boinc/samples/wrapper/wrapper.cpp

1136 lines
32 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// wrapper.C
// wrapper program - lets you use non-BOINC apps with BOINC
//
// Handles:
// - suspend/resume/quit/abort
// - reporting CPU time
// - loss of heartbeat from core client
// - checkpointing
// (at the level of task; or potentially within task)
//
// See http://boinc.berkeley.edu/trac/wiki/WrapperApp for details
// Contributor: Andrew J. Younge (ajy4490@umiacs.umd.edu)
#ifndef _WIN32
#include "config.h"
#endif
#include <stdio.h>
#include <vector>
#include <string>
#ifdef _WIN32
#include "boinc_win.h"
#include "win_util.h"
#else
#ifdef HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#include <unistd.h>
#endif
#include "boinc_api.h"
#include "boinc_zip.h"
#include "diagnostics.h"
#include "error_numbers.h"
#include "filesys.h"
#include "parse.h"
#include "proc_control.h"
#include "procinfo.h"
#include "str_util.h"
#include "str_replace.h"
#include "util.h"
#include "regexp.h"
//#define DEBUG
#if 1
#define debug_msg(x)
#else
inline void debug_msg(const char* x) {
fprintf(stderr, "%s\n", x);
}
#endif
#define JOB_FILENAME "job.xml"
#define CHECKPOINT_FILENAME "wrapper_checkpoint.txt"
#define POLL_PERIOD 1.0
using std::vector;
using std::string;
int nthreads = 1;
struct TASK {
string application;
string exec_dir;
// optional execution directory;
// macro-substituted for $PROJECT_DIR and $NTHREADS
vector<string> vsetenv;
// vector of strings for environment variables
// macro-substituted
string stdin_filename;
string stdout_filename;
string stderr_filename;
string checkpoint_filename;
// name of task's checkpoint file, if any
string fraction_done_filename;
// name of file where app will write its fraction done
string command_line;
// macro-substituted
double weight;
// contribution of this task to overall fraction done
bool is_daemon;
bool append_cmdline_args;
bool multi_process;
// dynamic stuff follows
double current_cpu_time;
// most recently measured CPU time of this task
double final_cpu_time;
// final CPU time of this task
double starting_cpu;
// how much CPU time was used by tasks before this one
bool suspended;
double time_limit;
double elapsed_time;
#ifdef _WIN32
HANDLE pid_handle;
DWORD pid;
HANDLE thread_handle;
struct _stat last_stat; // mod time of checkpoint file
#else
int pid;
struct stat last_stat;
double start_rusage; // getrusage() CPU time at start of task
#endif
bool stat_first;
int parse(XML_PARSER&);
bool poll(int& status);
int run(int argc, char** argv);
void kill();
void stop();
void resume();
double cpu_time();
inline bool has_checkpointed() {
bool changed = false;
if (checkpoint_filename.size() == 0) return false;
struct stat new_stat;
int retval = stat(checkpoint_filename.c_str(), &new_stat);
if (retval) return false;
if (!stat_first && new_stat.st_mtime != last_stat.st_mtime) {
changed = true;
}
stat_first = false;
last_stat.st_mtime = new_stat.st_mtime;
return changed;
}
inline double fraction_done() {
if (fraction_done_filename.size() == 0) return 0;
FILE* f = fopen(fraction_done_filename.c_str(), "r");
if (!f) return 0;
// read the last line of the file
//
fseek(f, -32, SEEK_END);
double temp, frac = 0;
while (!feof(f)) {
char buf[256];
char* p = fgets(buf, 256, f);
if (p == NULL) break;
int n = sscanf(buf, "%lf", &temp);
if (n == 1) frac = temp;
}
fclose(f);
if (frac < 0) return 0;
if (frac > 1) return 1;
return frac;
}
#ifdef _WIN32
// Windows uses a "null-terminated sequence of null-terminated strings"
// to represent env vars.
// I guess arg/argv didn't cut it for them.
//
void set_up_env_vars(char** env_vars, const int nvars) {
int bufsize = 0;
int len = 0;
for (int j = 0; j < nvars; j++) {
bufsize += (1 + vsetenv[j].length());
}
bufsize++; // add a final byte for array null ptr
*env_vars = new char[bufsize];
memset(*env_vars, 0, sizeof(char) * bufsize);
char* p = *env_vars;
// copy each env string to a buffer for the process
for (vector<string>::iterator it = vsetenv.begin();
it != vsetenv.end() && len < bufsize-1;
it++
) {
strncpy(p, it->c_str(), it->length());
len = strlen(p);
p += len + 1; // move pointer ahead
}
}
#else
void set_up_env_vars(char*** env_vars, const int nvars) {
*env_vars = new char*[nvars+1];
// need one more than the # of vars, for a NULL ptr at the end
memset(*env_vars, 0x00, sizeof(char*) * (nvars+1));
// get all environment vars for this task
for (int i = 0; i < nvars; i++) {
(*env_vars)[i] = const_cast<char*>(vsetenv[i].c_str());
}
}
#endif
};
vector<TASK> tasks;
vector<TASK> daemons;
vector<string> unzip_filenames;
string zip_filename;
vector<regexp*> zip_patterns;
APP_INIT_DATA aid;
// replace s1 with s2
//
void str_replace_all(char* buf, const char* s1, const char* s2) {
char buf2[64000];
while (1) {
char* p = strstr(buf, s1);
if (!p) break;
strcpy(buf2, p+strlen(s1));
strcpy(p, s2);
strcat(p, buf2);
}
}
// macro-substitute strings from job.xml
// $PROJECT_DIR -> project directory
// $NTHREADS --> --nthreads arg if present, else 1
//
void macro_substitute(char* buf) {
const char* pd = strlen(aid.project_dir)?aid.project_dir:".";
str_replace_all(buf, "$PROJECT_DIR", pd);
char nt[256];
sprintf(nt, "%d", nthreads);
str_replace_all(buf, "$NTHREADS", nt);
}
// make a list of files in the slot directory,
// and write to "initial_file_list"
//
void get_initial_file_list() {
char fname[256];
vector<string> initial_files;
DIRREF d = dir_open(".");
while (!dir_scan(fname, d, sizeof(fname))) {
initial_files.push_back(fname);
}
dir_close(d);
FILE* f = fopen("initial_file_list_temp", "w");
for (unsigned int i=0; i<initial_files.size(); i++) {
fprintf(f, "%s\n", initial_files[i].c_str());
}
fclose(f);
int retval = boinc_rename("initial_file_list_temp", "initial_file_list");
if (retval) {
fprintf(stderr, "boinc_rename() error: %d\n", retval);
exit(1);
}
}
void read_initial_file_list(vector<string>& files) {
char buf[256];
FILE* f = fopen("initial_file_list", "r");
if (!f) return;
while (fgets(buf, sizeof(buf), f)) {
strip_whitespace(buf);
files.push_back(string(buf));
}
fclose(f);
}
// if any zipped input files are present, unzip and remove them
//
void do_unzip_inputs() {
for (unsigned int i=0; i<unzip_filenames.size(); i++) {
string zipfilename = unzip_filenames[i];
if (boinc_file_exists(zipfilename.c_str())) {
string path;
boinc_resolve_filename_s(zipfilename.c_str(), path);
int retval = boinc_zip(UNZIP_IT, path, NULL);
if (retval) {
fprintf(stderr, "boinc_unzip() error: %d\n", retval);
exit(1);
}
retval = boinc_delete_file(zipfilename.c_str());
if (retval) {
fprintf(stderr, "boinc_delete_file() error: %d\n", retval);
}
}
}
}
bool in_vector(string s, vector<string>& v) {
for (unsigned int i=0; i<v.size(); i++) {
if (s == v[i]) return true;
}
return false;
}
// get the list of output files to zip
//
void get_zip_inputs(ZipFileList &files) {
vector<string> initial_files;
char fname[256];
read_initial_file_list(initial_files);
DIRREF d = dir_open(".");
while (!dir_scan(fname, d, sizeof(fname))) {
string filename = string(fname);
if (in_vector(filename, initial_files)) continue;
for (unsigned int i=0; i<zip_patterns.size(); i++) {
regmatch match;
if (re_exec_w(zip_patterns[i], fname, 1, &match) == 1) {
files.push_back(filename);
break;
}
}
}
}
// if the zipped output file is not present,
// create the zip in a temp file, then rename it
//
void do_zip_outputs() {
if (zip_filename.empty()) return;
if (boinc_file_exists(zip_filename.c_str())) return;
ZipFileList infiles;
get_zip_inputs(infiles);
int retval = boinc_zip(ZIP_IT, string("temp.zip"), &infiles);
if (retval) {
fprintf(stderr, "boinc_zip() failed: %d\n", retval);
exit(1);
}
string path;
boinc_resolve_filename_s(zip_filename.c_str(), path);
retval = boinc_rename("temp.zip", path.c_str());
if (retval) {
fprintf(stderr, "failed to rename temp.zip: %d\n", retval);
exit(1);
}
}
int TASK::parse(XML_PARSER& xp) {
char buf[8192];
weight = 1;
current_cpu_time = 0;
final_cpu_time = 0;
stat_first = true;
pid = 0;
is_daemon = false;
multi_process = false;
append_cmdline_args = false;
time_limit = 0;
while (!xp.get_tag()) {
if (!xp.is_tag) {
fprintf(stderr, "%s TASK::parse(): unexpected text %s\n",
boinc_msg_prefix(buf, sizeof(buf)), xp.parsed_tag
);
continue;
}
if (xp.match_tag("/task")) {
return 0;
}
else if (xp.parse_string("application", application)) continue;
else if (xp.parse_str("exec_dir", buf, sizeof(buf))) {
macro_substitute(buf);
exec_dir = buf;
continue;
}
else if (xp.parse_str("setenv", buf, sizeof(buf))) {
macro_substitute(buf);
vsetenv.push_back(buf);
continue;
}
else if (xp.parse_string("stdin_filename", stdin_filename)) continue;
else if (xp.parse_string("stdout_filename", stdout_filename)) continue;
else if (xp.parse_string("stderr_filename", stderr_filename)) continue;
else if (xp.parse_str("command_line", buf, sizeof(buf))) {
macro_substitute(buf);
command_line = buf;
continue;
}
else if (xp.parse_string("checkpoint_filename", checkpoint_filename)) continue;
else if (xp.parse_string("fraction_done_filename", fraction_done_filename)) continue;
else if (xp.parse_double("weight", weight)) continue;
else if (xp.parse_bool("daemon", is_daemon)) continue;
else if (xp.parse_bool("multi_process", multi_process)) continue;
else if (xp.parse_bool("append_cmdline_args", append_cmdline_args)) continue;
else if (xp.parse_double("time_limit", time_limit)) continue;
}
return ERR_XML_PARSE;
}
int parse_unzip_input(XML_PARSER& xp) {
char buf2[256];
string s;
while (!xp.get_tag()) {
if (xp.match_tag("/unzip_input")) {
return 0;
}
if (xp.parse_string("zipfilename", s)) {
unzip_filenames.push_back(s);
continue;
}
fprintf(stderr,
"%s unexpected tag in job.xml: %s\n",
boinc_msg_prefix(buf2, sizeof(buf2)), xp.parsed_tag
);
}
return ERR_XML_PARSE;
}
int parse_zip_output(XML_PARSER& xp) {
char buf[256];
while (!xp.get_tag()) {
if (xp.match_tag("/zip_output")) {
return 0;
}
if (xp.parse_string("zipfilename", zip_filename)) {
continue;
}
if (xp.parse_str("filename", buf, sizeof(buf))) {
regexp* rp;
int retval = re_comp_w(&rp, buf);
if (retval) {
fprintf(stderr, "re_comp_w() failed: %d\n", retval);
exit(1);
}
zip_patterns.push_back(rp);
continue;
}
fprintf(stderr,
"%s unexpected tag in job.xml: %s\n",
boinc_msg_prefix(buf, sizeof(buf)), xp.parsed_tag
);
}
return ERR_XML_PARSE;
}
int parse_job_file() {
MIOFILE mf;
char buf[256], buf2[256];
boinc_resolve_filename(JOB_FILENAME, buf, 1024);
FILE* f = boinc_fopen(buf, "r");
if (!f) {
fprintf(stderr,
"%s can't open job file %s\n",
boinc_msg_prefix(buf2, sizeof(buf2)), buf
);
return ERR_FOPEN;
}
mf.init_file(f);
XML_PARSER xp(&mf);
if (!xp.parse_start("job_desc")) return ERR_XML_PARSE;
while (!xp.get_tag()) {
if (!xp.is_tag) {
fprintf(stderr,
"%s unexpected text in job.xml: %s\n",
boinc_msg_prefix(buf2, sizeof(buf2)), xp.parsed_tag
);
continue;
}
if (xp.match_tag("/job_desc")) {
fclose(f);
return 0;
}
if (xp.match_tag("task")) {
TASK task;
int retval = task.parse(xp);
if (!retval) {
if (task.is_daemon) {
daemons.push_back(task);
} else {
tasks.push_back(task);
}
}
continue;
}
if (xp.match_tag("unzip_input")) {
parse_unzip_input(xp);
continue;
}
if (xp.match_tag("zip_output")) {
parse_zip_output(xp);
continue;
}
fprintf(stderr,
"%s unexpected tag in job.xml: %s\n",
boinc_msg_prefix(buf2, sizeof(buf2)), xp.parsed_tag
);
}
fclose(f);
return ERR_XML_PARSE;
}
int start_daemons(int argc, char** argv) {
for (unsigned int i=0; i<daemons.size(); i++) {
TASK& task = daemons[i];
int retval = task.run(argc, argv);
if (retval) return retval;
}
return 0;
}
void kill_daemons() {
vector<int> daemon_pids;
for (unsigned int i=0; i<daemons.size(); i++) {
TASK& task = daemons[i];
if (task.pid) {
daemon_pids.push_back(task.pid);
}
}
kill_all(daemon_pids);
}
#ifdef _WIN32
// CreateProcess() takes HANDLEs for the stdin/stdout.
// We need to use CreateFile() to get them. Ugh.
//
HANDLE win_fopen(const char* path, const char* mode) {
SECURITY_ATTRIBUTES sa;
memset(&sa, 0, sizeof(sa));
sa.nLength = sizeof(sa);
sa.bInheritHandle = TRUE;
if (!strcmp(mode, "r")) {
return CreateFile(
path,
GENERIC_READ,
FILE_SHARE_READ,
&sa,
OPEN_EXISTING,
0, 0
);
} else if (!strcmp(mode, "w")) {
return CreateFile(
path,
GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
&sa,
OPEN_ALWAYS,
0, 0
);
} else if (!strcmp(mode, "a")) {
HANDLE hAppend = CreateFile(
path,
GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
&sa,
OPEN_ALWAYS,
0, 0
);
SetFilePointer(hAppend, 0, NULL, FILE_END);
return hAppend;
} else {
return 0;
}
}
#endif
void slash_to_backslash(char* p) {
while (1) {
char* q = strchr(p, '/');
if (!q) break;
*q = '\\';
}
}
int TASK::run(int argct, char** argvt) {
string stdout_path, stdin_path, stderr_path;
char app_path[1024], buf[256];
if (fraction_done_filename.size()) {
boinc_delete_file(fraction_done_filename.c_str());
}
strcpy(buf, application.c_str());
char* p = strstr(buf, "$PROJECT_DIR");
if (p) {
p += strlen("$PROJECT_DIR");
sprintf(app_path, "%s%s", aid.project_dir, p);
} else {
boinc_resolve_filename(buf, app_path, sizeof(app_path));
}
if (!boinc_file_exists(app_path)) {
fprintf(stderr, "application %s missing\n", app_path);
exit(1);
}
// Optionally append wrapper's command-line arguments
// to those in the job file.
//
if (append_cmdline_args) {
for (int i=1; i<argct; i++){
command_line += string(" ");
command_line += argvt[i];
}
}
fprintf(stderr, "%s wrapper: running %s (%s)\n",
boinc_msg_prefix(buf, sizeof(buf)), app_path, command_line.c_str()
);
#ifdef _WIN32
PROCESS_INFORMATION process_info;
STARTUPINFO startup_info;
string command;
slash_to_backslash(app_path);
memset(&process_info, 0, sizeof(process_info));
memset(&startup_info, 0, sizeof(startup_info));
if (ends_with((string)app_path, ".bat") || ends_with((string)app_path, ".cmd")) {
command = string("cmd.exe /c \"") + app_path + string("\" ") + command_line;
} else {
command = string("\"") + app_path + string("\" ") + command_line;
}
// pass std handles to app
//
startup_info.dwFlags = STARTF_USESTDHANDLES;
if (stdout_filename != "") {
boinc_resolve_filename_s(stdout_filename.c_str(), stdout_path);
startup_info.hStdOutput = win_fopen(stdout_path.c_str(), "a");
} else {
startup_info.hStdOutput = (HANDLE)_get_osfhandle(_fileno(stderr));
}
if (stdin_filename != "") {
boinc_resolve_filename_s(stdin_filename.c_str(), stdin_path);
startup_info.hStdInput = win_fopen(stdin_path.c_str(), "r");
}
if (stderr_filename != "") {
boinc_resolve_filename_s(stderr_filename.c_str(), stderr_path);
startup_info.hStdError = win_fopen(stderr_path.c_str(), "a");
} else {
startup_info.hStdError = (HANDLE)_get_osfhandle(_fileno(stderr));
}
if (startup_info.hStdOutput == INVALID_HANDLE_VALUE) {
fprintf(stderr, "Error: startup_info.hStdOutput is invalid\n");
}
if ((stdin_filename != "") && (startup_info.hStdInput == INVALID_HANDLE_VALUE)) {
fprintf(stderr, "Error: startup_info.hStdInput is invalid\n");
}
if (startup_info.hStdError == INVALID_HANDLE_VALUE) {
fprintf(stderr, "Error: startup_info.hStdError is invalid\n");
}
// setup environment vars if needed
//
int nvars = vsetenv.size();
char* env_vars = NULL;
if (nvars > 0) {
set_up_env_vars(&env_vars, nvars);
}
BOOL success;
success = CreateProcess(
NULL,
(LPSTR)command.c_str(),
NULL,
NULL,
TRUE, // bInheritHandles
CREATE_NO_WINDOW|IDLE_PRIORITY_CLASS,
(LPVOID) env_vars,
exec_dir.empty()?NULL:exec_dir.c_str(),
&startup_info,
&process_info
);
if (!success) {
char error_msg[1024];
windows_format_error_string(GetLastError(), error_msg, sizeof(error_msg));
fprintf(stderr, "can't run app: %s\n", error_msg);
fprintf(stderr, "Error: command is '%s'\n", command.c_str());
fprintf(stderr, "Error: exec_dir is '%s'\n", exec_dir.c_str());
if (env_vars) delete [] env_vars;
return ERR_EXEC;
}
if (env_vars) delete [] env_vars;
pid_handle = process_info.hProcess;
pid = process_info.dwProcessId;
thread_handle = process_info.hThread;
SetThreadPriority(thread_handle, THREAD_PRIORITY_IDLE);
#else
int retval;
char* argv[256];
char arglist[4096];
FILE* stdout_file;
FILE* stdin_file;
FILE* stderr_file;
struct rusage ru;
getrusage(RUSAGE_CHILDREN, &ru);
start_rusage = (float)ru.ru_utime.tv_sec + ((float)ru.ru_utime.tv_usec)/1e+6;
pid = fork();
if (pid == -1) {
perror("fork(): ");
return ERR_FORK;
}
if (pid == 0) {
// we're in the child process here
//
// open stdout, stdin if file names are given
// NOTE: if the application is restartable,
// we should deal with atomicity somehow
//
if (stdout_filename != "") {
boinc_resolve_filename_s(stdout_filename.c_str(), stdout_path);
stdout_file = freopen(stdout_path.c_str(), "a", stdout);
if (!stdout_file) {
fprintf(stderr, "Can't open %s for stdout; exiting\n", stdout_path.c_str());
return ERR_FOPEN;
}
}
if (stdin_filename != "") {
boinc_resolve_filename_s(stdin_filename.c_str(), stdin_path);
stdin_file = freopen(stdin_path.c_str(), "r", stdin);
if (!stdin_file) {
fprintf(stderr, "Can't open %s for stdin; exiting\n", stdin_path.c_str());
return ERR_FOPEN;
}
}
if (stderr_filename != "") {
boinc_resolve_filename_s(stderr_filename.c_str(), stderr_path);
stderr_file = freopen(stderr_path.c_str(), "a", stderr);
if (!stderr_file) {
fprintf(stderr, "Can't open %s for stderr; exiting\n", stderr_path.c_str());
return ERR_FOPEN;
}
}
// construct argv
// TODO: use malloc instead of stack var
//
argv[0] = app_path;
strlcpy(arglist, command_line.c_str(), sizeof(arglist));
parse_command_line(arglist, argv+1);
setpriority(PRIO_PROCESS, 0, PROCESS_IDLE_PRIORITY);
if (!exec_dir.empty()) {
retval = chdir(exec_dir.c_str());
if (!retval) {
fprintf(stderr,
"%s chdir() to %s failed\n",
boinc_msg_prefix(buf, sizeof(buf)),
exec_dir.c_str()
);
exit(1);
}
}
// setup environment variables (if any)
//
const int nvars = vsetenv.size();
char** env_vars = NULL;
if (nvars > 0) {
set_up_env_vars(&env_vars, nvars);
retval = execve(app_path, argv, env_vars);
} else {
retval = execv(app_path, argv);
}
perror("execv() failed: ");
exit(ERR_EXEC);
} // pid = 0 i.e. child proc of the fork
#endif
suspended = false;
elapsed_time = 0;
return 0;
}
// return true if task exited
//
bool TASK::poll(int& status) {
char buf[256];
if (time_limit && elapsed_time > time_limit) {
fprintf(stderr,
"%s task %s reached time limit %.0f\n",
boinc_msg_prefix(buf, sizeof(buf)),
application.c_str(), time_limit
);
kill();
status = 0;
return true;
}
#ifdef _WIN32
unsigned long exit_code;
if (GetExitCodeProcess(pid_handle, &exit_code)) {
if (exit_code != STILL_ACTIVE) {
status = exit_code;
final_cpu_time = current_cpu_time;
#ifdef DEBUG
fprintf(stderr, "%s process exited; current CPU %f final CPU %f\n",
boinc_message_prefix(buf, sizeof(buf)),
current_cpu_time, final_cpu_time
);
#endif
return true;
}
}
#else
int wpid;
struct rusage ru;
wpid = waitpid(pid, &status, WNOHANG);
if (wpid) {
getrusage(RUSAGE_CHILDREN, &ru);
final_cpu_time = (float)ru.ru_utime.tv_sec + ((float)ru.ru_utime.tv_usec)/1e+6;
final_cpu_time -= start_rusage;
#ifdef DEBUG
fprintf(stderr, "%s process exited; current CPU %f final CPU %f\n",
boinc_message_prefix(buf, sizeof(buf)),
current_cpu_time, final_cpu_time
);
#endif
if (final_cpu_time < current_cpu_time) {
final_cpu_time = current_cpu_time;
}
return true;
}
#endif
return false;
}
// kill this task (gracefully if possible) and any other subprocesses
//
void TASK::kill() {
#ifdef _WIN32
kill_descendants();
#else
kill_descendants(pid);
#endif
}
void TASK::stop() {
if (multi_process) {
suspend_or_resume_descendants(false);
} else {
suspend_or_resume_process(pid, false);
}
suspended = true;
}
void TASK::resume() {
if (multi_process) {
suspend_or_resume_descendants(true);
} else {
suspend_or_resume_process(pid, true);
}
suspended = false;
}
// Get the CPU time of the app while it's running.
// This totals the CPU time of all the descendant processes,
// so it shouldn't be called too frequently.
//
double TASK::cpu_time() {
#ifndef ANDROID
// the Android GUI doesn't show CPU time,
// and process_tree_cpu_time() crashes sometimes
//
double x = process_tree_cpu_time(pid);
// if the process has exited, the above could return zero.
// So update carefully.
//
if (x > current_cpu_time) {
current_cpu_time = x;
}
#endif
return current_cpu_time;
}
void poll_boinc_messages(TASK& task) {
BOINC_STATUS status;
boinc_get_status(&status);
//fprintf(stderr, "wrapper: polling\n");
if (status.no_heartbeat) {
debug_msg("wrapper: kill");
task.kill();
kill_daemons();
exit(0);
}
if (status.quit_request) {
debug_msg("wrapper: quit");
task.kill();
kill_daemons();
exit(0);
}
if (status.abort_request) {
debug_msg("wrapper: abort");
task.kill();
kill_daemons();
exit(0);
}
if (status.suspended) {
if (!task.suspended) {
debug_msg("wrapper: suspend");
task.stop();
}
} else {
if (task.suspended) {
debug_msg("wrapper: resume");
task.resume();
}
}
}
// Support for multiple tasks.
// We keep a checkpoint file that says how many tasks we've completed
// and how much CPU time has been used so far
//
void write_checkpoint(int ntasks_completed, double cpu) {
boinc_begin_critical_section();
FILE* f = fopen(CHECKPOINT_FILENAME, "w");
if (!f) return;
fprintf(f, "%d %f\n", ntasks_completed, cpu);
fclose(f);
boinc_checkpoint_completed();
}
int read_checkpoint(int& ntasks_completed, double& cpu) {
int nt;
double c;
ntasks_completed = 0;
cpu = 0;
FILE* f = fopen(CHECKPOINT_FILENAME, "r");
if (!f) return ERR_FOPEN;
int n = fscanf(f, "%d %lf", &nt, &c);
fclose(f);
if (n != 2) return 0;
ntasks_completed = nt;
cpu = c;
return 0;
}
int main(int argc, char** argv) {
BOINC_OPTIONS options;
int retval, ntasks_completed;
unsigned int i;
double total_weight=0, weight_completed=0;
double checkpoint_cpu_time;
// total CPU time at last checkpoint
char buf[256];
#ifdef _WIN32
SetPriorityClass(GetCurrentProcess(), NORMAL_PRIORITY_CLASS);
#endif
for (int j=1; j<argc; j++) {
if (!strcmp(argv[j], "--nthreads")) {
nthreads = atoi(argv[++j]);
}
}
retval = parse_job_file();
if (retval) {
fprintf(stderr, "%s can't parse job file: %d\n",
boinc_msg_prefix(buf, sizeof(buf)),
retval
);
boinc_finish(retval);
}
do_unzip_inputs();
retval = read_checkpoint(ntasks_completed, checkpoint_cpu_time);
if (retval && !zip_filename.empty()) {
// this is the first time we've run.
// If we're going to zip output files,
// make a list of files present at this point
// so we can exclude them.
//
write_checkpoint(0, 0);
get_initial_file_list();
}
// do initialization after getting initial file list,
// in case we're supposed to zip stderr.txt
//
memset(&options, 0, sizeof(options));
options.main_program = true;
options.check_heartbeat = true;
options.handle_process_control = true;
boinc_init_options(&options);
fprintf(stderr,
"%s wrapper: starting\n",
boinc_msg_prefix(buf, sizeof(buf))
);
boinc_get_init_data(aid);
if (ntasks_completed > (int)tasks.size()) {
fprintf(stderr,
"%s Checkpoint file: ntasks_completed too large: %d > %d\n",
boinc_msg_prefix(buf, sizeof(buf)),
ntasks_completed, (int)tasks.size()
);
boinc_finish(1);
}
for (i=0; i<tasks.size(); i++) {
total_weight += tasks[i].weight;
}
retval = start_daemons(argc, argv);
if (retval) {
fprintf(stderr,
"%s start_daemons(): %d\n",
boinc_msg_prefix(buf, sizeof(buf)),
retval
);
kill_daemons();
boinc_finish(retval);
}
// loop over tasks
//
for (i=0; i<tasks.size(); i++) {
TASK& task = tasks[i];
if ((int)i<ntasks_completed) {
weight_completed += task.weight;
continue;
}
double frac_done = weight_completed/total_weight;
double cpu_time = 0;
task.starting_cpu = checkpoint_cpu_time;
retval = task.run(argc, argv);
if (retval) {
boinc_finish(retval);
}
int counter = 0;
while (1) {
int status;
if (task.poll(status)) {
if (status) {
fprintf(stderr,
"%s app exit status: 0x%x\n",
boinc_msg_prefix(buf, sizeof(buf)),
status
);
// On Unix, if the app is non-executable,
// the child status will be 0x6c00.
// If we return this the client will treat it
// as recoverable, and restart us.
// We don't want this, so return an 8-bit error code.
//
kill_daemons();
boinc_finish(EXIT_CHILD_FAILED);
}
break;
}
poll_boinc_messages(task);
double task_fraction_done = task.fraction_done();
double delta = task_fraction_done*task.weight/total_weight;
// getting CPU time of task tree is inefficient,
// so do it only every 10 sec
//
if (counter%10 == 0) {
cpu_time = task.cpu_time();
}
#ifdef DEBUG
fprintf(stderr,
"%s cpu time %f, checkpoint CPU time %f frac done %f\n",
boinc_msg_prefix(buf, sizeof(buf)),
task.starting_cpu + cpu_time,
checkpoint_cpu_time,
frac_done + delta
);
#endif
boinc_report_app_status(
task.starting_cpu + cpu_time,
checkpoint_cpu_time,
frac_done + delta
);
if (task.has_checkpointed()) {
cpu_time = task.cpu_time();
checkpoint_cpu_time = task.starting_cpu + cpu_time;
write_checkpoint(i, checkpoint_cpu_time);
}
boinc_sleep(POLL_PERIOD);
if (!task.suspended) {
task.elapsed_time += POLL_PERIOD;
}
counter++;
}
checkpoint_cpu_time = task.starting_cpu + task.final_cpu_time;
#ifdef DEBUG
fprintf(stderr, "%s cpu time %f, checkpoint CPU time %f frac done %f\n",
boinc_msg_prefix(buf, sizeof(buf)),
task.starting_cpu + task.final_cpu_time,
checkpoint_cpu_time,
frac_done + task.weight/total_weight
);
#endif
boinc_report_app_status(
task.starting_cpu + task.final_cpu_time,
checkpoint_cpu_time,
frac_done + task.weight/total_weight
);
write_checkpoint(i+1, checkpoint_cpu_time);
weight_completed += task.weight;
}
kill_daemons();
do_zip_outputs();
boinc_finish(0);
}
#ifdef _WIN32
int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst, LPSTR Args, int WinMode) {
LPSTR command_line;
char* argv[100];
int argc;
command_line = GetCommandLine();
argc = parse_command_line(command_line, argv);
return main(argc, argv);
}
#endif