boinc/samples/nvcuda/cuda.cpp

386 lines
12 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2013 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
//
// This program serves as both
// - An example BOINC-CUDA application, illustrating the use of the BOINC API
// and CUDA API. [ SEE NOTE BELOW ]
// - A program for testing various features of BOINC.
//
// The program reads the input nxn matrix from the "input" file, inverts the
// matrix NUM_ITERATIONS times and write to "output" file.
//
// command line options
// -run_slow: sleep 1 second after each character
// -cpu_time N: use about N CPU seconds after copying files
// -early_exit: exit(10) after 30 chars
// -early_crash: crash after 30 chars
//
// See https://github.com/BOINC/boinc/wiki/GPUApp
// Contributor: Tuan Le (tuanle86@berkeley.edu)
//
// NOTE: As currently written, this sample is of limited usefulness, as it
// is missing two important features:
// * Code to determine the correct device assigned by BOINC. It needs to get
// the device number from the gpu_opencl_dev_index field of init_data.xml
// if it exists, else from the gpu_device_num field of init_data.xml if that
// exists, else from the --device or -device argument passed by the client.
// See api/boinc_opencl.cpp for code which does this.
// * Code to select which NVIDIA GPU to use if there are more than one on the
// system; it needs to call cudaSetDevice().
//
#include "cuda.h"
#include "cuda_config.h"
using std::string;
/*** GLOBALS ***/
bool run_slow = false;
bool early_exit = false;
bool early_crash = false;
double cpu_time = 20, comp_result;
int main(int argc, char** argv) {
int i, retval, lastInversion=0, checkpointExists=0, dimension=0;
double fd;
char input_path[512], output_path[512], chkpt_path[512], buf[256];
REAL* h_idata;
MFILE out;
FILE* state, *infile;
double num=0;
generate_random_input_file(MATRIX_SIZE); //call this if you don't want to
//construct the input file manually
for (i=0; i<argc; i++) {
if (!strcmp(argv[i], "-early_exit")) early_exit = true;
if (!strcmp(argv[i], "-early_crash")) early_crash = true;
if (!strcmp(argv[i], "-run_slow")) run_slow = true;
if (!strcmp(argv[i], "-cpu_time")) {
cpu_time = atof(argv[++i]);
}
}
retval = boinc_init();
if (retval) {
fprintf(stderr,
"%s boinc_init returned %d\n",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
exit(retval);
}
// open the input file (resolve logical name first)
//
boinc_resolve_filename(INPUT_FILENAME, input_path, sizeof(input_path));
infile = boinc_fopen(input_path, "r");
if (!infile) {
fprintf(stderr,
"%s Couldn't find input file, resolved name %s.\n",
boinc_msg_prefix(buf, sizeof(buf)), input_path
);
getchar();
exit(-1);
}
boinc_resolve_filename(OUTPUT_FILENAME, output_path, sizeof(output_path));
// See if there's a valid checkpoint file.
// If so retrieve the current matrix and inversion number
//
boinc_resolve_filename(CHECKPOINT_FILE, chkpt_path, sizeof(chkpt_path));
state = boinc_fopen(chkpt_path, "r");
if (state) {
printf("Checkpoint file is detected. Read from checkpoint file ... \n");
checkpointExists=fscanf(state, "%d", &lastInversion);
if (checkpointExists == 1) {
printf("Last inversion # is : %d\n",lastInversion);
fscanf(state,"%d",&dimension);
cudaMallocHost((void **)&h_idata,dimension*dimension*sizeof(REAL));
for (i=0;i<dimension*dimension;++i) {
fscanf(state, "%lf", &num);
h_idata[i] = num;
}
}
fclose(state);
} else {
printf("There's no valid checkpoint file!\n");
}
retval = out.open(output_path, "wb");
if (retval) {
fprintf(stderr,
"%s APP: matrix_inversion output open failed:\n",
boinc_msg_prefix(buf, sizeof(buf))
);
fprintf(stderr,
"%s resolved name %s, retval %d\n",
boinc_msg_prefix(buf, sizeof(buf)), output_path, retval
);
perror("open");
exit(1);
}
#ifdef APP_GRAPHICS
// create shared mem segment for graphics, and arrange to update it
//
shmem = (UC_SHMEM*)boinc_graphics_make_shmem("matrix_inversion", sizeof(UC_SHMEM));
if (!shmem) {
fprintf(stderr,
"%s failed to create shared mem segment\n",
boinc_msg_prefix(buf, sizeof(buf))
);
}
update_shmem();
boinc_register_timer_callback(update_shmem);
#endif
if (checkpointExists != 1) {
dimension=get_matrix_dimension(infile);
printf("Matrix dimension: %d\n",dimension);
cudaMallocHost((void **)&h_idata,dimension*dimension*sizeof(REAL));
fetch_elements_into_host_memory(infile,h_idata);
out.printf("\n----------------- Before being inversed ----------------\n\n");
printf("Computation is running ... Inverse the matrix %d times. Start at inversion #1\n",
NUM_ITERATIONS);
} else {
out.printf("\n----------------- Last checkpointed inversion #%d ----------------\n\n",
lastInversion);
printf("Computation is resumed ... Inverse the matrix %d more times. Start at inversion #%d\n",
NUM_ITERATIONS-lastInversion,lastInversion+1);
}
print_to_file(&out,h_idata,dimension);
for (i=lastInversion+1;i<=NUM_ITERATIONS;++i) {
invert(h_idata,dimension);
printf("Finish inversion #%d\n",i);
if (run_slow) {
boinc_sleep(1.);
}
if (early_exit && i>30) {
exit(-10);
}
if (early_crash && i>30) {
boinc_crash();
}
if (boinc_time_to_checkpoint()) {
//if (i==7) {
printf("Perform checkpointing at inversion # %d\n",i);
//we'll need to write the current matrix to the state file.
retval = do_checkpoint(out, i, h_idata, dimension);
if (retval) {
fprintf(stderr,
"%s APP: matrix_inversion checkpoint failed %d\n",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
exit(retval);
}
boinc_checkpoint_completed();
}
fd = i/NUM_ITERATIONS;
if (cpu_time) fd /= 2;
boinc_fraction_done(fd);
}
out.printf("\n\n----------------- Final inversion #%d----------------\n\n",
NUM_ITERATIONS);
print_to_file(&out,h_idata,dimension);
cudaFreeHost( h_idata );
retval = out.flush(); //force the output file to be closed.
if (retval) {
fprintf(stderr,
"%s APP: matrix_inversion flush failed %d\n",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
exit(1);
}
// burn up some CPU time if needed
//
if (cpu_time) {
printf("\nBurning up some CPU time ... \n");
double start = dtime();
for (i=0; ; i++) {
double e = dtime()-start;
if (e > cpu_time) break;
fd = .5 + .5*(e/cpu_time);
boinc_fraction_done(fd);
if (boinc_time_to_checkpoint()) {
retval = do_checkpoint(out, NUM_ITERATIONS, h_idata, dimension);
if (retval) {
fprintf(stderr,
"%s APP: maxtrix_inversion checkpoint failed %d\n",
boinc_msg_prefix(buf, sizeof(buf)), retval
);
exit(1);
}
boinc_checkpoint_completed();
}
comp_result = do_a_giga_flop(i);
}
}
boinc_fraction_done(1);
#ifdef APP_GRAPHICS
update_shmem();
#endif
printf("\nDone! Please press ENTER to exit. ");
getchar();
boinc_finish(0);
}
/*** BOINC FUNCTION DEFINITIONS ***/
/* Do a billion floating-point ops */
static double do_a_giga_flop(int foo) {
double x = 3.14159*foo;
int i;
for (i=0; i<500000000; i++) {
x += 5.12313123;
x *= 0.5398394834;
}
return x;
}
/* Save the computation state into checkpoint file */
int do_checkpoint(MFILE& mf, int n, REAL *h_idata, int dimension) {
int retval;
string resolved_name;
FILE* f = fopen("temp", "w");
if (!f) {
return 1;
}
fprintf(f, "%d", n); //write inversion number
fprintf(f, " ");
fprintf(f, "%d", dimension); //write dimension
fprintf(f, " ");
for (int i=0;i<dimension*dimension;++i) {
fprintf(f, " ");
fprintf(f, "%f", h_idata[i]);
}
fclose(f);
retval = mf.flush();
if (retval) {
return retval;
}
boinc_resolve_filename_s(CHECKPOINT_FILE, resolved_name);
retval = boinc_rename("temp", resolved_name.c_str());
if (retval) {
return retval;
}
return 0; //return 0 to indicate success.
}
/*** FUNCTION DEFINITIONS ***/
/* Create an input file filled with random data of type cl_float. */
void generate_random_input_file(int n) {
FILE *infile;
infile=fopen(INPUT_FILENAME,"w");
REAL *h_idata = (REAL *)malloc(sizeof(REAL)*n*n);
srand(n);
for( int i = 0; i < n; i++ ) {
for (int j = 0; j < n; j++) {
h_idata[i*n+j] = 2.0*(rand()%32768)/32768.0 - 1.0;
}
h_idata[i*n+i] += sqrt((float)n);
}
int j=0;
for (int i=0;i<n*n;++i) {
fprintf(infile,"%15f",h_idata[i]);
if (j+1==n) {
fprintf(infile,"\n");
j=0;
} else {
++j;
}
}
fclose(infile);
free(h_idata);
}
/*
* Parse the input file and determine the size of the matrix.
* This is an nxn matrix. Note: if width <> height, the matrix is
* non-invertible.
*/
int get_matrix_dimension(FILE *infile) {
int w=0;
char c;
fseek(infile,0,SEEK_SET);
while (true) {
do {
c=fgetc(infile);
if (c == EOF || c == '\n') {
goto exitLoop;
}
} while (isspace(c));
if (isdigit(c) || c=='.' || c=='-') {
++w;
}
do {
c=fgetc(infile);
if (c == EOF || c == '\n') {
goto exitLoop;
}
} while (isdigit(c) || c=='.' || c=='-');
if (c==EOF || c == '\n') {
break;
}
}
exitLoop:
return w;
}
/* Read the REAL values from input file into host array. */
void fetch_elements_into_host_memory(FILE *infile, REAL *h_idata) {
float num=0;
int i=0;
fseek(infile,0,SEEK_SET);
while (fscanf(infile,"%f",&num)==1) {
h_idata[i]=num;
++i;
}
}
/* Write the result to output file */
void print_to_file(MFILE *out, float *h_odata, int dimension) {
int count=0;
int move=0;
int num_elements=dimension*dimension;
while (num_elements>0) {
out->printf("%15f ",h_odata[move]);
++count;
++move;
if (count==dimension) {
out->printf("\n");
count=0;
}
--num_elements;
}
}