// The contents of this file are subject to the BOINC Public License // Version 1.0 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://boinc.berkeley.edu/license_1.0.txt // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations // under the License. // // The Original Code is the Berkeley Open Infrastructure for Network Computing. // // The Initial Developer of the Original Code is the SETI@home project. // Portions created by the SETI@home project are Copyright (C) 2002 // University of California at Berkeley. All Rights Reserved. // // Contributor(s): // // Code that's in the BOINC app library (but NOT in the core client) // graphics-related code goes in graphics_api.C, not here #ifdef _WIN32 #include "boinc_win.h" #include "win_config.h" #else #include #include #include #include #include #include #include #include #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #include #ifdef HAVE_PROCFS_H #include // definitions for solaris /proc structs #endif #include "config.h" using namespace std; #endif #include "diagnostics.h" #include "parse.h" #include "shmem.h" #include "util.h" #include "filesys.h" #include "error_numbers.h" #include "app_ipc.h" #include "boinc_api.h" // The BOINC API communicates CPU time and fraction done to the core client. // Currently this is done using a timer. // Remember that the processing of a result can be divided // into multiple "episodes" (executions of the app), // each of which resumes from the checkpointed state of the previous episode. // Unless otherwise noted, "CPU time" refers to the sum over all episodes // (not counting the part after the last checkpoint in an episode). APP_INIT_DATA aid; APP_CLIENT_SHM *app_client_shm = 0; static double timer_period = 1.0; // period of API timer // This determines the resolution of fraction done and CPU time reporting // to the core client, and of checkpoint enabling. // It doesn't influence graphics, so 1 sec is enough. static double time_until_checkpoint; // countdown timer until enable checkpoint static double time_until_fraction_done_update; // countdown timer until report fraction done to core static double fraction_done; static double last_checkpoint_cpu_time; static bool ready_to_checkpoint = false; static bool time_to_quit = false; static double last_wu_cpu_time; static bool standalone = false; static double initial_wu_cpu_time; static bool have_new_trickle_up = false; static bool have_trickle_down = true; // on first call, scan slot dir for msgs static double heartbeat_giveup_time; static bool heartbeat_active; // if false, suppress heartbeat mechanism #define HEARTBEAT_GIVEUP_PERIOD 30.0 // quit if no heartbeat from core in this #secs #define HEARTBEAT_TIMEOUT_PERIOD 35.0 // quit if we cannot aquire slot resource in this #secs #ifdef _WIN32 //HANDLE hErrorNotification; //HANDLE hQuitRequest; //HANDLE hSuspendRequest; //HANDLE hResumeRequest; static HANDLE hSharedMem; HANDLE worker_thread_handle; static MMRESULT timer_id; #endif static int setup_shared_mem(); static int update_app_progress(double cpu_t, double cp_cpu_t, double ws_t); static int set_timer(double period); static int mem_usage(unsigned long& vm_kb, unsigned long& rs_kb); static BOINC_OPTIONS options; static BOINC_STATUS boinc_status; int boinc_init() { options.main_program = true; options.check_heartbeat = true; options.handle_trickle_ups = true; options.handle_trickle_downs = true; options.handle_process_control = true; options.send_status_msgs = true; options.direct_process_action = true; return boinc_init_options(options); } int boinc_init_options(BOINC_OPTIONS& opt) { int retval; options = opt; memset(&boinc_status, 0, sizeof(boinc_status)); if (options.main_program) { // make sure we're the only app running in this slot // retval = lock_file(LOCKFILE); if (retval) { // give any previous occupant a chance to timeout and exit // boinc_sleep(HEARTBEAT_TIMEOUT_PERIOD); retval = lock_file(LOCKFILE); } if (retval) { fprintf(stderr, "Can't acquire lockfile - exiting\n"); exit(0); } } #ifdef _WIN32 DuplicateHandle( GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &worker_thread_handle, 0, FALSE, DUPLICATE_SAME_ACCESS ); #endif retval = boinc_parse_init_data_file(); if (retval) { standalone = true; } else { if (aid.core_version && (aid.core_version/100 != BOINC_MAJOR_VERSION)) { fprintf(stderr, "Core client has wrong major version: wanted %d, got %d\n", BOINC_MAJOR_VERSION, aid.core_version/100 ); exit(ERR_MAJOR_VERSION); } retval = setup_shared_mem(); if (retval) { fprintf(stderr, "Can't set up shared mem: %d\n", retval); standalone = true; } } // copy the WU CPU time to a separate var, // since we may reread the structure again later. // initial_wu_cpu_time = aid.wu_cpu_time; // the following may not be needed, but do it anyway // fraction_done = -1; time_until_checkpoint = aid.checkpoint_period; last_checkpoint_cpu_time = aid.wu_cpu_time; time_until_fraction_done_update = aid.fraction_done_update_period; last_wu_cpu_time = aid.wu_cpu_time; heartbeat_active = !standalone; heartbeat_giveup_time = dtime() + HEARTBEAT_GIVEUP_PERIOD; set_timer(timer_period); return 0; } int boinc_get_status(BOINC_STATUS& s) { s = boinc_status; return 0; } static void send_trickle_up_msg() { if (have_new_trickle_up) { if (app_client_shm->shm->trickle_up.send_msg("\n")) { have_new_trickle_up = false; } } } int boinc_finish(int status) { double cur_mem; if (options.send_status_msgs) { boinc_calling_thread_cpu_time(last_checkpoint_cpu_time, cur_mem); last_checkpoint_cpu_time += aid.wu_cpu_time; update_app_progress(last_checkpoint_cpu_time, last_checkpoint_cpu_time, cur_mem); } if (options.handle_trickle_ups) { send_trickle_up_msg(); } #ifdef _WIN32 // Stop the timer timeKillEvent(timer_id); CloseHandle(worker_thread_handle); #endif if (options.main_program && status==0) { FILE* f = fopen(BOINC_FINISH_CALLED_FILE, "w"); if (f) fclose(f); } if (options.send_status_msgs) { aid.wu_cpu_time = last_checkpoint_cpu_time; boinc_write_init_data_file(); } exit(status); return 0; } bool boinc_is_standalone() { return standalone; } // parse the init data file. // This is done at startup, and also if a "reread prefs" message is received // int boinc_parse_init_data_file() { FILE* f; int retval; memset(&aid, 0, sizeof(aid)); safe_strncpy(aid.user_name, "Unknown user", sizeof(aid.user_name)); safe_strncpy(aid.team_name, "Unknown team", sizeof(aid.team_name)); aid.wu_cpu_time = 1000; aid.user_total_credit = 1000; aid.user_expavg_credit = 500; aid.host_total_credit = 1000; aid.host_expavg_credit = 500; aid.checkpoint_period = DEFAULT_CHECKPOINT_PERIOD; aid.fraction_done_update_period = DEFAULT_FRACTION_DONE_UPDATE_PERIOD; if (!boinc_file_exists(INIT_DATA_FILE)) { fprintf(stderr, "Can't open init data file - running in standalone mode\n" ); return ERR_FOPEN; } f = boinc_fopen(INIT_DATA_FILE, "r"); retval = parse_init_data_file(f, aid); fclose(f); if (retval) { fprintf(stderr, "Can't parse init data file - running in standalone mode\n" ); return retval; } return 0; } int boinc_write_init_data_file() { FILE* f = boinc_fopen(INIT_DATA_FILE, "w"); if (!f) return ERR_FOPEN; int retval = write_init_data_file(f, aid); fclose(f); return retval; } // communicate to the core client (via shared mem) // the current CPU time and fraction done // static int update_app_progress( double cpu_t, double cp_cpu_t, double ws_t ) { char msg_buf[MSG_CHANNEL_SIZE], buf[256]; unsigned long vm = 0, rs = 0; if (!app_client_shm) return 0; sprintf(msg_buf, "%10.4f\n" "%.15e\n", cpu_t, cp_cpu_t ); if (fraction_done >= 0) { double range = aid.fraction_done_end - aid.fraction_done_start; double fdone = aid.fraction_done_start + fraction_done*range; sprintf(buf, "%2.8f\n", fdone); strcat(msg_buf, buf); } if (!mem_usage(vm, rs)) { sprintf(buf, "%lu\n" "%lu\n", vm, rs ); strcat(msg_buf, buf); } app_client_shm->shm->app_status.send_msg(msg_buf); return 0; } int boinc_get_init_data(APP_INIT_DATA& app_init_data) { app_init_data = aid; return 0; } // this can be called from the graphics thread // int boinc_wu_cpu_time(double& cpu_t) { cpu_t = last_wu_cpu_time; return 0; } #ifdef _WIN32 int boinc_worker_thread_cpu_time(double& cpu, double& ws) { return boinc_thread_cpu_time(worker_thread_handle, cpu, ws); } #else // For now, the UNIX API involves only one thread. // int boinc_worker_thread_cpu_time(double& cpu, double& ws) { return boinc_calling_thread_cpu_time(cpu, ws); } #endif // _WIN32 static void handle_heartbeat_msg() { char buf[MSG_CHANNEL_SIZE]; if (app_client_shm->shm->heartbeat.get_msg(buf)) { if (match_tag(buf, "")) { heartbeat_giveup_time = dtime() + HEARTBEAT_GIVEUP_PERIOD; } if (match_tag(buf, "")) { heartbeat_active = true; } if (match_tag(buf, "")) { heartbeat_active = false; } } } static void handle_trickle_down_msg() { char buf[MSG_CHANNEL_SIZE]; if (app_client_shm->shm->trickle_down.get_msg(buf)) { if (match_tag(buf, "")) { have_trickle_down = true; } } } static void handle_process_control_msg() { char buf[MSG_CHANNEL_SIZE]; if (app_client_shm->shm->process_control_request.get_msg(buf)) { if (match_tag(buf, "")) { if (options.direct_process_action) { #ifdef _WIN32 SuspendThread(worker_thread_handle); #else while (1) { if (app_client_shm->shm->process_control_request.get_msg(buf)) { if (match_tag(buf, "")) { break; } if (match_tag(buf, "")) { exit(0); } } boinc_sleep(1.0); } heartbeat_giveup_time = dtime() + HEARTBEAT_GIVEUP_PERIOD; #endif } else { boinc_status.suspended = true; } } if (match_tag(buf, "")) { if (options.direct_process_action) { #ifdef _WIN32 ResumeThread(worker_thread_handle); #endif } else { boinc_status.suspended = false; } } if (match_tag(buf, "")) { if (options.direct_process_action) { exit(0); } else { boinc_status.quit_request = true; } } } } #ifdef _WIN32 static void CALLBACK on_timer(UINT uTimerID, UINT uMsg, DWORD dwUser, DWORD dw1, DWORD dw2) { #else static void on_timer(int a) { #endif if (!ready_to_checkpoint) { time_until_checkpoint -= timer_period; if (time_until_checkpoint <= 0) { ready_to_checkpoint = true; } } // handle messages from the core client // if (app_client_shm) { if (options.check_heartbeat) { handle_heartbeat_msg(); } if (options.handle_trickle_downs) { handle_trickle_down_msg(); } if (options.handle_process_control) { handle_process_control_msg(); } } // see if the core client has died, which means we need to die too // if (options.check_heartbeat && heartbeat_active) { double now = dtime(); if (heartbeat_giveup_time < now) { fprintf(stderr, "No heartbeat from core client for %f sec - exiting\n", now - (heartbeat_giveup_time - HEARTBEAT_GIVEUP_PERIOD) ); if (options.direct_process_action) { exit(0); } else { boinc_status.no_heartbeat = true; } } } if (options.send_status_msgs) { time_until_fraction_done_update -= timer_period; if (time_until_fraction_done_update <= 0) { double cur_cpu; double cur_mem; boinc_worker_thread_cpu_time(cur_cpu, cur_mem); last_wu_cpu_time = cur_cpu + initial_wu_cpu_time; update_app_progress(last_wu_cpu_time, last_checkpoint_cpu_time, cur_mem); time_until_fraction_done_update = aid.fraction_done_update_period; } } if (options.handle_trickle_ups) { send_trickle_up_msg(); } } static int set_timer(double period) { int retval=0; #ifdef _WIN32 // Use Windows multimedia timer, since it is more accurate // than SetTimer and doesn't require an associated event loop // timer_id = timeSetEvent( (int)(period*1000), // uDelay (int)(period*1000), // uResolution on_timer, // lpTimeProc NULL, // dwUser TIME_PERIODIC // fuEvent ); #endif #if HAVE_SIGNAL_H #if HAVE_SYS_TIME_H struct sigaction sa; itimerval value; sa.sa_handler = on_timer; sa.sa_flags = SA_RESTART; retval = sigaction(SIGALRM, &sa, NULL); if (retval) { perror("boinc set_timer() sigaction"); return retval; } value.it_value.tv_sec = (int)period; value.it_value.tv_usec = ((int)(period*1000000))%1000000; value.it_interval = value.it_value; retval = setitimer(ITIMER_REAL, &value, NULL); if (retval) { perror("boinc set_timer() setitimer"); } #endif #endif return retval; } static int setup_shared_mem() { if (standalone) { fprintf(stderr, "Standalone mode, so not using shared memory.\n"); return 0; } app_client_shm = new APP_CLIENT_SHM; #ifdef _WIN32 char buf[256]; sprintf(buf, "%s%s", SHM_PREFIX, aid.shmem_seg_name); hSharedMem = attach_shmem(buf, (void**)&app_client_shm->shm); if (hSharedMem == NULL) { delete app_client_shm; app_client_shm = NULL; } #else if (attach_shmem(aid.shmem_seg_name, (void**)&app_client_shm->shm)) { delete app_client_shm; app_client_shm = NULL; } #endif if (app_client_shm == NULL) return -1; return 0; } int boinc_send_trickle_up(char* variety, char* p) { if (!options.handle_trickle_ups) return ERR_NO_OPTION; FILE* f = boinc_fopen(TRICKLE_UP_FILENAME, "wb"); if (!f) return ERR_FOPEN; fprintf(f, "%s\n", variety); size_t n = fwrite(p, strlen(p), 1, f); fclose(f); if (n != 1) return ERR_WRITE; have_new_trickle_up = true; return 0; } bool boinc_time_to_checkpoint() { // If the application has received a quit request it should checkpoint // if (time_to_quit) { return true; } return ready_to_checkpoint; } int boinc_checkpoint_completed() { double cur_cpu, cur_mem; boinc_calling_thread_cpu_time(cur_cpu, cur_mem); last_wu_cpu_time = cur_cpu + aid.wu_cpu_time; last_checkpoint_cpu_time = last_wu_cpu_time; update_app_progress(last_checkpoint_cpu_time, last_checkpoint_cpu_time, cur_mem); ready_to_checkpoint = false; time_until_checkpoint = aid.checkpoint_period; // If it's time to quit, call boinc_finish which will exit the app properly // if (time_to_quit) { fprintf(stderr, "Received quit request from core client\n"); boinc_finish(ERR_QUIT_REQUEST); } return 0; } int boinc_fraction_done(double x) { fraction_done = x; return 0; } bool boinc_receive_trickle_down(char* buf, int len) { std::string filename; char path[256]; if (!options.handle_trickle_downs) return false; if (have_trickle_down) { relative_to_absolute("", path); DirScanner dirscan(path); fprintf(stderr, "starting scan of %s\n", path); while (dirscan.scan(filename)) { fprintf(stderr, "scan: %s\n", filename.c_str()); if (strstr(filename.c_str(), "trickle_down")) { strncpy(buf, filename.c_str(), len); return true; } } have_trickle_down = false; } return false; } static int mem_usage(unsigned long& vm_kb, unsigned long& rs_kb) { #ifdef _WIN32 return ERR_NOT_IMPLEMENTED; #else #if defined(HAVE_PROCFS_H) && defined(HAVE__PROC_SELF_PSINFO) FILE* f; // guess that this is solaris // need psinfo_t from procfs.h // if ((f = fopen("/proc/self/psinfo", "r")) != 0) { psinfo_t psinfo; if (fread(&psinfo, sizeof(psinfo_t), 1, f) == 1) { vm_kb = psinfo.pr_size; rs_kb = psinfo.pr_rssize; fclose(f); return 0; } else { fclose(f); return ERR_FREAD; } } #endif #if defined(HAVE__PROC_SELF_STAT) FILE* f; // guess that this is linux // if ((f = fopen("/proc/self/stat", "r")) != 0) { char buf[256]; char* p; int i; unsigned long tmp; i = fread(buf, sizeof(char), 255, f); buf[i] = '\0'; // terminate string p = &buf[0]; // skip over first 22 fields // for (i = 0; i < 22; ++i) { p = strchr(p, ' '); if (!p) break; ++p; // move past space } if (!p) { return ERR_NOT_IMPLEMENTED; } // read virtual memory size in bytes. // tmp = strtol(p, &p, 0); // in bytes vm_kb = tmp>>10; // bytes to Kb // read resident set size: number of pages the process has in // real memory, minus 3 for administrative purposes. // tmp = strtol(p, 0, 0); // in pages rs_kb = ((tmp + 3)*getpagesize())>>10; // getpagesize() is bytes/page fclose(f); return 0; } #endif return ERR_NOT_IMPLEMENTED; #endif }