasks.size(); ++i) {
ACTIVE_TASK *atp = active_tasks.active_tasks[i];
if (atp->scheduler_state != CPU_SCHED_RUNNING) continue;
double task_cpu_time = atp->current_cpu_time - atp->cpu_time_at_last_sched;
atp->result->project->work_done_this_period += task_cpu_time;
cpu_sched_work_done_this_period += task_cpu_time;
atp->next_scheduler_state = CPU_SCHED_PREEMPTED;
}
// adjust project debts, reset temporary fields
for (i=0; i < projects.size(); ++i) {
total_resource_share += projects[i]->resource_share;
}
for (i=0; i < projects.size(); ++i) {
PROJECT *p = projects[i];
p->debt += (p->resource_share/total_resource_share) * cpu_sched_work_done_this_period
- p->work_done_this_period;
p->anticipated_debt = p->debt;
p->next_runnable_result = NULL;
}
// schedule tasks for projects in order of decreasing anticipated debt
for (i=0; i<results.size(); ++i) {
results[i]->already_selected = false;
}
expected_pay_off = cpu_sched_work_done_this_period / ncpus;
for (int j=0; j<ncpus; ++j) {
assign_results_to_projects();
if (!schedule_largest_debt_project(expected_pay_off)) break;
}
// preempt, start, and resume tasks
iter = active_tasks.active_tasks.begin();
while (iter != active_tasks.active_tasks.end()) {
ACTIVE_TASK *atp = *iter;
if (atp->scheduler_state == CPU_SCHED_RUNNING
&& atp->next_scheduler_state == CPU_SCHED_PREEMPTED
) {
atp->preempt();
iter++;
} else if (atp->scheduler_state != CPU_SCHED_RUNNING
&& atp->next_scheduler_state == CPU_SCHED_RUNNING
) {
if ((retval = atp->resume_or_start())) {
atp->state = PROCESS_COULDNT_START;
atp->result->active_task_state = PROCESS_COULDNT_START;
report_result_error(
*(atp->result), retval,
"Couldn't start the app for this result: error %d", retval
);
iter = active_tasks.active_tasks.erase(iter);
delete atp;
continue;
} else {
some_app_started = true;
iter++;
}
} else {
iter++;
}
atp->cpu_time_at_last_sched = atp->current_cpu_time;
}
// reset work accounting
// doing this at the end of schedule_cpus() because
// work_done_this_period's can change as apps finish
for (i=0; i < projects.size(); ++i) {
projects[i]->work_done_this_period = 0;
}
cpu_sched_work_done_this_period = 0;
cpu_sched_last_time = time(0);
set_client_state_dirty("schedule_cpus");
if (some_app_started) {
app_started = cpu_sched_last_time;
}
return true;
}
// This is called when the client is initialized.
// Try to restart any tasks that were running when we last shut down.
//
int CLIENT_STATE::restart_tasks() {
return active_tasks.restart_tasks(ncpus);
}
void CLIENT_STATE::set_ncpus() {
if (host_info.p_ncpus > 0) {
ncpus = host_info.p_ncpus;
} else {
ncpus = 1;
}
if (ncpus > global_prefs.max_cpus) ncpus = global_prefs.max_cpus;
}
// estimate how long a WU will take on this host
//
double CLIENT_STATE::estimate_cpu_time(WORKUNIT& wu) {
double x;
x = wu.rsc_fpops_est/host_info.p_fpops;
return x;
}
inline double force_fraction(double f) {
if (f < 0) return 0;
if (f > 1) return 1;
return f;
}
double CLIENT_STATE::get_fraction_done(RESULT* result) {
ACTIVE_TASK* atp = active_tasks.lookup_result(result);
return atp ? force_fraction(atp->fraction_done) : 0.0;
}
// Decide which app version to use for a WU.
//
int CLIENT_STATE::choose_version_num(char* app_name, SCHEDULER_REPLY& sr) {
unsigned int i;
int best = -1;
APP_VERSION* avp;
// First look in the scheduler reply
//
for (i=0; i<sr.app_versions.size(); i++) {
avp = &sr.app_versions[i];
if (!strcmp(app_name, avp->app_name)) {
return avp->version_num;
}
}
// If not there, use the latest one in our state
//
for (i=0; i<app_versions.size(); i++) {
avp = app_versions[i];
if (strcmp(avp->app_name, app_name)) continue;
if (avp->version_num < best) continue;
best = avp->version_num;
}
if (best < 0) {
msg_printf(0, MSG_ERROR, "CLIENT_STATE::latest_version_num: no version\n");
}
return best;
}
// goes through results and checks if the associated apps has no app files
// then there is nothing to do, never start the app, close the result
void CLIENT_STATE::handle_file_xfer_apps() {
for(vector <RESULT*>::const_iterator i = results.begin();
i!=results.end(); ++i)
{
RESULT* rp = *i;
if(rp->wup->avp->app_files.size() == 0 && rp->state == RESULT_FILES_DOWNLOADED) {
rp->state = RESULT_FILES_UPLOADING;
rp->reset_result_files();
}
}
}