// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // scheduler code related to sending jobs. // NOTE: there should be nothing here specific to particular // scheduling policies (array scan, matchmaking, locality) #include "config.h" #include #include #include #include #include #include #include #include #include #include "error_numbers.h" #include "parse.h" #include "util.h" #include "str_util.h" #include "synch.h" #include "credit.h" #include "hr.h" #include "sched_array.h" #include "sched_assign.h" #include "sched_config.h" #include "sched_customize.h" #include "sched_hr.h" #include "sched_locality.h" #include "sched_main.h" #include "sched_msgs.h" #include "sched_nci.h" #include "sched_shmem.h" #include "sched_score.h" #include "sched_timezone.h" #include "sched_types.h" #include "sched_util.h" #include "sched_version.h" #include "sched_send.h" #ifdef _USING_FCGI_ #include "boinc_fcgi.h" #endif // if host sends us an impossible RAM size, use this instead // const double DEFAULT_RAM_SIZE = 64000000; int preferred_app_message_index=0; static inline bool file_present_on_host(const char* name) { for (unsigned i=0; ifile_infos.size(); i++) { FILE_INFO& fi = g_request->file_infos[i]; if (!strstr(name, fi.name)) { return true; } } return false; } // return the number of sticky files present on host, used by job // int nfiles_on_host(WORKUNIT& wu) { MIOFILE mf; mf.init_buf_read(wu.xml_doc); XML_PARSER xp(&mf); int n=0; while (!xp.get_tag()) { if (xp.match_tag("file_info")) { FILE_INFO fi; int retval = fi.parse(xp); if (retval) continue; if (!fi.sticky) continue; if (file_present_on_host(fi.name)) { n++; } } } return n; } // we're going to send the client this job, // and the app uses locality scheduling lite. // Add the job's sticky files to the list of files present on host. // void add_job_files_to_host(WORKUNIT& wu) { MIOFILE mf; mf.init_buf_read(wu.xml_doc); XML_PARSER xp(&mf); while (!xp.get_tag()) { if (xp.match_tag("file_info")) { FILE_INFO fi; int retval = fi.parse(xp); if (retval) continue; if (!fi.sticky) continue; if (!file_present_on_host(fi.name)) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] Adding file %s to host file list\n", fi.name ); } g_request->file_infos.push_back(fi); } } } } const double MIN_REQ_SECS = 0; const double MAX_REQ_SECS = (28*SECONDS_IN_DAY); // get limits on: // # jobs per day // # jobs per RPC // # jobs in progress // void WORK_REQ_BASE::get_job_limits() { int ninstances[NPROC_TYPES]; int i; memset(ninstances, 0, sizeof(ninstances)); int n; n = g_reply->host.p_ncpus; if (g_request->global_prefs.max_ncpus_pct && g_request->global_prefs.max_ncpus_pct < 100) { n = (int)((n*g_request->global_prefs.max_ncpus_pct)/100.); } if (n > config.max_ncpus) n = config.max_ncpus; if (n < 1) n = 1; if (n > MAX_CPUS) n = MAX_CPUS; ninstances[PROC_TYPE_CPU] = n; effective_ncpus = n; effective_ngpus = 0; for (i=1; icoprocs.n_rsc; i++) { COPROC& cp = g_request->coprocs.coprocs[i]; int proc_type = coproc_type_name_to_num(cp.type); if (proc_type < 0) continue; n = cp.count; if (n > MAX_GPUS) n = MAX_GPUS; ninstances[proc_type] = n; effective_ngpus += n; } int mult = effective_ncpus + config.gpu_multiplier * effective_ngpus; if (config.non_cpu_intensive) { mult = 1; ninstances[0] = 1; if (effective_ngpus) effective_ngpus = 1; } if (config.max_wus_to_send) { g_wreq->max_jobs_per_rpc = mult * config.max_wus_to_send; } else { g_wreq->max_jobs_per_rpc = 999999; } if (config.debug_quota) { log_messages.printf(MSG_NORMAL, "[quota] effective ncpus %d ngpus %d\n", effective_ncpus, effective_ngpus ); } config.max_jobs_in_progress.reset(ninstances); } const char* find_user_friendly_name(int appid) { APP* app = ssp->lookup_app(appid); if (app) return app->user_friendly_name; return "deprecated application"; } static void update_quota(DB_HOST_APP_VERSION& hav) { if (config.daily_result_quota) { if (hav.max_jobs_per_day == 0) { hav.max_jobs_per_day = config.daily_result_quota; if (config.debug_quota) { log_messages.printf(MSG_NORMAL, "[quota] [HAV#%lu] Initializing max_results_day to %d\n", hav.app_version_id, config.daily_result_quota ); } } } if (g_request->last_rpc_dayofyear != g_request->current_rpc_dayofyear) { if (config.debug_quota) { log_messages.printf(MSG_NORMAL, "[quota] [HOST#%lu] [HAV#%lu] Resetting n_jobs_today\n", g_reply->host.id, hav.app_version_id ); } hav.n_jobs_today = 0; } } // see how much RAM we can use on this machine // static inline void get_mem_sizes() { g_wreq->ram = g_reply->host.m_nbytes; if (g_wreq->ram <= 0) g_wreq->ram = DEFAULT_RAM_SIZE; g_wreq->usable_ram = g_wreq->ram; double busy_frac = g_request->global_prefs.ram_max_used_busy_frac; double idle_frac = g_request->global_prefs.ram_max_used_idle_frac; double frac = 1; if (busy_frac>0 && idle_frac>0) { frac = std::max(busy_frac, idle_frac); if (frac > 1) frac = 1; g_wreq->usable_ram *= frac; } } // Decide whether or not this app version is 'reliable' // An app version is reliable if the following conditions are true // (for those that are set in the config file) // 1) The host average turnaround is less than a threshold // 2) consecutive_valid is above a threshold // 3) The host results per day is equal to the max value // void get_reliability_version(HOST_APP_VERSION& hav, double multiplier) { if (hav.turnaround.n > MIN_HOST_SAMPLES && config.reliable_max_avg_turnaround) { if (hav.turnaround.get_avg() > config.reliable_max_avg_turnaround*multiplier) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [AV#%lu] not reliable; avg turnaround: %.3f > %.3f hrs\n", hav.app_version_id, hav.turnaround.get_avg()/3600, config.reliable_max_avg_turnaround*multiplier/3600 ); } hav.reliable = false; return; } } if (hav.consecutive_valid < CONS_VALID_RELIABLE) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [AV#%lu] not reliable; cons valid %d < %d\n", hav.app_version_id, hav.consecutive_valid, CONS_VALID_RELIABLE ); } hav.reliable = false; return; } if (config.daily_result_quota) { if (hav.max_jobs_per_day < config.daily_result_quota) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [AV#%lu] not reliable; max_jobs_per_day %d<%d\n", hav.app_version_id, hav.max_jobs_per_day, config.daily_result_quota ); } hav.reliable = false; return; } } hav.reliable = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%lu] app version %lu is reliable\n", g_reply->host.id, hav.app_version_id ); } g_wreq->has_reliable_version = true; } // decide whether do unreplicated jobs with this app version // static void set_trust(DB_HOST_APP_VERSION& hav) { hav.trusted = false; if (hav.consecutive_valid < CONS_VALID_UNREPLICATED) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] set_trust: cons valid %d < %d, don't use single replication\n", hav.consecutive_valid, CONS_VALID_UNREPLICATED ); } return; } double x = 1./hav.consecutive_valid; if (drand() > x) hav.trusted = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] set_trust: random choice for cons valid %d: %s\n", hav.consecutive_valid, hav.trusted?"yes":"no" ); } } static void get_reliability_and_trust() { // Platforms other than Windows, Linux and Intel Macs need a // larger set of computers to be marked reliable // double multiplier = 1.0; if (strstr(g_reply->host.os_name,"Windows") || strstr(g_reply->host.os_name,"Linux") || (strstr(g_reply->host.os_name,"Darwin") && !(strstr(g_reply->host.p_vendor,"Power Macintosh")) )) { multiplier = 1.0; } else { multiplier = 1.8; } for (unsigned int i=0; ihost_app_versions.size(); i++) { DB_HOST_APP_VERSION& hav = g_wreq->host_app_versions[i]; get_reliability_version(hav, multiplier); set_trust(hav); } } // Compute the max additional disk usage we can impose on the host. // Depending on the client version, it can either send us // - d_total and d_free (pre 4 oct 2005) // - the above plus d_boinc_used_total and d_boinc_used_project // double max_allowable_disk() { HOST host = g_request->host; GLOBAL_PREFS prefs = g_request->global_prefs; double x1, x2, x3, x; // defaults are from config.xml // if not there these are used: // -default_max_used_gb= 100 // -default_max_used_pct = 50 // -default_min_free_gb = .001 // if (prefs.disk_max_used_gb == 0) { prefs.disk_max_used_gb = config.default_disk_max_used_gb; } if (prefs.disk_max_used_pct == 0) { prefs.disk_max_used_pct = config.default_disk_max_used_pct; } if (prefs.disk_min_free_gb < config.default_disk_min_free_gb) { prefs.disk_min_free_gb = config.default_disk_min_free_gb; } // no defaults for total/free disk space (host.d_total, d_free) // if they're zero, client will get no work. // if (host.d_boinc_used_total) { // The post 4 oct 2005 case. // Compute the max allowable additional disk usage based on prefs // x1 = prefs.disk_max_used_gb*GIGA - host.d_boinc_used_total; x2 = host.d_total * prefs.disk_max_used_pct / 100.0 - host.d_boinc_used_total; x3 = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative x = std::min(x1, std::min(x2, x3)); // see which bound is the most stringent // if (x==x1) { g_reply->disk_limits.max_used = x; } else if (x==x2) { g_reply->disk_limits.max_frac = x; } else { g_reply->disk_limits.min_free = x; } } else { // here we don't know how much space BOINC is using. // so we're kinda screwed. // All we can do is assume that BOINC is using zero space. // We can't honor the max_used for max_used_pct preferences. // We can only honor the min_free pref. // x = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative g_reply->disk_limits.min_free = x; x1 = x2 = x3 = 0; } if (x < 0) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] No disk space available: disk_max_used_gb %.2fGB disk_max_used_pct %.2f disk_min_free_gb %.2fGB\n", prefs.disk_max_used_gb, prefs.disk_max_used_pct, prefs.disk_min_free_gb ); log_messages.printf(MSG_NORMAL, "[send] No disk space available: host.d_total %.2fGB host.d_free %.2fGB host.d_boinc_used_total %.2fGB\n", host.d_total/GIGA, host.d_free/GIGA, host.d_boinc_used_total/GIGA ); log_messages.printf(MSG_NORMAL, "[send] No disk space available: x1 %.2fGB x2 %.2fGB x3 %.2fGB x %.2fGB\n", x1/GIGA, x2/GIGA, x3/GIGA, x/GIGA ); } g_wreq->disk.set_insufficient(-x); x = 0; } return x; } static double estimate_duration_unscaled(WORKUNIT& wu, BEST_APP_VERSION& bav) { double rsc_fpops_est = wu.rsc_fpops_est; if (rsc_fpops_est <= 0) rsc_fpops_est = 1e12; return rsc_fpops_est/bav.host_usage.projected_flops; } // Compute cpu_available_frac and gpu_available_frac. // These are based on client-supplied data, so do sanity checks // #define FRAC_MIN 0.1 static inline void clamp_frac(double& frac, const char* name) { if (frac > 1) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] %s=%f; setting to 1\n", name, frac ); } frac = 1; } else if (frac < FRAC_MIN) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] %s=%f; setting to %f\n", name, frac, FRAC_MIN ); } frac = .01; } } static inline void get_available_fracs() { if (g_request->core_client_version<=41900) { g_wreq->cpu_available_frac = g_reply->host.on_frac; g_wreq->gpu_available_frac = g_reply->host.on_frac; // irrelevant } else { g_wreq->cpu_available_frac = g_reply->host.active_frac * g_reply->host.on_frac; g_wreq->gpu_available_frac = g_reply->host.gpu_active_frac * g_reply->host.on_frac; } clamp_frac(g_wreq->cpu_available_frac, "CPU available fraction"); clamp_frac(g_wreq->gpu_available_frac, "GPU available fraction"); } double available_frac(BEST_APP_VERSION& bav) { if (bav.host_usage.uses_gpu()) { return g_wreq->gpu_available_frac; } else { return g_wreq->cpu_available_frac; } } // estimate the amount of real time to complete this WU, // taking into account active_frac etc. // Note: don't factor in resource_share_fraction. // The core client doesn't necessarily round-robin across all projects. // double estimate_duration(WORKUNIT& wu, BEST_APP_VERSION& bav) { double edu = estimate_duration_unscaled(wu, bav); double ed = edu/available_frac(bav); if (config.debug_send_job) { log_messages.printf(MSG_NORMAL, "[send_job] est. duration for WU %lu: unscaled %.2f scaled %.2f\n", wu.id, edu, ed ); } return ed; } // Parse user's project prferences. // TODO: use XML_PARSER // static void get_prefs_info() { char buf[8096]; std::string str; unsigned int pos = 0; int temp_int=0; bool flag; extract_venue(g_reply->user.project_prefs, g_reply->host.venue, buf, sizeof(buf)); str = buf; // scan user's project prefs for elements of the form N, // indicating the apps they want to run. // g_wreq->preferred_apps.clear(); while (parse_int(str.substr(pos,str.length()-pos).c_str(), "", temp_int)) { APP_INFO ai; ai.appid = temp_int; ai.work_available = false; g_wreq->preferred_apps.push_back(ai); pos = str.find("", pos) + 1; } if (parse_bool(buf,"allow_non_preferred_apps", flag)) { g_wreq->allow_non_preferred_apps = flag; } if (parse_bool(buf,"allow_beta_work", flag)) { g_wreq->allow_beta_work = flag; } if (parse_bool(buf,"no_gpus", flag)) { // deprecated, but need to handle if (flag) { for (int i=1; idont_use_proc_type[i] = true; } } } if (parse_bool(buf,"no_cpu", flag)) { g_wreq->dont_use_proc_type[PROC_TYPE_CPU] = flag; } if (parse_bool(buf,"no_cuda", flag)) { g_wreq->dont_use_proc_type[PROC_TYPE_NVIDIA_GPU] = flag; } if (parse_bool(buf,"no_ati", flag)) { g_wreq->dont_use_proc_type[PROC_TYPE_AMD_GPU] = flag; } if (parse_bool(buf,"no_intel_gpu", flag)) { g_wreq->dont_use_proc_type[PROC_TYPE_INTEL_GPU] = flag; } } void update_n_jobs_today() { for (unsigned int i=0; ihost_app_versions.size(); i++) { DB_HOST_APP_VERSION& hav = g_wreq->host_app_versions[i]; update_quota(hav); } } static inline void update_estimated_delay(BEST_APP_VERSION& bav, double dt) { int pt = bav.host_usage.proc_type; if (pt == PROC_TYPE_CPU) { g_request->cpu_estimated_delay += dt*bav.host_usage.avg_ncpus/g_request->host.p_ncpus; } else { COPROC* cp = g_request->coprocs.proc_type_to_coproc(pt); cp->estimated_delay += dt*bav.host_usage.gpu_usage/cp->count; } } // insert "text" right after "after" in the given buffer // static int insert_after(char* buffer, const char* after, const char* text) { char* p; char temp[BLOB_SIZE]; if (strlen(buffer) + strlen(text) >= BLOB_SIZE-1) { log_messages.printf(MSG_CRITICAL, "insert_after: overflow: %d %d\n", (int)strlen(buffer), (int)strlen(text) ); return ERR_BUFFER_OVERFLOW; } p = strstr(buffer, after); if (!p) { log_messages.printf(MSG_CRITICAL, "insert_after: %s not found in %s\n", after, buffer ); return ERR_XML_PARSE; } p += strlen(after); strcpy(temp, p); strcpy(p, text); strcat(p, temp); return 0; } // add elements to WU's xml_doc, // in preparation for sending it to a client // static int insert_wu_tags(WORKUNIT& wu, APP& app) { char buf[BLOB_SIZE]; sprintf(buf, " %f\n" " %f\n" " %f\n" " %f\n" " %s\n" " %s\n", wu.rsc_fpops_est, wu.rsc_fpops_bound, wu.rsc_memory_bound, wu.rsc_disk_bound, wu.name, app.name ); return insert_after(wu.xml_doc, "\n", buf); } // Add the given workunit, app, and app version to a reply. // static int add_wu_to_reply( WORKUNIT& wu, SCHEDULER_REPLY&, APP* app, BEST_APP_VERSION* bavp ) { int retval; WORKUNIT wu2, wu3; APP_VERSION* avp = bavp->avp; // add the app, app_version, and workunit to the reply, // but only if they aren't already there // if (avp) { APP_VERSION av2=*avp, *avp2=&av2; if (strlen(config.replace_download_url_by_timezone)) { process_av_timezone(avp, av2); } g_reply->insert_app_unique(*app); av2.bavp = bavp; g_reply->insert_app_version_unique(*avp2); if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] Sending app_version %s %lu %d %s; projected %.2f GFLOPS\n", app->name, avp2->platformid, avp2->version_num, avp2->plan_class, bavp->host_usage.projected_flops/1e9 ); } } // modify the WU's xml_doc; add , etc. // wu2 = wu; // make copy since we're going to modify its XML field // adjust FPOPS figures for anonymous platform // if (bavp->cavp) { wu2.rsc_fpops_est *= bavp->cavp->rsc_fpops_scale; wu2.rsc_fpops_bound *= bavp->cavp->rsc_fpops_scale; } retval = insert_wu_tags(wu2, *app); if (retval) { log_messages.printf(MSG_CRITICAL, "insert_wu_tags failed: %s\n", boincerror(retval) ); return retval; } wu3 = wu2; if (strlen(config.replace_download_url_by_timezone)) { process_wu_timezone(wu2, wu3); } g_reply->insert_workunit_unique(wu3); // switch to tighter policy for estimating delay // return 0; } // add tags to result's xml_doc_in // static int insert_name_tags(RESULT& result, WORKUNIT const& wu) { char buf[256]; int retval; sprintf(buf, "%s\n", result.name); retval = insert_after(result.xml_doc_in, "\n", buf); if (retval) return retval; sprintf(buf, "%s\n", wu.name); retval = insert_after(result.xml_doc_in, "\n", buf); if (retval) return retval; return 0; } static int insert_deadline_tag(RESULT& result) { char buf[256]; sprintf(buf, "%d\n", result.report_deadline); int retval = insert_after(result.xml_doc_in, "\n", buf); if (retval) return retval; return 0; } // update workunit fields when send an instance of it: // - transition time // - app_version_id, if app uses homogeneous app version // - hr_class, if we're using HR // // In the latter two cases, the update is conditional on the field // fields either being zero or the desired value. // Some other scheduler instance might have updated it since we read the WU, // and the transitioner might have set it to zero. // int update_wu_on_send(WORKUNIT wu, time_t x, APP& app, BEST_APP_VERSION& bav) { DB_WORKUNIT dbwu; char buf[256], buf2[256], where_clause[256]; int retval; dbwu.id = wu.id; // SQL note: can't use min() here // sprintf(buf, "transition_time=if(transition_time<%d, transition_time, %d)", (int)x, (int)x ); strcpy(where_clause, ""); if (app.homogeneous_app_version) { sprintf(buf2, ", app_version_id=%lu", bav.avp->id); strcat(buf, buf2); sprintf(where_clause, "(app_version_id=0 or app_version_id=%lu)", bav.avp->id ); } if (app_hr_type(app)) { int host_hr_class = hr_class(g_request->host, app_hr_type(app)); sprintf(buf2, ", hr_class=%d", host_hr_class); strcat(buf, buf2); if (strlen(where_clause)) { strcat(where_clause, " and "); } sprintf(buf2, "(hr_class=0 or hr_class=%d)", host_hr_class); strcat(where_clause, buf2); } retval = dbwu.update_field(buf, strlen(where_clause)?where_clause:NULL); if (retval) return retval; if (boinc_db.affected_rows() != 1) { return ERR_DB_NOT_FOUND; } return 0; } // return true iff a result for same WU is already being sent // bool wu_already_in_reply(WORKUNIT& wu) { unsigned int i; for (i=0; iresults.size(); i++) { if (wu.id == g_reply->results[i].workunitid) { return true; } } return false; } void lock_sema() { lock_semaphore(sema_key); } void unlock_sema() { unlock_semaphore(sema_key); } static inline bool have_apps(int pt) { if (g_wreq->anonymous_platform) { return g_wreq->client_has_apps_for_proc_type[pt]; } else { return ssp->have_apps_for_proc_type[pt]; } } // return true if additional work is needed, // and there's disk space left, // and we haven't exceeded result per RPC limit, // and we haven't exceeded results per day limit // bool work_needed(bool locality_sched) { if (locality_sched) { // if we've failed to send a result because of a transient condition, // return false to preserve invariant // if (g_wreq->disk.insufficient) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - insufficient disk space\n" ); } return false; } if (g_wreq->speed.insufficient) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - host too slow\n" ); } return false; } if (g_wreq->mem.insufficient) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - insufficient memory\n" ); } return false; } if (g_wreq->no_allowed_apps_available) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - no locality app selected\n" ); } return false; } } // see if we've reached limits on in-progress jobs // bool some_type_allowed = false; for (int i=0; iclear_req(i); g_wreq->max_jobs_on_host_proc_type_exceeded[i] = true; } else { some_type_allowed = true; } } if (!some_type_allowed) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] in-progress job limit exceeded\n" ); } g_wreq->max_jobs_on_host_exceeded = true; return false; } // see if we've reached max jobs per RPC // if (g_wreq->njobs_sent >= g_wreq->max_jobs_per_rpc) { if (config.debug_quota) { log_messages.printf(MSG_NORMAL, "[quota] stopping work search - njobs %d >= max_jobs_per_rpc %d\n", g_wreq->njobs_sent, g_wreq->max_jobs_per_rpc ); } return false; } #if 0 if (config.debug_send) { char buf[256], buf2[256]; strcpy(buf, ""); for (int i=0; ireq_secs[i], g_wreq->req_instances[i] ); strcat(buf, buf2); } log_messages.printf(MSG_NORMAL, "[send] work_needed: spec req %d sec to fill %.2f; %s\n", g_wreq->rsc_spec_request, g_wreq->seconds_to_fill, buf ); } #endif if (g_wreq->rsc_spec_request) { for (int i=0; ineed_proc_type(i) && have_apps(i)) { return true; } } } else { if (g_wreq->seconds_to_fill > 0) { return true; } } if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] don't need more work\n"); } return false; } // return the app version ID, or -2/-3/-4 if anonymous platform // inline static int get_app_version_id(BEST_APP_VERSION* bavp) { if (bavp->avp) { return bavp->avp->id; } else { return bavp->cavp->host_usage.resource_type(); } } int add_result_to_reply( SCHED_DB_RESULT& result, WORKUNIT& wu, BEST_APP_VERSION* bavp, bool locality_scheduling ) { int retval; bool resent_result = false; APP* app = ssp->lookup_app(wu.appid); result.hostid = g_reply->host.id; result.userid = g_reply->user.id; result.sent_time = time(0); result.report_deadline = result.sent_time + wu.delay_bound; result.flops_estimate = bavp->host_usage.peak_flops; result.app_version_id = get_app_version_id(bavp); // update WU DB record. // This can fail in normal operation // (other scheduler already updated hr_class or app_version_id) // so do it before updating the result. // retval = update_wu_on_send( wu, result.report_deadline + config.report_grace_period, *app, *bavp ); if (retval == ERR_DB_NOT_FOUND) { log_messages.printf(MSG_NORMAL, "add_result_to_reply: WU already sent to other HR class or app version\n" ); return retval; } else if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: WU update failed: %d\n", retval ); return retval; } // update result DB record. // This can also fail in normal operation. // In this case, in principle we should undo // the changes we just made to the WU (or use a transaction) // but I don't think it actually matters. // int old_server_state = result.server_state; if (result.server_state != RESULT_SERVER_STATE_IN_PROGRESS) { // We're sending this result for the first time // result.server_state = RESULT_SERVER_STATE_IN_PROGRESS; } else { // Result was already sent to this host but was lost, // so we're resending it. // resent_result = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [RESULT#%lu] [HOST#%lu] (resend lost work)\n", result.id, g_reply->host.id ); } } retval = result.mark_as_sent(old_server_state, config.report_grace_period); if (retval == ERR_DB_NOT_FOUND) { log_messages.printf(MSG_CRITICAL, "[RESULT#%lu] [HOST#%lu]: CAN'T SEND, already sent to another host\n", result.id, g_reply->host.id ); } else if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't update result: %s\n", boincerror(retval) ); } if (retval) return retval; // done with DB updates. // retval = add_wu_to_reply(wu, *g_reply, app, bavp); if (retval) return retval; // Adjust available disk space. // In the locality scheduling locality case, // reduce the available space by less than the workunit rsc_disk_bound, // if the host already has the file or the file was not already sent. // if (!locality_scheduling || decrement_disk_space_locality(wu)) { g_wreq->disk_available -= wu.rsc_disk_bound; } double est_dur = estimate_duration(wu, *bavp); if (config.debug_send) { double max_time = wu.rsc_fpops_bound / bavp->host_usage.projected_flops; char buf1[64],buf2[64]; secs_to_hmsf(est_dur, buf1); secs_to_hmsf(max_time, buf2); log_messages.printf(MSG_NORMAL, "[send] [HOST#%lu] sending [RESULT#%lu %s] (est. dur. %.2fs (%s)) (max time %.2fs (%s))\n", g_reply->host.id, result.id, result.name, est_dur, buf1, max_time, buf2 ); } // The following overwrites the result's xml_doc field. // But that's OK cuz we're done with DB updates // retval = insert_name_tags(result, wu); if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't insert name tags: %d\n", retval ); return retval; } retval = insert_deadline_tag(result); if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't insert deadline tag: %s\n", boincerror(retval) ); return retval; } result.bav = *bavp; g_reply->insert_result(result); if (g_wreq->rsc_spec_request) { int pt = bavp->host_usage.proc_type; if (pt == PROC_TYPE_CPU) { g_wreq->req_secs[PROC_TYPE_CPU] -= est_dur; g_wreq->req_instances[PROC_TYPE_CPU] -= bavp->host_usage.avg_ncpus; } else { g_wreq->req_secs[pt] -= est_dur; g_wreq->req_instances[pt] -= bavp->host_usage.gpu_usage; } } else { g_wreq->seconds_to_fill -= est_dur; } update_estimated_delay(*bavp, est_dur); g_wreq->njobs_sent++; config.max_jobs_in_progress.register_job(app, bavp->host_usage.proc_type); if (!resent_result) { DB_HOST_APP_VERSION* havp = bavp->host_app_version(); if (havp) { havp->n_jobs_today++; } } // add this result to workload for simulation // if (config.workload_sim && g_request->have_other_results_list) { IP_RESULT ipr ("", time(0)+wu.delay_bound, est_dur); g_request->ip_results.push_back(ipr); } // mark job as done if debugging flag is set; // this is used by sched_driver.C (performance testing) // if (mark_jobs_done) { DB_WORKUNIT dbwu; char buf[256]; sprintf(buf, "server_state=%d outcome=%d", RESULT_SERVER_STATE_OVER, RESULT_OUTCOME_SUCCESS ); result.update_field(buf); dbwu.id = wu.id; sprintf(buf, "transition_time=%ld", time(0)); dbwu.update_field(buf); } // If we're sending an unreplicated job to an untrusted host, // mark it as replicated // if (wu.target_nresults == 1 && app->target_nresults > 1) { if (bavp->trusted) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%lu] using trusted app version, not replicating\n", wu.id ); } } else { DB_WORKUNIT dbwu; char buf[256]; sprintf(buf, "target_nresults=%d, min_quorum=%d, transition_time=%ld", app->target_nresults, app->target_nresults, time(0) ); dbwu.id = wu.id; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%lu] sending to untrusted host, replicating\n", wu.id ); } retval = dbwu.update_field(buf); if (retval) { log_messages.printf(MSG_CRITICAL, "WU update failed: %s", boincerror(retval) ); } } } // if the app uses locality scheduling lite, // add the job's files to the list of those on host // if (app->locality_scheduling == LOCALITY_SCHED_LITE) { add_job_files_to_host(wu); } return 0; } // Send high-priority messages about things the user can change easily // (namely the driver version) // and low-priority messages about things that can't easily be changed, // but which may be interfering with getting tasks or latest apps // static void send_gpu_property_messages( GPU_REQUIREMENTS& req, double ram, int version, const char* rsc_name ) { char buf[256]; if (ram < req.min_ram) { sprintf(buf, "A minimum of %d MB (preferably %d MB) of video RAM is needed to process tasks using your computer's %s", (int) (req.min_ram/MEGA), (int) (req.opt_ram/MEGA), rsc_name ); g_reply->insert_message(buf, "low"); } else { if (version) { if (version < req.min_driver_version) { sprintf(buf, "%s: %s", rsc_name, _("Upgrade to the latest driver to process tasks using your computer's GPU") ); g_reply->insert_message(buf, "notice"); } else if (version < req.opt_driver_version) { sprintf(buf, "%s: %s", rsc_name, _("Upgrade to the latest driver to use all of this project's GPU applications") ); g_reply->insert_message(buf, "low"); } } } } // send messages complaining about lack of GPU or the properties of GPUs // void send_gpu_messages() { // Mac client with GPU but too-old client // if (g_request->coprocs.nvidia.count && ssp->have_apps_for_proc_type[PROC_TYPE_NVIDIA_GPU] && strstr(g_request->host.os_name, "Darwin") && g_request->core_client_version < 61028 ) { g_reply->insert_message( _("A newer version of BOINC is needed to use your NVIDIA GPU; please upgrade to the current version"), "notice" ); } // GPU-only project, client lacks GPU // bool usable_gpu = false; bool have_gpu_apps = false; for (int i=1; ihave_apps_for_proc_type[i]) { have_gpu_apps = true; COPROC* cp = g_request->coprocs.proc_type_to_coproc(i); if (cp && cp->count) { usable_gpu = true; } } } if (!ssp->have_apps_for_proc_type[PROC_TYPE_CPU] && have_gpu_apps && !usable_gpu ) { char buf[256]; strcpy(buf, ""); for (int i=1; ihave_apps_for_proc_type[i]) { if (strlen(buf)) { strcat(buf, " or "); } strcat(buf, proc_type_name(i)); } } char msg[1024]; sprintf(msg, _("An %s GPU is required to run tasks for this project"), buf ); g_reply->insert_message(msg, "notice"); } if (g_request->coprocs.nvidia.count && ssp->have_apps_for_proc_type[PROC_TYPE_NVIDIA_GPU]) { send_gpu_property_messages(gpu_requirements[PROC_TYPE_NVIDIA_GPU], g_request->coprocs.nvidia.prop.totalGlobalMem, g_request->coprocs.nvidia.display_driver_version, proc_type_name(PROC_TYPE_NVIDIA_GPU) ); } if (g_request->coprocs.ati.count && ssp->have_apps_for_proc_type[PROC_TYPE_AMD_GPU]) { send_gpu_property_messages(gpu_requirements[PROC_TYPE_AMD_GPU], g_request->coprocs.ati.attribs.localRAM*MEGA, g_request->coprocs.ati.version_num, proc_type_name(PROC_TYPE_AMD_GPU) ); } if (g_request->coprocs.intel_gpu.count && ssp->have_apps_for_proc_type[PROC_TYPE_INTEL_GPU]) { send_gpu_property_messages(gpu_requirements[PROC_TYPE_INTEL_GPU], g_request->coprocs.intel_gpu.opencl_prop.global_mem_size, 0, proc_type_name(PROC_TYPE_INTEL_GPU) ); } } // send messages to user about why jobs were or weren't sent, // recommendations for GPU driver upgrades, etc. // static void send_user_messages() { char buf[512]; unsigned int i; int j; // GPU messages aren't relevant if anonymous platform // if (!g_wreq->anonymous_platform) { send_gpu_messages(); } // If work was sent from apps the user did not select, explain. // NOTE: this will have to be done differently with matchmaker scheduling // if (!config.locality_scheduling && !config.locality_scheduler_fraction && config.sched_old) { if (g_wreq->njobs_sent && !g_wreq->user_apps_only) { g_reply->insert_message( "No tasks are available for the applications you have selected", "low" ); // Inform the user about applications with no work // for (i=0; ipreferred_apps.size(); i++) { if (!g_wreq->preferred_apps[i].work_available) { APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid); // don't write message if the app is deprecated // if (app) { char explanation[256]; sprintf(explanation, "No tasks are available for %s", find_user_friendly_name(g_wreq->preferred_apps[i].appid) ); g_reply->insert_message( explanation, "low"); } } } // Tell the user about applications they didn't qualify for // for (j=0; jinsert_message(g_wreq->no_work_messages.at(j)); } g_reply->insert_message( "Your preferences allow tasks from applications other than those selected", "low" ); g_reply->insert_message( "Sending tasks from other applications", "low" ); } } // if client asked for work and we're not sending any, explain why // if (g_wreq->njobs_sent == 0 && g_request->work_req_seconds) { g_reply->set_delay(DELAY_NO_WORK_TEMP); g_reply->insert_message("No tasks sent", "low"); // Tell the user about applications with no work // for (i=0; ipreferred_apps.size(); i++) { if (!g_wreq->preferred_apps[i].work_available) { APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid); // don't write message if the app is deprecated if (app != NULL) { sprintf(buf, "No tasks are available for %s", find_user_friendly_name( g_wreq->preferred_apps[i].appid ) ); g_reply->insert_message(buf, "low"); } } } for (i=0; ino_work_messages.size(); i++){ g_reply->insert_message(g_wreq->no_work_messages.at(i)); } if (g_wreq->no_allowed_apps_available) { g_reply->insert_message( _("No tasks are available for the applications you have selected."), "low" ); } if (g_wreq->speed.insufficient) { if (g_request->core_client_version>41900) { sprintf(buf, "Tasks won't finish in time: BOINC runs %.1f%% of the time; computation is enabled %.1f%% of that", 100*g_reply->host.on_frac, 100*g_reply->host.active_frac ); } else { sprintf(buf, "Tasks won't finish in time: Computer available %.1f%% of the time", 100*g_reply->host.on_frac ); } g_reply->insert_message(buf, "low"); } if (g_wreq->hr_reject_temp) { g_reply->insert_message( "Tasks are committed to other platforms", "low" ); } if (g_wreq->hr_reject_perm) { g_reply->insert_message( _("Your computer type is not supported by this project"), "notice" ); } if (g_wreq->outdated_client) { g_reply->insert_message( _("Newer BOINC version required; please install current version"), "notice" ); g_reply->set_delay(DELAY_NO_WORK_PERM); log_messages.printf(MSG_NORMAL, "Not sending tasks because newer client version required\n" ); } for (i=0; idont_use_proc_type[i] && ssp->have_apps_for_proc_type[i]) { sprintf(buf, _("Tasks for %s are available, but your preferences are set to not accept them"), proc_type_name(i) ); g_reply->insert_message(buf, "low"); } } DB_HOST_APP_VERSION* havp = quota_exceeded_version(); if (havp) { sprintf(buf, "This computer has finished a daily quota of %d tasks", havp->max_jobs_per_day ); g_reply->insert_message(buf, "low"); if (config.debug_quota) { log_messages.printf(MSG_NORMAL, "[quota] Daily quota %d exceeded for app version %lu\n", havp->max_jobs_per_day, havp->app_version_id ); } g_reply->set_delay(DELAY_NO_WORK_CACHE); } if (g_wreq->max_jobs_exceeded()) { sprintf(buf, "This computer has reached a limit on tasks in progress"); g_reply->insert_message(buf, "low"); g_reply->set_delay(DELAY_NO_WORK_CACHE); } } } static double clamp_req_sec(double x) { if (x < MIN_REQ_SECS) return MIN_REQ_SECS; if (x > MAX_REQ_SECS) return MAX_REQ_SECS; return x; } // prepare to send jobs, both resent and new; // decipher request type, fill in WORK_REQ // void send_work_setup() { unsigned int i; g_wreq->seconds_to_fill = clamp_req_sec(g_request->work_req_seconds); g_wreq->req_secs[PROC_TYPE_CPU] = clamp_req_sec(g_request->cpu_req_secs); g_wreq->req_instances[PROC_TYPE_CPU] = g_request->cpu_req_instances; g_wreq->anonymous_platform = is_anonymous(g_request->platforms.list[0]); // decide on attributes of HOST_APP_VERSIONS // get_reliability_and_trust(); // parse project preferences (e.g. no GPUs) // get_prefs_info(); if (g_wreq->anonymous_platform) { estimate_flops_anon_platform(); for (i=0; iclient_has_apps_for_proc_type[i] = false; } for (i=0; iclient_app_versions.size(); i++) { CLIENT_APP_VERSION& cav = g_request->client_app_versions[i]; int pt = cav.host_usage.proc_type; g_wreq->client_has_apps_for_proc_type[pt] = true; } } for (i=1; idisk_available = max_allowable_disk(); get_mem_sizes(); get_available_fracs(); g_wreq->get_job_limits(); // do sanity checking on GPU scheduling parameters // for (i=1; icoprocs.proc_type_to_coproc(i); if (cp && cp->count) { g_wreq->req_secs[i] = clamp_req_sec(cp->req_secs); g_wreq->req_instances[i] = cp->req_instances; if (cp->estimated_delay < 0) { cp->estimated_delay = g_request->cpu_estimated_delay; } } } g_wreq->rsc_spec_request = false; for (i=0; ireq_secs[i]) { g_wreq->rsc_spec_request = true; break; } } for (i=0; iother_results.size(); i++) { OTHER_RESULT& r = g_request->other_results[i]; APP* app = NULL; int proc_type = PROC_TYPE_CPU; bool have_cav = false; if (r.app_version >= 0 && r.app_version < (int)g_request->client_app_versions.size() ) { CLIENT_APP_VERSION& cav = g_request->client_app_versions[r.app_version]; app = cav.app; if (app) { have_cav = true; proc_type = cav.host_usage.proc_type; } } if (!have_cav) { if (r.have_plan_class) { proc_type = plan_class_to_proc_type(r.plan_class); } } config.max_jobs_in_progress.register_job(app, proc_type); } // print details of request to log // if (config.debug_quota) { log_messages.printf(MSG_NORMAL, "[quota] max jobs per RPC: %d\n", g_wreq->max_jobs_per_rpc ); config.max_jobs_in_progress.print_log(); } if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] %s old scheduling; %s EDF sim\n", config.sched_old?"Using":"Not using", config.workload_sim?"Using":"Not using" ); log_messages.printf(MSG_NORMAL, "[send] CPU: req %.2f sec, %.2f instances; est delay %.2f\n", g_wreq->req_secs[PROC_TYPE_CPU], g_wreq->req_instances[PROC_TYPE_CPU], g_request->cpu_estimated_delay ); for (i=1; icoprocs.proc_type_to_coproc(i); if (cp && cp->count) { log_messages.printf(MSG_NORMAL, "[send] %s: req %.2f sec, %.2f instances; est delay %.2f\n", proc_type_name(i), g_wreq->req_secs[i], g_wreq->req_instances[i], cp->estimated_delay ); } } log_messages.printf(MSG_NORMAL, "[send] work_req_seconds: %.2f secs\n", g_wreq->seconds_to_fill ); log_messages.printf(MSG_NORMAL, "[send] available disk %.2f GB, work_buf_min %d\n", g_wreq->disk_available/GIGA, (int)g_request->global_prefs.work_buf_min() ); log_messages.printf(MSG_NORMAL, "[send] on_frac %f active_frac %f gpu_active_frac %f\n", g_reply->host.on_frac, g_reply->host.active_frac, g_reply->host.gpu_active_frac ); if (g_wreq->anonymous_platform) { log_messages.printf(MSG_NORMAL, "[send] Anonymous platform app versions:\n" ); for (i=0; iclient_app_versions.size(); i++) { CLIENT_APP_VERSION& cav = g_request->client_app_versions[i]; char buf[256]; strcpy(buf, ""); int pt = cav.host_usage.proc_type; if (pt) { sprintf(buf, " %.2f %s GPU", cav.host_usage.gpu_usage, proc_type_name(pt) ); } log_messages.printf(MSG_NORMAL, " app: %s version %d cpus %.2f%s flops %fG\n", cav.app_name, cav.version_num, cav.host_usage.avg_ncpus, buf, cav.host_usage.projected_flops/1e9 ); } } #if 0 log_messages.printf(MSG_NORMAL, "[send] p_vm_extensions_disabled: %s\n", g_request->host.p_vm_extensions_disabled?"yes":"no" ); #endif log_messages.printf(MSG_NORMAL, "[send] CPU features: %s\n", g_request->host.p_features ); } } // If a record is not in DB, create it. // int update_host_app_versions(vector& results, int hostid) { vector new_havs; unsigned int i, j; int retval; for (i=0; ihost)) { log_messages.printf(MSG_NORMAL, "Not sending work because unknown HR class\n" ); g_wreq->hr_reject_perm = true; return; } if (config.enable_assignment) { if (send_targeted_jobs()) { if (config.debug_assignment) { log_messages.printf(MSG_NORMAL, "[assign] [HOST#%lu] sent assigned jobs\n", g_reply->host.id ); } goto done; } } if (config.enable_assignment_multi) { if (send_broadcast_jobs()) { if (config.debug_assignment) { log_messages.printf(MSG_NORMAL, "[assign] [HOST#%lu] sent assigned jobs\n", g_reply->host.id ); } goto done; } } if (config.workload_sim && g_request->have_other_results_list) { init_ip_results( g_request->global_prefs.work_buf_min(), g_wreq->effective_ncpus, g_request->ip_results ); } // send non-CPU-intensive jobs if needed // if (ssp->have_nci_app) { send_nci(); } if (!work_needed(false)) { goto done; } if (config.locality_scheduler_fraction > 0) { if (drand() < config.locality_scheduler_fraction) { if (config.debug_locality) { log_messages.printf(MSG_NORMAL, "[mixed] sending locality work first\n" ); } send_work_locality(); // save 'insufficient' flags from the first scheduler bool disk_insufficient = g_wreq->disk.insufficient; bool speed_insufficient = g_wreq->speed.insufficient; bool mem_insufficient = g_wreq->mem.insufficient; bool no_allowed_apps_available = g_wreq->no_allowed_apps_available; // reset 'insufficient' flags for the second scheduler g_wreq->disk.insufficient = false; g_wreq->speed.insufficient = false; g_wreq->mem.insufficient = false; g_wreq->no_allowed_apps_available = false; if (config.debug_locality) { log_messages.printf(MSG_NORMAL, "[mixed] sending non-locality work second\n" ); } send_work_old(); // recombine the 'insufficient' flags from the two schedulers g_wreq->disk.insufficient = g_wreq->disk.insufficient && disk_insufficient; g_wreq->speed.insufficient = g_wreq->speed.insufficient && speed_insufficient; g_wreq->mem.insufficient = g_wreq->mem.insufficient && mem_insufficient; g_wreq->no_allowed_apps_available = g_wreq->no_allowed_apps_available && no_allowed_apps_available; } else { if (config.debug_locality) { log_messages.printf(MSG_NORMAL, "[mixed] sending non-locality work first\n" ); } // save 'insufficient' flags from the first scheduler bool disk_insufficient = g_wreq->disk.insufficient; bool speed_insufficient = g_wreq->speed.insufficient; bool mem_insufficient = g_wreq->mem.insufficient; bool no_allowed_apps_available = g_wreq->no_allowed_apps_available; // reset 'insufficient' flags for the second scheduler g_wreq->disk.insufficient = false; g_wreq->speed.insufficient = false; g_wreq->mem.insufficient = false; g_wreq->no_allowed_apps_available = false; send_work_old(); if (config.debug_locality) { log_messages.printf(MSG_NORMAL, "[mixed] sending locality work second\n" ); } send_work_locality(); // recombine the 'insufficient' flags from the two schedulers g_wreq->disk.insufficient = g_wreq->disk.insufficient && disk_insufficient; g_wreq->speed.insufficient = g_wreq->speed.insufficient && speed_insufficient; g_wreq->mem.insufficient = g_wreq->mem.insufficient && mem_insufficient; g_wreq->no_allowed_apps_available = g_wreq->no_allowed_apps_available && no_allowed_apps_available; } } else if (config.locality_scheduling) { send_work_locality(); } else if (config.sched_old) { send_work_old(); } else { send_work_score(); } done: retval = update_host_app_versions(g_reply->results, g_reply->host.id); if (retval) { log_messages.printf(MSG_CRITICAL, "update_host_app_versions() failed: %s\n", boincerror(retval) ); } send_user_messages(); } const char *BOINC_RCSID_32dcd335e7 = "$Id$";