// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2023 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // Structures representing coprocessors (e.g. GPUs); // used in both client and server. // // Notes: // // 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU". // 2) The design treats each resource type as a pool of identical devices; // for example, a scheduler request contains a request // (#instances, instance-seconds) for CUDA jobs. // In reality, the instances of a resource type can have different properties: // In the case of CUDA, "compute capability", driver version, RAM, speed, etc. // How to resolve this discrepancy? // // Prior to 21 Apr 09 we identified the fastest instance // and pretended that the others were identical to it. // This approach has a serious flaw: // suppose that the fastest instance has characteristics // (version, RAM etc.) that satisfy the project's requirements, // but other instances to not. // Then BOINC executes jobs on GPUs that can't handle them, // the jobs fail, the host is punished, etc. // // We could treat each GPU has a separate resource, // with its own backoffs, etc. // However, this would imply tying jobs to instances, // which is undesirable from a scheduling viewpoint. // It would also be a big code change in both client and server. // // Instead, (as of 21 Apr 09) our approach is to identify a // "most capable" instance, which in the case of CUDA is based on // a) compute capability // b) driver version // c) RAM size // d) est. FLOPS // (in decreasing priority). // We ignore and don't use any instances that are less capable // on any of these axes. // // This design avoids running coprocessor apps on instances // that are incapable of handling them, and it involves no server changes. // Its drawback is that, on systems with multiple and differing GPUs, // it may not use some GPUs that actually could be used. // // Modified (as of 23 July 14) to allow coprocessors (OpenCL GPUs and OpenCL // accelerators) from vendors other than original 3: NVIDIA, AMD and Intel. // For these original 3 GPU vendors, we still use the above approach, and the // COPROC::type field contains a standardized vendor name "NVIDIA", "ATI" or // "intel_gpu". But for other, "new" vendors, we treat each device as a // separate resource, creating an entry for each instance in the // COPROCS::coprocs[] array and copying the device name COPROC::opencl_prop.name // into the COPROC::type field (instead of the vendor name.) #ifndef BOINC_COPROC_H #define BOINC_COPROC_H #include #include #ifdef _WIN32 #include "boinc_win.h" #endif #include "boinc_stdio.h" #include "miofile.h" #include "error_numbers.h" #include "parse.h" #include "cal_boinc.h" #include "cl_boinc.h" #include "opencl_boinc.h" #define MAX_COPROC_INSTANCES 64 #define MAX_RSC 8 // max # of processing resources types #define GPU_MAX_PEAK_FLOPS 1.e15 // sanity-check bound for peak FLOPS // for now (Feb 2019) 1000 TeraFLOPS. // As of now, the fastest GPU is 20 TeraFLOPS (NVIDIA). // May need to increase this at some point #define GPU_DEFAULT_PEAK_FLOPS 100.e9 // value to use if sanity check fails // as of now (Feb 2019) 100 GigaFLOPS is a typical low-end GPU // arguments to proc_type_name() and proc_type_name_xml(). // #define PROC_TYPE_CPU 0 #define PROC_TYPE_NVIDIA_GPU 1 #define PROC_TYPE_AMD_GPU 2 #define PROC_TYPE_INTEL_GPU 3 #define PROC_TYPE_MINER_ASIC 4 #define NPROC_TYPES 5 extern const char* proc_type_name(int); // user-readable name extern const char* proc_type_name_xml(int); // name used in XML and COPROC::type extern int coproc_type_name_to_num(const char* name); // deprecated, but keep for simplicity #define GPU_TYPE_NVIDIA proc_type_name_xml(PROC_TYPE_NVIDIA_GPU) #define GPU_TYPE_ATI proc_type_name_xml(PROC_TYPE_AMD_GPU) #define GPU_TYPE_INTEL proc_type_name_xml(PROC_TYPE_INTEL_GPU) // represents a requirement for a coproc. // This is a parsed version of the elements in an // (used in client only) // struct COPROC_REQ { char type[256]; // must be unique double count; int parse(XML_PARSER&); }; struct PCI_INFO { bool present; int bus_id; int device_id; int domain_id; void clear() { present = false; bus_id = 0; device_id = 0; domain_id = 0; } PCI_INFO() { clear(); } void write(MIOFILE&); int parse(XML_PARSER&); }; // represents a set of identical coprocessors on a particular computer. // Abstract class; // objects will always be a derived class (COPROC_CUDA, COPROC_ATI) // Used in both client and server. // struct COPROC { char type[256]; // must be unique int count; // how many are present bool non_gpu; // coproc is not a GPU double peak_flops; double used; // how many are in use (used by client) bool have_cuda; // True if this GPU supports CUDA on this computer bool have_cal; // True if this GPU supports CAL on this computer bool have_opencl; // True if this GPU supports openCL on this computer double available_ram; bool specified_in_config; // If true, this coproc was listed in cc_config.xml // rather than being detected by the client. // the following are used in both client and server for work-fetch info // double req_secs; // how many instance-seconds of work requested double req_instances; // client is requesting enough jobs to use this many instances double estimated_delay; // resource will be saturated for this long // temps used in client (enforce_schedule()) // to keep track of what fraction of each instance is in use // during instance assignment // double usage[MAX_COPROC_INSTANCES]; double pending_usage[MAX_COPROC_INSTANCES]; // the device number of each instance // These are not sequential if we omit instances (see above) // int device_nums[MAX_COPROC_INSTANCES]; int device_num; // temp used in scan process bool instance_has_opencl[MAX_COPROC_INSTANCES]; cl_device_id opencl_device_ids[MAX_COPROC_INSTANCES]; int opencl_device_count; int opencl_device_indexes[MAX_COPROC_INSTANCES]; PCI_INFO pci_info; PCI_INFO pci_infos[MAX_COPROC_INSTANCES]; bool running_graphics_app[MAX_COPROC_INSTANCES]; // is this GPU running a graphics app (NVIDIA only) double last_print_time; OPENCL_DEVICE_PROP opencl_prop; COPROC(int){} inline void clear() { static const COPROC x(0); *this = x; } COPROC(){ clear(); } #ifndef _USING_FCGI_ void write_xml(MIOFILE&, bool scheduler_rpc=false); void write_request(MIOFILE&); #endif int parse(XML_PARSER&); inline void clear_usage() { for (int i=0; i &opencls, std::vector& ignore_dev ); void find_best_opencls( bool use_all, std::vector &opencls, std::vector& ignore_dev ); // sanity check GPU peak FLOPS // inline bool bad_gpu_peak_flops(const char* source, std::string& msg) { if (peak_flops <= 0 || peak_flops > GPU_MAX_PEAK_FLOPS) { char buf[256]; snprintf(buf, sizeof(buf), "%s reported bad GPU peak FLOPS %f; using %f", source, peak_flops, GPU_DEFAULT_PEAK_FLOPS ); msg = buf; peak_flops = GPU_DEFAULT_PEAK_FLOPS; return true; } return false; } }; // Based on cudaDeviceProp from /usr/local/cuda/include/driver_types.h // doesn't have to match exactly since we get the attributes one at a time. // // This is used for 2 purposes: // - it's exported via GUI RPC for GUIs or other tools // - it's sent from client to scheduler, for use by app plan functions // Properties not relevant to either of these can be omitted. // struct CUDA_DEVICE_PROP { char name[256]; double totalGlobalMem; double sharedMemPerBlock; int regsPerBlock; int warpSize; double memPitch; int maxThreadsPerBlock; int maxThreadsDim[3]; int maxGridSize[3]; int clockRate; double totalConstMem; int major; // compute capability int minor; double textureAlignment; int deviceOverlap; int multiProcessorCount; CUDA_DEVICE_PROP(int){} void clear() { static const CUDA_DEVICE_PROP x(0); *this = x; } CUDA_DEVICE_PROP() { clear(); } }; typedef int CUdevice; struct COPROC_NVIDIA : public COPROC { int cuda_version; // CUDA runtime version int display_driver_version; CUDA_DEVICE_PROP prop; COPROC_USAGE is_used; // temp used in scan process #ifndef _USING_FCGI_ void write_xml(MIOFILE&, bool scheduler_rpc); #endif COPROC_NVIDIA(): COPROC() {clear();} COPROC_NVIDIA(int): COPROC() {} void get(std::vector& warnings); void correlate( bool use_all, std::vector& ignore_devs ); void description(char* buf, int buflen); void clear(); int parse(XML_PARSER&); void set_peak_flops(); void fake(int driver_version, double ram, double avail_ram, int count); }; // encode a 3-part version as // 10000000*major + 10000*minor + release // Note: ATI release #s can exceed 1000 // inline int ati_version_int(int major, int minor, int release) { return major*10000000 + minor*10000 + release; } struct COPROC_ATI : public COPROC { char name[256]; char version[50]; int version_num; // CAL version (not driver version) encoded as an int bool atirt_detected; bool amdrt_detected; CALdeviceattribs attribs; CALdeviceinfo info; COPROC_USAGE is_used; // temp used in scan process #ifndef _USING_FCGI_ void write_xml(MIOFILE&, bool scheduler_rpc); #endif COPROC_ATI(int): COPROC() {} COPROC_ATI(): COPROC() {clear();} void get(std::vector& warnings); void correlate( bool use_all, std::vector& ignore_devs ); void description(char* buf, int buflen); void clear(); int parse(XML_PARSER&); void set_peak_flops(); void fake(double ram, double avail_ram, int); }; struct COPROC_INTEL : public COPROC { char name[256]; char version[50]; double global_mem_size; COPROC_USAGE is_used; // temp used in scan process #ifndef _USING_FCGI_ void write_xml(MIOFILE&, bool scheduler_rpc); #endif COPROC_INTEL(int): COPROC() {} COPROC_INTEL(): COPROC() {clear();} void get(std::vector& warnings); void correlate( bool use_all, std::vector& ignore_devs ); void clear(); int parse(XML_PARSER&); void set_peak_flops(); void fake(double ram, double avail_ram, int); }; typedef std::vector IGNORE_GPU_INSTANCE[NPROC_TYPES]; struct COPROCS { int n_rsc; COPROC coprocs[MAX_RSC]; // array of processor types on this host. // element 0 always represents the CPU. // The remaining elements, if any, are GPUs or other coprocessors // The following contain vendor-specific info about GPUs. // (These GPUs are also represented by elements in the coprocs array) // COPROC_NVIDIA nvidia; COPROC_ATI ati; COPROC_INTEL intel_gpu; void write_xml(MIOFILE& out, bool scheduler_rpc); void get( bool use_all, std::vector &descs, std::vector &warnings, IGNORE_GPU_INSTANCE &ignore_gpu_instance ); void detect_gpus(std::vector &warnings); int launch_child_process_to_detect_gpus(); void correlate_gpus( bool use_all, std::vector &descs, IGNORE_GPU_INSTANCE &ignore_gpu_instance ); void get_opencl( std::vector &warnings ); void correlate_opencl( bool use_all, IGNORE_GPU_INSTANCE& ignore_gpu_instance ); cl_int get_opencl_info( OPENCL_DEVICE_PROP& prop, cl_uint device_index, std::vector& warnings ); int parse(XML_PARSER&); void set_path_to_client(char *path); int write_coproc_info_file(std::vector &warnings); int read_coproc_info_file(std::vector &warnings); int add_other_coproc_types(); #ifdef __APPLE__ void opencl_get_ati_mem_size_from_opengl(std::vector &warnings); #endif void summary_string(char* buf, int len); // Copy a coproc set, possibly setting usage to zero. // used in round-robin simulator and CPU scheduler, // to avoid messing w/ master copy // void clone(COPROCS& c, bool copy_used) { n_rsc = c.n_rsc; for (int i=0; i 0); } inline bool have_ati() { return (ati.count > 0); } inline bool have_intel_gpu() { return (intel_gpu.count > 0); } int add(COPROC& c) { if (n_rsc >= MAX_RSC) return ERR_BUFFER_OVERFLOW; for (int i=1; i