// The contents of this file are subject to the BOINC Public License // Version 1.0 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://boinc.berkeley.edu/license_1.0.txt // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations // under the License. // // The Original Code is the Berkeley Open Infrastructure for Network Computing. // // The Initial Developer of the Original Code is the SETI@home project. // Portions created by the SETI@home project are Copyright (C) 2002 // University of California at Berkeley. All Rights Reserved. // // Contributor(s): // #include "config.h" #include #include #include #include #ifdef _WIN32 #include #endif #ifdef HAVE_GL_H #include "gl.h" #elif defined(HAVE_GL_GL_H) #include #elif defined(HAVE_OPENGL_GL_H) #include #else #endif #ifdef HAVE_GLU_H #include "glu.h" #elif defined(HAVE_GL_GLU_H) #include #elif defined(HAVE_OPENGL_GLU_H) #include #endif #ifdef HAVE_GLUT_H #include "glut.h" #elif defined(HAVE_GL_GLUT_H) #include #elif defined(HAVE_OPENGL_GLUT_H) #include #elif defined(HAVE_GLUT_GLUT_H) #include #endif #include "gutil.h" GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0}; GLfloat mat_shininess[] = {40.0}; void mode_shaded(GLfloat* color) { glEnable(GL_DEPTH_TEST); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glShadeModel (GL_SMOOTH); glDepthMask(GL_TRUE); glMaterialfv(GL_FRONT, GL_DIFFUSE, color); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); } void mode_texture() { glMatrixMode( GL_MODELVIEW ); glLoadIdentity(); glDisable(GL_LIGHTING); glDisable(GL_LIGHT0); } void mode_unshaded() { glEnable(GL_DEPTH_TEST); glDisable(GL_LIGHTING); glDisable(GL_LIGHT0); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glShadeModel (GL_SMOOTH); glDepthMask(GL_TRUE); } void mode_ortho() { glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); gluOrtho2D(0,1,0,1); //glScalef(1, -1, 1); //glTranslatef(0, -1, 0); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); gluLookAt(0.0,0.0,1.0, // eye position 0,0,0, // where we're looking 0.0, 1.0, 0.); // up is in positive Y direction } void ortho_done() { glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); } bool get_matrix(double src[16]) { glMatrixMode(GL_MODELVIEW); glPushMatrix(); glGetDoublev(GL_MODELVIEW_MATRIX,src); glPopMatrix(); return true; } bool get_projection(double src[16]) { glMatrixMode(GL_PROJECTION); glPushMatrix(); glGetDoublev(GL_PROJECTION_MATRIX,src); glPopMatrix(); return true; } bool get_viewport(int view[4]) { glMatrixMode(GL_MODELVIEW); glGetIntegerv(GL_VIEWPORT,view); return true; } void get_2d_positions(float p1,float p2,float p3, double model[16], double proj[16], int viewport[4], double proj_pos[3] ) { gluProject(p1,p2,p3,model,proj,viewport,&proj_pos[0],&proj_pos[1],&proj_pos[2]); } bool get_matrix_invert(float src[16]) { glMatrixMode(GL_MODELVIEW); glPushMatrix(); glGetFloatv(GL_MODELVIEW_MATRIX,src); glPopMatrix(); float tmp[12]; /* temp array for pairs */ float dst[16]; /* array of destination matrix */ float det; /* determinant */ int i; /* calculate pairs for first 8 elements (cofactors) */ tmp[0] = src[10] * src[15]; tmp[1] = src[11] * src[14]; tmp[2] = src[9] * src[15]; tmp[3] = src[11] * src[13]; tmp[4] = src[9] * src[14]; tmp[5] = src[10] * src[13]; tmp[6] = src[8] * src[15]; tmp[7] = src[11] * src[12]; tmp[8] = src[8] * src[14]; tmp[9] = src[10] * src[12]; tmp[10] = src[8] * src[13]; tmp[11] = src[9] * src[12]; /* calculate first 8 elements (cofactors) */ dst[0] = tmp[0]*src[5] + tmp[3]*src[6] + tmp[4]*src[7]; dst[0] -= tmp[1]*src[5] + tmp[2]*src[6] + tmp[5]*src[7]; dst[1] = tmp[1]*src[4] + tmp[6]*src[6] + tmp[9]*src[7]; dst[1] -= tmp[0]*src[4] + tmp[7]*src[6] + tmp[8]*src[7]; dst[2] = tmp[2]*src[4] + tmp[7]*src[5] + tmp[10]*src[7]; dst[2] -= tmp[3]*src[4] + tmp[6]*src[5] + tmp[11]*src[7]; dst[3] = tmp[5]*src[4] + tmp[8]*src[5] + tmp[11]*src[6]; dst[3] -= tmp[4]*src[4] + tmp[9]*src[5] + tmp[10]*src[6]; dst[4] = tmp[1]*src[1] + tmp[2]*src[2] + tmp[5]*src[3]; dst[4] -= tmp[0]*src[1] + tmp[3]*src[2] + tmp[4]*src[3]; dst[5] = tmp[0]*src[0] + tmp[7]*src[2] + tmp[8]*src[3]; dst[5] -= tmp[1]*src[0] + tmp[6]*src[2] + tmp[9]*src[3]; dst[6] = tmp[3]*src[0] + tmp[6]*src[1] + tmp[11]*src[3]; dst[6] -= tmp[2]*src[0] + tmp[7]*src[1] + tmp[10]*src[3]; dst[7] = tmp[4]*src[0] + tmp[9]*src[1] + tmp[10]*src[2]; dst[7] -= tmp[5]*src[0] + tmp[8]*src[1] + tmp[11]*src[2]; /* calculate pairs for second 8 elements (cofactors) */ tmp[0] = src[2]*src[7]; tmp[1] = src[3]*src[6]; tmp[2] = src[1]*src[7]; tmp[3] = src[3]*src[5]; tmp[4] = src[1]*src[6]; tmp[5] = src[2]*src[5]; tmp[6] = src[0]*src[7]; tmp[7] = src[3]*src[4]; tmp[8] = src[0]*src[6]; tmp[9] = src[2]*src[4]; tmp[10] = src[0]*src[5]; tmp[11] = src[1]*src[4]; /* calculate second 8 elements (cofactors) */ dst[8] = tmp[0]*src[13] + tmp[3]*src[14] + tmp[4]*src[15]; dst[8] -= tmp[1]*src[13] + tmp[2]*src[14] + tmp[5]*src[15]; dst[9] = tmp[1]*src[12] + tmp[6]*src[14] + tmp[9]*src[15]; dst[9] -= tmp[0]*src[12] + tmp[7]*src[14] + tmp[8]*src[15]; dst[10] = tmp[2]*src[12] + tmp[7]*src[13] + tmp[10]*src[15]; dst[10]-= tmp[3]*src[12] + tmp[6]*src[13] + tmp[11]*src[15]; dst[11] = tmp[5]*src[12] + tmp[8]*src[13] + tmp[11]*src[14]; dst[11]-= tmp[4]*src[12] + tmp[9]*src[13] + tmp[10]*src[14]; dst[12] = tmp[2]*src[10] + tmp[5]*src[11] + tmp[1]*src[9]; dst[12]-= tmp[4]*src[11] + tmp[0]*src[9] + tmp[3]*src[10]; dst[13] = tmp[8]*src[11] + tmp[0]*src[8] + tmp[7]*src[10]; dst[13]-= tmp[6]*src[10] + tmp[9]*src[11] + tmp[1]*src[8]; dst[14] = tmp[6]*src[9] + tmp[11]*src[11] + tmp[3]*src[8]; dst[14]-= tmp[10]*src[11] + tmp[2]*src[8] + tmp[7]*src[9]; dst[15] = tmp[10]*src[10] + tmp[4]*src[8] + tmp[9]*src[9]; dst[15]-= tmp[8]*src[9] + tmp[11]*src[10] + tmp[5]*src[8]; /* calculate determinant */ det=src[0]*dst[0]+src[1]*dst[1]+src[2]*dst[2]+src[3]*dst[3]; /* calculate matrix inverse */ if(det == 0) return false; det = 1.0f/det; for (i = 0; i < 16; i++) { dst[i] *= det; } for (i = 0; i < 4; i++) { src[i*4] = dst[i*4]; src[i*4+1] = dst[i*4+1]; src[i*4+2] = dst[i*4+2]; src[i*4+3] = dst[i*4+3]; } return true; } void mode_lines() { glEnable(GL_BLEND); glDisable(GL_LIGHTING); glDisable(GL_LIGHT0); //glBlendFunc(GL_SRC_ALPHA, GL_ONE); //glDepthMask(GL_TRUE); //glEnable(GL_LINE_SMOOTH); //glHint(GL_LINE_SMOOTH, GL_NICEST); //glDisable(GL_DEPTH_TEST); } static double HuetoRGB(double m1, double m2, double h ) { if( h < 0 ) h += 1.0; if( h > 1 ) h -= 1.0; if( 6.0*h < 1 ) return (m1+(m2-m1)*h*6.0); if( 2.0*h < 1 ) return m2; if( 3.0*h < 2.0 ) return (m1+(m2-m1)*((2.0/3.0)-h)*6.0); return m1; } void HLStoRGB( double H, double L, double S, COLOR& c) { double m1, m2; if(S==0) { c.r=c.g=c.b=L; } else { if(L <=0.5) m2 = L*(1.0+S); else m2 = L+S-L*S; m1 = 2.0*L-m2; c.r = HuetoRGB(m1,m2,H+1.0/3.0); c.g = HuetoRGB(m1,m2,H); c.b = HuetoRGB(m1,m2,H-1.0/3.0); } } float frand() { return rand()/(float)RAND_MAX; } void drawSphere(GLfloat* pos, GLfloat rad) { GLUquadricObj* x = gluNewQuadric(); glPushMatrix(); glTranslatef(pos[0], pos[1], pos[2]); gluSphere(x, rad, 20, 20); gluDeleteQuadric(x); glPopMatrix(); } void drawCylinder(bool vertical, GLfloat* pos, GLfloat len, GLfloat rad) { GLUquadricObj* x = gluNewQuadric(); glPushMatrix(); glTranslatef(pos[0], pos[1], pos[2]); if (vertical) { glRotated(-90., 1., 0., 0.); } else { glRotated(90., 0., 1., 0.); } gluCylinder(x, rad, rad, len, 20, 1); gluDeleteQuadric(x); glPopMatrix(); } #define STROKE_SCALE 120 // GLUT stroke characters are about 120 units high GLfloat text_width(char* text) { GLfloat sum = 0; char* p; for (p=text; *p; p++) { sum += glutStrokeWidth(GLUT_STROKE_ROMAN, *p); } return sum/STROKE_SCALE; } static void draw_text_line_aux(char *text) { char *p; for (p = text; *p; p++) { glutStrokeCharacter(GLUT_STROKE_ROMAN, *p); } } static void draw_text_start(GLfloat* pos, GLfloat char_height, GLfloat line_width) { glLineWidth(line_width); glPushMatrix(); glTranslatef(pos[0], pos[1], pos[2]); float w = char_height/STROKE_SCALE; glScalef(w, w, w); } static void draw_text_end() { glPopMatrix(); } // draw a line of text in the XY plane at the given starting position, // character height, and line width. // void draw_text_simple(char* text,float line_width,float char_height) { glLineWidth(line_width); float w = char_height/STROKE_SCALE; glScalef(w, w, w); draw_text_line_aux(text); } void draw_text_line( GLfloat* _pos, GLfloat char_height, GLfloat line_width, char *text, int justify ) { GLfloat pos[3]; GLfloat w; memcpy(pos, _pos, sizeof(pos)); switch(justify) { case TEXT_LEFT: break; case TEXT_CENTER: w = text_width(text); pos[0] -= w/2; break; case TEXT_RIGHT: w = text_width(text); pos[0] -= w; break; } draw_text_start(pos, char_height, line_width); draw_text_line_aux(text); draw_text_end(); } // draw rotated text void draw_rotated_text( GLfloat* pos, GLfloat height, GLfloat width, GLfloat spacing, char *text, GLfloat rotation, GLfloat* rotation_vector) { draw_text_start(pos, height, width); glRotatef(rotation,rotation_vector[0],rotation_vector[1],rotation_vector[2]); draw_text_line_aux(text); draw_text_end(); } // draw multiple lines of text // void draw_text( GLfloat* _pos, GLfloat char_height, GLfloat line_width, GLfloat line_spacing, char* text ) { char* q, *p; char buf[4096]; GLfloat pos[3]; memcpy(pos, _pos, sizeof(pos)); strcpy(buf, text); p = buf; while (*p) { q = strchr(p, '\n'); if (q) *q = 0; draw_text_start(pos, char_height, line_width); draw_text_line_aux(p); draw_text_end(); pos[1] -= line_spacing; if (!q) break; p = q+1; } } void draw_text_new( GLfloat* _pos, GLfloat char_height, GLfloat line_width, GLfloat line_spacing, char* text) { char* q, *p; char buf[4096]; GLfloat pos[3]; memcpy(pos, _pos, sizeof(pos)); strcpy(buf, text); p = buf; while (*p) { q = strchr(p, '\n'); if (q) *q = 0; glRasterPos3d(pos[0],pos[1],pos[2]); print_text(listBase[0], p); pos[1] -= line_spacing; if (!q) break; p = q+1; } } // draw a rectangle of the given color in the XY plane // and draw the given test in it // void draw_text_panel( GLfloat* _pos, GLfloat* size, GLfloat margin, COLOR color, GLfloat char_height, GLfloat line_width, GLfloat line_spacing, char* text ) { GLfloat pos0[3], pos1[3], pos2[3], pos3[3]; memcpy(pos0, _pos, sizeof(pos0)); memcpy(pos1, _pos, sizeof(pos0)); pos1[0] += size[0]; memcpy(pos2, pos1, sizeof(pos0)); pos2[1] += size[1]; memcpy(pos3, pos2, sizeof(pos0)); pos3[0] -= size[0]; mode_unshaded(); glColor4fv(&color.r); glBegin(GL_QUADS); glVertex3fv(pos0); glVertex3fv(pos1); glVertex3fv(pos2); glVertex3fv(pos3); // draw flanges // color.r /= 2; color.g /= 2; color.b /= 2; glColor4fv(&color.r); GLfloat posa0[3], posa1[3], posa2[3], posa3[3]; memcpy(posa0, pos0, sizeof(pos0)); memcpy(posa1, pos1, sizeof(pos0)); memcpy(posa2, pos2, sizeof(pos0)); memcpy(posa3, pos3, sizeof(pos0)); posa0[2] -= .2; posa1[2] -= .2; posa2[2] -= .2; posa3[2] -= .2; glVertex3fv(pos0); glVertex3fv(pos1); glVertex3fv(posa1); glVertex3fv(posa0); glVertex3fv(pos1); glVertex3fv(pos2); glVertex3fv(posa2); glVertex3fv(posa1); glVertex3fv(pos2); glVertex3fv(pos3); glVertex3fv(posa3); glVertex3fv(posa2); glVertex3fv(pos3); glVertex3fv(pos0); glVertex3fv(posa0); glVertex3fv(posa3); glEnd(); pos3[0] += margin; pos3[1] -= (margin+char_height); pos3[2] += 0.01; glColor3f(1, 1, 1); draw_text(pos3, char_height, line_width, line_spacing, text); } PROGRESS::PROGRESS( GLfloat* p, GLfloat l, GLfloat r, GLfloat in, GLfloat* c, GLfloat* ic ) { memcpy(pos, p, sizeof(pos)); len = l; rad = r; inner_rad = in; memcpy(color, c, sizeof(color)); memcpy(inner_color, ic, sizeof(inner_color)); } void PROGRESS::draw(float x) { mode_shaded(inner_color); drawCylinder(false, pos, x*len, inner_rad); mode_shaded(color); drawCylinder(false, pos, len, rad); } GRAPH_2D::GRAPH_2D(float* p, float* s, float* c, float* tc) { memcpy(pos, p, sizeof(pos)); memcpy(size, s, sizeof(size)); memcpy(color, c, sizeof(color)); memcpy(tick_color, tc, sizeof(tick_color)); } float yvec[] = {0., 1., 0.}; float xvec[] = {1., 0., 0.}; float xvecneg[] = {-1., 0., 0.}; float zvec[] = {0, 0, 1}; // draw horizontal plate from i to i+1, with height data[i] // void GRAPH_2D::draw_x(int i) { GLfloat pt[3]; double r1 = i/(double)len; double r2 = (i+1)/(double)len; glNormal3fv(yvec); pt[0] = pos[0] + r1*size[0]; pt[1] = pos[1] + data[i]*size[1]/dmax; pt[2] = pos[2]; glVertex3fv(pt); pt[0] = pos[0] + r2*size[0]; glVertex3fv(pt); pt[2] = pos[2] + size[2]; glVertex3fv(pt); pt[0] = pos[0] + r1*size[0]; glVertex3fv(pt); glNormal3fv(zvec); pt[0] = pos[0] + r1*size[0]; pt[1] = pos[1] + data[i]*size[1]/dmax; pt[2] = pos[2]+size[2]; glVertex3fv(pt); pt[1] = pos[1]; glVertex3fv(pt); pt[0] = pos[0] + r2*size[0]; glVertex3fv(pt); pt[1] = pos[1] + data[i]*size[1]/dmax; glVertex3fv(pt); } // draw vertical plate at position i, with height from data[i-1] to data[i] // void GRAPH_2D::draw_y(int i) { GLfloat pt[3]; double r1 = i/(double)len; (data[i]>data[i-1])?glNormal3fv(xvecneg):glNormal3fv(xvec); pt[0] = pos[0] + r1*size[0]; pt[1] = pos[1] + data[i-1]*size[1]/dmax; pt[2] = pos[2]; glVertex3fv(pt); pt[1] = pos[1] + data[i]*size[1]/dmax; glVertex3fv(pt); pt[2] = pos[2] + size[2]; glVertex3fv(pt); pt[1] = pos[1] + data[i-1]*size[1]/dmax; glVertex3fv(pt); } void GRAPH_2D::draw(float* d, int ln) { int i; data = d; len = ln; dmax = 0; for (i=0; i dmax) dmax = data[i]; } mode_shaded(color); glBegin(GL_QUADS); draw_x(0); for (i=1; i- #define PI 3.14159265358979323846264 //pointer to the begining of the list Star* stars = new Star; //makes a list of stars that lie on cocentric circles (inefficient, most will be out of sight) void build_stars(int size, float speed) { int i=0; Star* tmpStar = stars; float fov=45.0f; while(ix=x; tmpStar->y=y; tmpStar->z=z; float v = (float)((rand()%1000)/1000.0f); tmpStar->v=v; tmpStar->next = new Star; tmpStar=tmpStar->next; i++; } tmpStar->next=NULL; tmpStar=NULL; } //moves stars towards the eye vector, and replaces ones that go behind z=0 float dotProd(float a, float b, float c, float x, float y, float z) { return(a*x+b*y+c*z); } void update_stars(int number, float speed) { float modelview[16]; float dist; float eye[3]; float camera[3]; Star* tmpStar = stars; if(get_matrix_invert(modelview)==false) fprintf(stderr,"ERROR: 0 determinant in modelview matrix"); eye[0]=modelview[2]; eye[1]=modelview[6]; eye[2]=modelview[10]; camera[0]=modelview[2]; camera[1]=modelview[6]; camera[2]=modelview[10]; while(tmpStar!=NULL) { dist=sqrt((camera[0]-tmpStar->x)*(camera[0]-tmpStar->x) + (camera[1]-tmpStar->y)*(camera[1]-tmpStar->y) + (camera[2]-tmpStar->z)*(camera[2]-tmpStar->z)); if(dotProd(eye[0],eye[1],eye[2],tmpStar->x,tmpStar->y,tmpStar->z)>0) // behind camera { replaceStar(tmpStar); continue; } tmpStar->x+=(eye[0])*tmpStar->v*speed; tmpStar->y+=(eye[1])*tmpStar->v*speed; tmpStar->z+=(eye[2])*tmpStar->v*speed; //grow objects as the approach you if(dist>900) glPointSize(1.0f); else if(dist>600) glPointSize(2.0f); //else if(dist>30) glPointSize(3.0f); GLfloat mat_emission[] = {1, 1, 1, 1}; glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, mat_emission ); glColor3f(1.0, 1.0, 1.0); glBegin(GL_POINTS); glVertex3f(tmpStar->x,tmpStar->y,tmpStar->z); glEnd(); GLfloat no_mat[] = { 0.0, 0.0, 0.0, 1.0 }; glMaterialfv( GL_FRONT_AND_BACK, GL_EMISSION, no_mat ); tmpStar=tmpStar->next; } } void replaceStar(Star* star) { float z = (float)(rand()%2000-1000); float alpha = 2.0*PI*(float)((rand()%359)/359.0) ; float beta = asin(z/1000.0f); float x = 1000.0f * cos(beta) * cos(alpha); float y = 1000.0f * cos(beta) * sin(alpha); star->x=x; star->y=y; star->z=z; star->x=x; float v = (float)((rand()%1000)/1000.0f); star->v=v; } //jpg texture support //this is the array that will contain pointers to texture pixel data UINT g_Texture[MAX_TEXTURES]; void DecodeJPG(jpeg_decompress_struct* cinfo, tImageJPG *pImageData) { jpeg_read_header(cinfo, TRUE); jpeg_start_decompress(cinfo); pImageData->rowSpan = cinfo->image_width * cinfo->num_components; pImageData->sizeX = cinfo->image_width; pImageData->sizeY = cinfo->image_height; pImageData->data = new unsigned char[pImageData->rowSpan * pImageData->sizeY]; unsigned char** rowPtr = new unsigned char*[pImageData->sizeY]; for (int i = 0; i < pImageData->sizeY; i++) rowPtr[i] = &(pImageData->data[i*pImageData->rowSpan]); int rowsRead = 0; while (cinfo->output_scanline < cinfo->output_height) { rowsRead += jpeg_read_scanlines(cinfo, &rowPtr[rowsRead], cinfo->output_height - rowsRead); } delete [] rowPtr; jpeg_finish_decompress(cinfo); } tImageJPG *LoadJPG(const char *filename) { struct jpeg_decompress_struct cinfo; tImageJPG *pImageData = NULL; FILE *pFile; if((pFile = fopen(filename, "rb")) == NULL) { fprintf(stderr,"Unable to load JPG File!"); return NULL; } jpeg_error_mgr jerr; cinfo.err = jpeg_std_error(&jerr); jpeg_create_decompress(&cinfo); jpeg_stdio_src(&cinfo, pFile); pImageData = (tImageJPG*)malloc(sizeof(tImageJPG)); DecodeJPG(&cinfo, pImageData); jpeg_destroy_decompress(&cinfo); fclose(pFile); return pImageData; } bool CreateTextureJPG(UINT textureArray[], char* strFileName, int textureID) { if(!strFileName) return false; tImageJPG *pImage = LoadJPG(strFileName); // Load the image and store the data if(pImage == NULL) exit(0); glGenTextures(1, &textureArray[textureID]); glBindTexture(GL_TEXTURE_2D, textureArray[textureID]); gluBuild2DMipmaps(GL_TEXTURE_2D, 3, pImage->sizeX, pImage->sizeY, GL_RGB, GL_UNSIGNED_BYTE, pImage->data); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MIPMAP_LINEAR); if (pImage) { if (pImage->data) { free(pImage->data); } free(pImage); } return true; } bool CreateTextureBMP(UINT textureArray[], char* strFileName, int textureID) { #ifdef _WIN32 DIB_BITMAP image; if(image.loadBMP(strFileName) == false) return false; glGenTextures(1, &textureArray[textureID]); glBindTexture(GL_TEXTURE_2D, textureArray[textureID]); gluBuild2DMipmaps(GL_TEXTURE_2D, image.get_channels(), image.get_width(), image.get_height(), GL_BGR_EXT, GL_UNSIGNED_BYTE, image.getLinePtr(0)); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MIPMAP_LINEAR); #endif return true; } bool CreateTexturePPM(UINT textureArray[], char* strFileName, int textureID) { #ifdef _WIN32 unsigned char* pixels; int width, height; if(read_ppm_file(strFileName, width, height, &pixels)==-1) return false; glGenTextures(1, &textureArray[textureID]); glBindTexture(GL_TEXTURE_2D, textureArray[textureID]); gluBuild2DMipmaps(GL_TEXTURE_2D,3,width,height,GL_RGB,GL_UNSIGNED_BYTE,pixels); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MIPMAP_LINEAR); #endif return true; } bool CreateTextureTGA(UINT textureArray[], char* strFileName, int textureID) { #ifdef _WIN32 if(!strFileName) // Return from the function if no file name was passed in return false; tImageTGA *pImage = LoadTGA(strFileName); // Load the image and store the data if(pImage == NULL) // If we can't load the file, quit! exit(0); glGenTextures(1, &textureArray[textureID]); glBindTexture(GL_TEXTURE_2D, textureArray[textureID]); int textureType = GL_RGB; if(pImage->channels == 4) { textureType = GL_RGBA; } gluBuild2DMipmaps(GL_TEXTURE_2D, pImage->channels, pImage->sizeX, pImage->sizeY, textureType, GL_UNSIGNED_BYTE, pImage->data); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MIPMAP_LINEAR); if (pImage) // If we loaded the image { if (pImage->data) // If there is texture data { delete[] pImage->data; // Free the texture data, we don't need it anymore } free(pImage); // Free the image structure } #endif return true; } static int getFileType(char* file) { int l = strlen(file); char f2[64]; int i; for(i=l-4;i