// The contents of this file are subject to the BOINC Public License // Version 1.0 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://boinc.berkeley.edu/license_1.0.txt // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations // under the License. // // The Original Code is the Berkeley Open Infrastructure for Network Computing. // // The Initial Developer of the Original Code is the SETI@home project. // Portions created by the SETI@home project are Copyright (C) 2002 // University of California at Berkeley. All Rights Reserved. // // Contributor(s): // // Abstraction of a set of executing applications, // connected to I/O files in various ways. // Shouldn't depend on CLIENT_STATE. #include "windows_cpp.h" #include "error_numbers.h" #ifdef _WIN32 #include #include #endif #if HAVE_UNISTD_H #include #endif #if HAVE_SYS_WAIT_H #include #endif #if HAVE_SYS_TIME_H #include #endif #if HAVE_SYS_RESOURCE_H #include #endif #if HAVE_SYS_TYPES_H #include #endif #if HAVE_SYS_SIGNAL_H #include #endif #if HAVE_SYS_IPC_H #include #endif #if HAVE_FCNTL_H #include #endif #if HAVE_SIGNAL_H #include #endif #include #include #include #include #include #include "client_state.h" #include "client_types.h" #include "filesys.h" #include "file_names.h" #include "parse.h" #include "shmem.h" #include "util.h" #include "app.h" // Goes through an array of strings, and prints each string // static int debug_print_argv(char** argv) { int i; log_messages.printf(ClientMessages::DEBUG_TASK, "Arguments:"); ++log_messages; for (i=0; argv[i]; i++) { log_messages.printf(ClientMessages::DEBUG_TASK, "argv[%d]: %s\n", i, argv[i]); } --log_messages; return 0; } ACTIVE_TASK::ACTIVE_TASK() { result = NULL; wup = NULL; app_version = NULL; pid = 0; slot = 0; state = PROCESS_UNINITIALIZED; exit_status = 0; signal = 0; strcpy(slot_dir, ""); graphics_requested_mode = MODE_HIDE_GRAPHICS; graphics_request_time = time(0); graphics_acked_mode = MODE_UNSUPPORTED; graphics_mode_before_ss = MODE_HIDE_GRAPHICS; last_status_msg_time = 0; current_cpu_time = working_set_size = 0; } int ACTIVE_TASK::init(RESULT* rp) { result = rp; wup = rp->wup; app_version = wup->avp; max_cpu_time = gstate.estimate_cpu_time(*rp->wup)*2; max_disk_usage = rp->wup->rsc_disk; max_mem_usage = rp->wup->rsc_memory; return 0; } // Start a task in a slot directory. // This includes setting up soft links, // passing preferences, and starting the process // // Current dir is top-level BOINC dir // int ACTIVE_TASK::start(bool first_time) { char exec_name[256], file_path[256], link_path[256], buf[256], exec_path[256]; unsigned int i; FILE_REF file_ref; FILE_INFO* fip; int retval; char init_data_path[256], graphics_data_path[256], fd_init_path[256]; FILE *f; APP_INIT_DATA aid; GRAPHICS_INFO gi; ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_TASK); scope_messages.printf("ACTIVE_TASK::start(first_time=%d)\n", first_time); if (first_time) { checkpoint_cpu_time = 0; } current_cpu_time = checkpoint_cpu_time; starting_cpu_time = checkpoint_cpu_time; fraction_done = 0; gi.xsize = 800; gi.ysize = 600; gi.refresh_period = 0.1; memset(&aid, 0, sizeof(aid)); safe_strcpy(aid.user_name, wup->project->user_name); safe_strcpy(aid.team_name, wup->project->team_name); if (wup->project->project_specific_prefs) { extract_venue( wup->project->project_specific_prefs, gstate.host_venue, aid.app_preferences ); } aid.user_total_credit = wup->project->user_total_credit; aid.user_expavg_credit = wup->project->user_expavg_credit; aid.host_total_credit = wup->project->host_total_credit; aid.host_expavg_credit = wup->project->host_expavg_credit; aid.checkpoint_period = gstate.global_prefs.disk_interval; aid.fraction_done_update_period = DEFAULT_FRACTION_DONE_UPDATE_PERIOD; aid.shm_key = 0; aid.wu_cpu_time = checkpoint_cpu_time; sprintf(init_data_path, "%s%s%s", slot_dir, PATH_SEPARATOR, INIT_DATA_FILE); f = fopen(init_data_path, "w"); if (!f) { msg_printf(wup->project, MSG_ERROR, "Failed to open core-to-app prefs file %s", init_data_path); return ERR_FOPEN; } // make a unique key for core/app shared memory segment // #ifdef _WIN32 sprintf(aid.comm_obj_name, "boinc_%d", slot); #elif HAVE_SYS_IPC_H aid.shm_key = ftok(init_data_path, slot); #else #error shared memory key generation unimplemented #endif retval = write_init_data_file(f, aid); if (retval) return retval; fclose(f); sprintf(graphics_data_path, "%s%s%s", slot_dir, PATH_SEPARATOR, GRAPHICS_DATA_FILE); f = fopen(graphics_data_path, "w"); if (!f) { msg_printf(wup->project, MSG_ERROR, "Failed to open core-to-app graphics prefs file %s", graphics_data_path); return ERR_FOPEN; } retval = write_graphics_file(f, &gi); fclose(f); sprintf(fd_init_path, "%s%s%s", slot_dir, PATH_SEPARATOR, FD_INIT_FILE); f = fopen(fd_init_path, "w"); if (!f) { msg_printf(wup->project, MSG_ERROR, "Failed to open init file %s", fd_init_path); return ERR_FOPEN; } // make soft links to the executable(s) // for (i=0; iapp_files.size(); i++) { FILE_REF fref = app_version->app_files[i]; fip = fref.file_info; get_pathname(fip, file_path); if (fref.main_program) { safe_strcpy(exec_name, fip->name); safe_strcpy(exec_path, file_path); } if (first_time) { sprintf(link_path, "%s%s%s", slot_dir, PATH_SEPARATOR, strlen(fref.open_name)?fref.open_name:fip->name); sprintf(buf, "..%s..%s%s", PATH_SEPARATOR, PATH_SEPARATOR, file_path); retval = boinc_link(buf, link_path); scope_messages.printf("ACTIVE_TASK::start(): Linking %s to %s\n", file_path, link_path); if (retval) { msg_printf(wup->project, MSG_ERROR, "Can't link %s to %s", file_path, link_path); fclose(f); return retval; } } } // create symbolic links, and hook up descriptors, for input files // for (i=0; iinput_files.size(); i++) { file_ref = wup->input_files[i]; get_pathname(file_ref.file_info, file_path); if (strlen(file_ref.open_name)) { if (first_time) { sprintf(link_path, "%s%s%s", slot_dir, PATH_SEPARATOR, file_ref.open_name); sprintf(buf, "..%s..%s%s", PATH_SEPARATOR, PATH_SEPARATOR, file_path ); scope_messages.printf("ACTIVE_TASK::start(): link %s to %s\n", file_path, link_path); if (file_ref.copy_file) { retval = boinc_copy(file_path, link_path); if (retval) { msg_printf(wup->project, MSG_ERROR, "Can't copy %s to %s", file_path, link_path); fclose(f); return retval; } } else { retval = boinc_link(buf, link_path); if (retval) { msg_printf(wup->project, MSG_ERROR, "Can't link %s to %s", file_path, link_path); fclose(f); return retval; } } } } else { sprintf(buf, "..%s..%s%s", PATH_SEPARATOR, PATH_SEPARATOR, file_path); retval = write_fd_init_file(f, buf, file_ref.fd, 1); if (retval) return retval; } } // hook up the output files using BOINC soft links // for (i=0; ioutput_files.size(); i++) { file_ref = result->output_files[i]; get_pathname(file_ref.file_info, file_path); if (strlen(file_ref.open_name)) { if (first_time) { sprintf(link_path, "%s%s%s", slot_dir, PATH_SEPARATOR, file_ref.open_name); sprintf(buf, "..%s..%s%s", PATH_SEPARATOR, PATH_SEPARATOR, file_path ); scope_messages.printf("ACTIVE_TASK::start(): link %s to %s\n", file_path, link_path); retval = boinc_link(buf, link_path); if (retval) { msg_printf(wup->project, MSG_ERROR, "Can't link %s to %s", file_path, link_path); fclose(f); return retval; } } } else { sprintf(buf, "..%s..%s%s", PATH_SEPARATOR, PATH_SEPARATOR, file_path); retval = write_fd_init_file(f, buf, file_ref.fd, 0); if (retval) return retval; } } fclose(f); #ifdef _WIN32 PROCESS_INFORMATION process_info; STARTUPINFO startup_info; char slotdirpath[256]; char cmd_line[512]; int win_error; memset( &process_info, 0, sizeof( process_info ) ); memset( &startup_info, 0, sizeof( startup_info ) ); startup_info.cb = sizeof(startup_info); startup_info.lpReserved = NULL; startup_info.lpDesktop = ""; sprintf(buf, "%s%s", QUIT_PREFIX, aid.comm_obj_name); quitRequestEvent = CreateEvent(0, TRUE, FALSE, buf); // create core/app share mem segment // sprintf(buf, "%s%s", SHM_PREFIX, aid.comm_obj_name); shm_handle = create_shmem(buf, APP_CLIENT_SHMEM_SIZE, (void **)&app_client_shm.shm ); app_client_shm.reset_msgs(); // NOTE: in Windows, stderr is redirected within boinc_init(); sprintf(cmd_line, "%s %s", exec_path, wup->command_line); full_path(slot_dir, slotdirpath); if (!CreateProcess(exec_path, cmd_line, NULL, NULL, FALSE, CREATE_NEW_PROCESS_GROUP|CREATE_NO_WINDOW|IDLE_PRIORITY_CLASS, NULL, slotdirpath, &startup_info, &process_info )) { win_error = GetLastError(); char *errorargs[] = {app_version->app_name,"","","",""}; LPVOID lpMsgBuf; FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER|FORMAT_MESSAGE_FROM_SYSTEM, NULL, win_error, 0, (LPTSTR)&lpMsgBuf, 0, errorargs ); state = PROCESS_COULDNT_START; result->active_task_state = PROCESS_COULDNT_START; if (win_error) { gstate.report_result_error(*result, win_error, (LPTSTR)&lpMsgBuf); LocalFree(lpMsgBuf); return -1; } msg_printf(wup->project, MSG_ERROR, "CreateProcess: %s", (LPCTSTR)lpMsgBuf); LocalFree(lpMsgBuf); } pid = process_info.dwProcessId; pid_handle = process_info.hProcess; thread_handle = process_info.hThread; #else char* argv[100]; // Set up core/app shared memory seg // shm_key = aid.shm_key; if (!create_shmem( shm_key, APP_CLIENT_SHMEM_SIZE, (void**)&app_client_shm.shm) ) { app_client_shm.reset_msgs(); } pid = fork(); if (pid == 0) { // from here on we're running in a new process. // If an error happens, exit nonzero so that the core client // knows there was a problem. // chdir() into the slot directory // retval = chdir(slot_dir); if (retval) { perror("chdir"); exit(retval); } // hook up stderr to a specially-named file // freopen(STDERR_FILE, "a", stderr); argv[0] = exec_name; parse_command_line(wup->command_line, argv+1); debug_print_argv(argv); sprintf(buf, "..%s..%s%s", PATH_SEPARATOR, PATH_SEPARATOR, exec_path ); retval = execv(buf, argv); msg_printf(wup->project, MSG_ERROR, "execv failed: %d\n", retval); perror("execv"); exit(1); } scope_messages.printf("ACTIVE_TASK::start(): forked process: pid %d\n", pid); #endif state = PROCESS_RUNNING; result->active_task_state = PROCESS_RUNNING; return 0; } // Send a quit signal. // Normally this is caught by the process, which can checkpoint // int ACTIVE_TASK::request_exit() { #ifdef _WIN32 return !SetEvent(quitRequestEvent); #else return kill(pid, SIGQUIT); #endif } // send a kill signal. // This is not caught by the process // int ACTIVE_TASK::kill_task() { #ifdef _WIN32 return !TerminateProcess(pid_handle, -1); #else return kill(pid, SIGKILL); #endif } bool ACTIVE_TASK::task_exited() { #ifdef _WIN32 unsigned long exit_code; if (GetExitCodeProcess(pid_handle, &exit_code)) { if (exit_code != STILL_ACTIVE) { return true; } } #else int my_pid, stat; struct rusage rs; my_pid = wait4(pid, &stat, WNOHANG, &rs); if (my_pid == pid) { double x = rs.ru_utime.tv_sec + rs.ru_utime.tv_usec/1.e6; result->final_cpu_time = current_cpu_time = checkpoint_cpu_time = starting_cpu_time + x; return true; } #endif return false; } // Inserts an active task into the ACTIVE_TASK_SET and starts it up // int ACTIVE_TASK_SET::insert(ACTIVE_TASK* atp) { int retval; get_slot_dir(atp->slot, atp->slot_dir); clean_out_dir(atp->slot_dir); retval = atp->start(true); if (retval) return retval; active_tasks.push_back(atp); return 0; } #if 0 // Deallocate memory to prevent unneeded reporting of memory leaks // void ACTIVE_TASK_SET::free_mem() { vector::iterator at_iter; ACTIVE_TASK *at; at_iter = active_tasks.begin(); while (at_iter != active_tasks.end()) { at = active_tasks[0]; at_iter = active_tasks.erase(at_iter); delete at; } } #endif // Do period checks on running apps: // - get latest CPU time and % done info // - check if any has exited, and clean up // - see if any has exceeded its CPU or disk space limits, and abort // bool ACTIVE_TASK_SET::poll() { bool action; get_cpu_times(); action = check_app_exited(); if (action) return true; action = check_rsc_limits_exceeded(); if (action) return true; return false; } bool ACTIVE_TASK_SET::check_app_exited() { ACTIVE_TASK* atp; ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_TASK); #ifdef _WIN32 unsigned long exit_code; bool found = false; for (int i=0; ipid_handle, &exit_code)) { atp->result->final_cpu_time = atp->checkpoint_cpu_time; if (exit_code != STILL_ACTIVE) { found = true; if (atp->state == PROCESS_ABORT_PENDING) { atp->state = PROCESS_ABORTED; atp->result->active_task_state = PROCESS_ABORTED; gstate.report_result_error( *(atp->result), 0, "process was aborted\n" ); } else { atp->state = PROCESS_EXITED; atp->exit_status = exit_code; atp->result->exit_status = atp->exit_status; atp->result->active_task_state = PROCESS_EXITED; //if a nonzero error code, then report it if (exit_code) { gstate.report_result_error( *(atp->result), 0, "process exited with a non zero exit code\n" ); } } CloseHandle(atp->pid_handle); CloseHandle(atp->thread_handle); CloseHandle(atp->quitRequestEvent); atp->read_stderr_file(); clean_out_dir(atp->slot_dir); // detach from shared mem. This will destroy shmem seg // since we're the last attachment // if (atp->app_client_shm.shm) { detach_shmem(atp->shm_handle, atp->app_client_shm.shm); atp->app_client_shm.shm = NULL; } } } } if (found) return true; #else int pid; int stat; struct rusage rs; pid = wait4(0, &stat, WNOHANG, &rs); if (pid > 0) { scope_messages.printf("ACTIVE_TASK_SET::check_app_exited(): process %d is done\n", pid); atp = lookup_pid(pid); if (!atp) { msg_printf(NULL, MSG_ERROR, "ACTIVE_TASK_SET::check_app_exited(): pid %d not found\n", pid); return true; } double x = rs.ru_utime.tv_sec + rs.ru_utime.tv_usec/1.e6; atp->result->final_cpu_time = atp->current_cpu_time = atp->checkpoint_cpu_time = atp->starting_cpu_time + x; if (atp->state == PROCESS_ABORT_PENDING) { atp->state = PROCESS_ABORTED; atp->result->active_task_state = PROCESS_ABORTED; gstate.report_result_error( *(atp->result), 0, "process was aborted\n" ); } else { if (WIFEXITED(stat)) { atp->state = PROCESS_EXITED; atp->exit_status = WEXITSTATUS(stat); atp->result->exit_status = atp->exit_status; atp->result->active_task_state = PROCESS_EXITED; // If exit_status is nonzero, then we don't need to upload the // output files // if(atp->exit_status) { gstate.report_result_error( *(atp->result), 0, "process exited with a nonzero exit code\n" ); } scope_messages.printf("ACTIVE_TASK_SET::check_app_exited(): process exited: status %d\n", atp->exit_status); } else if (WIFSIGNALED(stat)) { atp->state = PROCESS_WAS_SIGNALED; atp->signal = WTERMSIG(stat); atp->result->signal = atp->signal; atp->result->active_task_state = PROCESS_WAS_SIGNALED; gstate.report_result_error( *(atp->result), 0, "process was signaled\n" ); scope_messages.printf("ACTIVE_TASK_SET::check_app_exited(): process was signaled: %d\n", atp->signal); } else { atp->state = PROCESS_EXIT_UNKNOWN; atp->result->state = PROCESS_EXIT_UNKNOWN; } } atp->read_stderr_file(); clean_out_dir(atp->slot_dir); // detach from and destroy share mem // if (atp->app_client_shm.shm) { detach_shmem(atp->app_client_shm.shm); atp->app_client_shm.shm = NULL; } destroy_shmem(atp->shm_key); return true; } #endif return false; } // if an app has exceeded its maximum CPU time, abort it // bool ACTIVE_TASK::check_max_cpu_exceeded() { if (current_cpu_time > max_cpu_time) { msg_printf(result->project, MSG_INFO, "Aborting result %s: exceeded CPU time limit %f\n", result->name, max_cpu_time); abort(); return true; } return false; } // if an app has exceeded its maximum disk usage, abort it // bool ACTIVE_TASK::check_max_disk_exceeded() { double disk_usage; int retval; // don't do disk check too often // retval = current_disk_usage(disk_usage); if (retval) { msg_printf(0, MSG_ERROR, "Can't get application disk usage"); } else { if (disk_usage > max_disk_usage) { msg_printf( result->project, MSG_INFO, "Aborting result %s: exceeded disk limit %f\n", result->name, max_disk_usage ); abort(); return true; } } return false; } #if 0 // if an app has exceeded its maximum allowed memory, abort it // bool ACTIVE_TASK::check_max_mem_exceeded() { // TODO: calculate working set size elsewhere if (working_set_size > max_mem_usage || working_set_size/1048576 > gstate.global_prefs.max_memory_mbytes) { msg_printf( result->project, MSG_INFO, "Aborting result %s: exceeded memory limit %f\n", result->name, min(max_mem_usage, gstate.global_prefs.max_memory_mbytes*1048576) ); abort(); return true; } return false; } #endif // Check if any of the active tasks have exceeded their // resource limits on disk, CPU time or memory // bool ACTIVE_TASK_SET::check_rsc_limits_exceeded() { unsigned int j; ACTIVE_TASK *atp; static time_t last_disk_check_time = 0; for (j=0;jcheck_max_cpu_exceeded()) return true; //else if (atp->check_max_mem_exceeded()) return true; else if (time(0)>last_disk_check_time + gstate.global_prefs.disk_interval) { last_disk_check_time = time(0); if (atp->check_max_disk_exceeded()) return true; } } return false; } // The application has done something wrong. // May as well send it a kill signal. // int ACTIVE_TASK::abort() { state = PROCESS_ABORT_PENDING; result->active_task_state = PROCESS_ABORT_PENDING; return kill_task(); } // check for the stderr file, copy to result record // bool ACTIVE_TASK::read_stderr_file() { char stderr_file[MAX_BLOB_LEN]; char path[256]; int n; sprintf(path, "%s%s%s", slot_dir, PATH_SEPARATOR, STDERR_FILE); FILE* f = fopen(path, "r"); if (f) { n = fread(stderr_file, 1, sizeof(stderr_file)-1, f); fclose(f); if (n < 0) return false; stderr_file[n] = '\0'; result->stderr_out += "\n"; result->stderr_out += stderr_file; result->stderr_out += "\n\n"; result->stderr_out = result->stderr_out.substr(0,MAX_BLOB_LEN-1); return true; } return false; } void ACTIVE_TASK::request_graphics_mode(int mode) { app_client_shm.send_graphics_mode_msg(CORE_APP_GFX_SEG, mode); graphics_requested_mode = mode; } void ACTIVE_TASK::check_graphics_mode_ack() { int mode; if (app_client_shm.get_graphics_mode_msg(APP_CORE_GFX_SEG, mode)) { graphics_acked_mode = mode; if (mode != MODE_FULLSCREEN) { graphics_mode_before_ss = mode; } } } // send quit signal to all tasks. // If they don't exit in one second, send them a kill signal // TODO: unsuspend active tasks so they have a chance to checkpoint // int ACTIVE_TASK_SET::exit_tasks() { request_tasks_exit(); // Wait 5 seconds for them to exit normally; if they don't then kill them // if (wait_for_exit(5)) { kill_tasks(); } get_cpu_times(); return 0; } // Wait up to wait_time seconds for all processes to exit // int ACTIVE_TASK_SET::wait_for_exit(double wait_time) { bool all_exited; unsigned int i,n; ACTIVE_TASK *atp; for (i=0; i<10; i++) { boinc_sleep(wait_time/10.0); all_exited = true; for (n=0; ntask_exited()) { all_exited = false; break; } } if (all_exited) return 0; } return -1; } // Find the ACTIVE_TASK in the current set with the matching PID // ACTIVE_TASK* ACTIVE_TASK_SET::lookup_pid(int pid) { unsigned int i; ACTIVE_TASK* atp; for (i=0; ipid == pid) return atp; } return NULL; } // suspend all currently running tasks // void ACTIVE_TASK_SET::suspend_all() { unsigned int i; ACTIVE_TASK* atp; for (i=0; isuspend()) { msg_printf( atp->wup->project, MSG_ERROR, "ACTIVE_TASK_SET::suspend_all(): could not suspend active_task" ); } } } // resume all currently running tasks // void ACTIVE_TASK_SET::unsuspend_all() { unsigned int i; ACTIVE_TASK* atp; for (i=0; iunsuspend()) { msg_printf( atp->wup->project, MSG_ERROR, "ACTIVE_TASK_SET::unsuspend_all(): could not unsuspend active_task" ); } } } // initiate exit of all currently running tasks // void ACTIVE_TASK_SET::request_tasks_exit() { unsigned int i; ACTIVE_TASK *atp; for (i=0; irequest_exit()) { msg_printf(atp->wup->project, MSG_ERROR, "ACTIVE_TASK_SET::exit_tasks(): could not request exit of active_task" ); } } } // Kills all currently running tasks without warning // void ACTIVE_TASK_SET::kill_tasks() { unsigned int i; ACTIVE_TASK *atp; for (i=0; ikill_task(); } } // suspend a task // int ACTIVE_TASK::suspend() { #ifdef _WIN32 SuspendThread( thread_handle ); #else kill(pid, SIGSTOP); #endif return 0; } // resume a suspended task // int ACTIVE_TASK::unsuspend() { #ifdef _WIN32 ResumeThread( thread_handle ); #else kill(pid, SIGCONT); #endif return 0; } // Remove an ACTIVE_TASK from the set. // Do this only if you're sure that the process has exited. // int ACTIVE_TASK_SET::remove(ACTIVE_TASK* atp) { vector::iterator iter; iter = active_tasks.begin(); while (iter != active_tasks.end()) { if (*iter == atp) { active_tasks.erase(iter); return 0; } iter++; } msg_printf(NULL, MSG_ERROR, "ACTIVE_TASK_SET::remove(): not found\n"); return 1; } // Restart active tasks without wiping and reinitializing slot directories // int ACTIVE_TASK_SET::restart_tasks() { vector::iterator iter; ACTIVE_TASK* atp; int retval; ScopeMessages scope_messages(log_messages, ClientMessages::DEBUG_TASK); iter = active_tasks.begin(); while (iter != active_tasks.end()) { atp = *iter; atp->init(atp->result); get_slot_dir(atp->slot, atp->slot_dir); atp->result->is_active = true; retval = atp->start(false); msg_printf(atp->wup->project, MSG_INFO, "Restarting computation for result %s", atp->result->name ); if (retval) { msg_printf(atp->wup->project, MSG_ERROR, "ACTIVE_TASKS::restart_tasks(); restart failed: %d\n", retval); atp->result->active_task_state = PROCESS_COULDNT_START; gstate.report_result_error( *(atp->result), retval, "Couldn't restart the app for this result.\n" ); active_tasks.erase(iter); } else { iter++; } } return 0; } int ACTIVE_TASK::get_cpu_time_via_os() { #ifdef _WIN32 FILETIME creation_time, exit_time, kernel_time, user_time; ULARGE_INTEGER tKernel, tUser; LONGLONG totTime; // Get the elapsed CPU time if (GetProcessTimes(pid_handle, &creation_time, &exit_time, &kernel_time, &user_time)) { tKernel.LowPart = kernel_time.dwLowDateTime; tKernel.HighPart = kernel_time.dwHighDateTime; tUser.LowPart = user_time.dwLowDateTime; tUser.HighPart = user_time.dwHighDateTime; // Runtimes in 100 nanosecond units totTime = tKernel.QuadPart + tUser.QuadPart; current_cpu_time = checkpoint_cpu_time = starting_cpu_time + totTime/1.e7; return 0; } #else // On UNIX, we can't get CPU time before process has exited for some reason #endif return -1; } // See if the app has generated a new fraction-done message in shared mem. // If so read it and return true. // int ACTIVE_TASK::get_cpu_time_via_shmem(time_t now) { char msg_buf[SHM_SEG_SIZE]; double x; if (app_client_shm.get_msg(msg_buf, APP_CORE_WORKER_SEG)) { last_status_msg_time = now; fraction_done = current_cpu_time = checkpoint_cpu_time = 0.0; parse_double(msg_buf, "", fraction_done); parse_double(msg_buf, "", current_cpu_time); parse_double(msg_buf, "", checkpoint_cpu_time); parse_double(msg_buf, "", working_set_size); recent_change += (fraction_done - last_frac_done); if (last_frac_update==0) last_frac_update = now; if ((now-last_frac_update)>0) { x = exp(-(now-last_frac_update)*log(2.0)/20.0); frac_rate_of_change *= x; frac_rate_of_change += recent_change*(1-x); last_frac_update = now; recent_change = 0; last_frac_done = fraction_done; } return 0; } // if no message in 5 seconds, get the CPU time by system calls // if (last_status_msg_time+5 < now) { last_status_msg_time = now; return get_cpu_time_via_os(); } return -1; } // get CPU times of active tasks // void ACTIVE_TASK_SET::get_cpu_times() { unsigned int i; ACTIVE_TASK *atp; time_t now = time(0); for (i=0; iget_cpu_time_via_shmem(now); } } // Returns the estimated time to completion (in seconds) of this task, // based on current reported CPU time and fraction done // double ACTIVE_TASK::est_time_to_completion() { if (fraction_done <= 0 || fraction_done > 1) { return -1; } return (1.0-fraction_done)/frac_rate_of_change; //return (current_cpu_time / fraction_done) - current_cpu_time; } // size of output files and files in slot dir // int ACTIVE_TASK::current_disk_usage(double& size) { double x; unsigned int i; int retval; FILE_INFO* fip; char path[256]; retval = dir_size(slot_dir, size); if (retval) return retval; for (i=0; ioutput_files.size(); i++) { fip = result->output_files[i].file_info; get_pathname(fip, path); retval = file_size(path, x); if (!retval) size += x; } return 0; } // Get the next available free slot, or returns -1 if all slots are full // int ACTIVE_TASK_SET::get_free_slot(int total_slots) { unsigned int i; int j; bool found; if (active_tasks.size() >= (unsigned int)total_slots) { return -1; } for (j=0; jslot == j) { found = true; break; } } if (!found) return j; } return -1; } // Write XML data about this ACTIVE_TASK // int ACTIVE_TASK::write(FILE* fout) { fprintf(fout, "\n" " %s\n" " %s\n" " %d\n" " %d\n" " %f\n" "\n", result->project->master_url, result->name, app_version->version_num, slot, checkpoint_cpu_time ); return 0; } // Parse XML information about an active task // int ACTIVE_TASK::parse(FILE* fin, CLIENT_STATE* cs) { char buf[256], result_name[256], project_master_url[256]; int app_version_num=0; PROJECT* project; strcpy(result_name, ""); strcpy(project_master_url, ""); while (fgets(buf, 256, fin)) { if (match_tag(buf, "")) { project = cs->lookup_project(project_master_url); if (!project) { msg_printf( NULL, MSG_ERROR, "ACTIVE_TASK::parse(): project not found: %s\n", project_master_url ); return -1; } result = cs->lookup_result(project, result_name); if (!result) { msg_printf( NULL, MSG_ERROR, "ACTIVE_TASK::parse(): result not found\n" ); return -1; } wup = result->wup; app_version = cs->lookup_app_version( result->app, app_version_num ); if (!app_version) { msg_printf( NULL, MSG_ERROR, "ACTIVE_TASK::parse(): app_version not found\n" ); return -1; } return 0; } else if (parse_str(buf, "", result_name, sizeof(result_name))) continue; else if (parse_str(buf, "", project_master_url, sizeof(project_master_url))) continue; else if (parse_int(buf, "", app_version_num)) continue; else if (parse_int(buf, "", slot)) continue; else if (parse_double(buf, "", checkpoint_cpu_time)) continue; else msg_printf(NULL, MSG_ERROR, "ACTIVE_TASK::parse(): unrecognized %s\n", buf); } return -1; } // Write XML information about this active task set // int ACTIVE_TASK_SET::write(FILE* fout) { unsigned int i; int retval; fprintf(fout, "\n"); for (i=0; iwrite(fout); if (retval) return retval; } fprintf(fout, "\n"); return 0; } // Parse XML information about an active task set // int ACTIVE_TASK_SET::parse(FILE* fin, CLIENT_STATE* cs) { ACTIVE_TASK* atp; char buf[256]; int retval; while (fgets(buf, 256, fin)) { if (match_tag(buf, "")) return 0; else if (match_tag(buf, "")) { atp = new ACTIVE_TASK; retval = atp->parse(fin, cs); if (!retval) active_tasks.push_back(atp); else delete atp; } else { msg_printf(NULL, MSG_ERROR, "ACTIVE_TASK_SET::parse(): unrecognized %s\n", buf); } } return 0; } // return an app with pre-ss mode WINDOW, if there is one // else return an app with pre-ss mode HIDE, if there is one // else return NULL // ACTIVE_TASK* ACTIVE_TASK_SET::get_graphics_capable_app() { unsigned int i; ACTIVE_TASK* atp; for (i=0; igraphics_mode_before_ss == MODE_WINDOW) { return atp; } } for (i=0; igraphics_mode_before_ss == MODE_HIDE_GRAPHICS) { return atp; } } return NULL; } // return an app (if any) with given requested mode // ACTIVE_TASK* ACTIVE_TASK_SET::get_app_requested(int req_mode) { unsigned int i; ACTIVE_TASK* atp; for (i=0; igraphics_requested_mode == req_mode) { return atp; } } return NULL; } void ACTIVE_TASK_SET::save_app_modes() { unsigned int i; ACTIVE_TASK* atp; for (i=0; igraphics_mode_before_ss = atp->graphics_acked_mode; } } void ACTIVE_TASK_SET::hide_apps() { unsigned int i; ACTIVE_TASK* atp; for (i=0; irequest_graphics_mode(MODE_HIDE_GRAPHICS); } } void ACTIVE_TASK_SET::restore_apps() { unsigned int i; ACTIVE_TASK* atp; for (i=0; igraphics_requested_mode != atp->graphics_mode_before_ss) { atp->request_graphics_mode(atp->graphics_mode_before_ss); } } } void ACTIVE_TASK_SET::check_graphics_mode_ack() { unsigned int i; ACTIVE_TASK* atp; for (i=0; icheck_graphics_mode_ack(); } } bool ACTIVE_TASK::supports_graphics() { return (graphics_acked_mode != MODE_UNSUPPORTED); }