// The contents of this file are subject to the BOINC Public License // Version 1.0 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://boinc.berkeley.edu/license_1.0.txt // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations // under the License. // // The Original Code is the Berkeley Open Infrastructure for Network Computing. // // The Initial Developer of the Original Code is the SETI@home project. // Portions created by the SETI@home project are Copyright (C) 2002 // University of California at Berkeley. All Rights Reserved. // // Contributor(s): // // ------------------------------- // // feeder [-asynch] [-d debug_level] // -asynch fork and run in a separate process // // Creates a shared memory segment containing DB info, // including the work array (results/workunits to send). // This means that the scheduler CGI program doesn't have to // access the DB to get this info. // // Try to keep the work array filled. // This is a little tricky. // We use an enumerator. // The inner loop scans the wu_result table, // looking for empty slots and trying to fill them in. // When the enumerator reaches the end, it is restarted; // hopefully there will be some new workunits. // There are two complications: // - An enumeration may return results already in the array. // So, for each result, we scan the entire array to make sure // it's not there already. Can this be streamlined? // - We must avoid excessive re-enumeration, // especially when the number of results is less than the array size. // Crude approach: if a "collision" (as above) occurred on // a pass through the array, wait a long time (5 sec) // // Checking for infeasible results (i.e. can't sent to any host): // - the "infeasible_count" field of WU_RESULT keeps track of // how many times the WU_RESULT was infeasible for a host // - the scheduler gives priority to results that have infeasible_count > 0 // - If the infeasible_count of any result exceeds MAX_INFEASIBLE_COUNT, // the feeder flags the result as OVER with outcome COULDNT_SEND, // and flags the WU for the transitioner. // - the feeder tries to ensure that the number of WU_RESULTs // with infeasible_count > 0 doesn't exceed MAX_INFEASIBLE // (compiled into feeder). // If it does, then the feeder picks the WU_RESULT with // the largest infeasible_count, marks if COULDNT_SEND as above, // and repeats this until the infeasible count is low enough again // Trigger files: // The feeder program periodically checks for two trigger files: // // stop_server: destroy shmem and exit // leave trigger file there (for other daemons) // reread_db: update DB contents in existing shmem // delete trigger file // If you get an "Invalid argument" error when trying to run the feeder, // it is likely that you aren't able to allocate enough shared memory. // Either increase the maximum shared memory segment size in the kernel // configuration, or decrease the MAX_PLATFORMS, MAX_APPS // MAX_APP_VERSIONS, and MAX_WU_RESULTS in sched_shmem.h #include #include #include #include #if HAVE_UNISTD_H #include #endif #include "boinc_db.h" #include "shmem.h" #include "util.h" #include "sched_config.h" #include "sched_shmem.h" #include "sched_util.h" #define MAX_INFEASIBLE_COUNT 50 #define REREAD_DB_FILENAME "reread_db" #define LOCKFILE "feeder.out" #define PIDFILE "feeder.pid" SCHED_CONFIG config; SCHED_SHMEM* ssp; void cleanup_shmem() { detach_shmem((void*)ssp); destroy_shmem(config.shmem_key); } int check_reread_trigger() { FILE* f; f = fopen(REREAD_DB_FILENAME, "r"); if (f) { fclose(f); ssp->init(); ssp->scan_tables(); unlink(REREAD_DB_FILENAME); } return 0; } static int remove_infeasible(int i) { int retval; DB_RESULT result; DB_WORKUNIT wu; WU_RESULT& wu_result = ssp->wu_results[i]; wu_result.present = false; // mark as absent result = wu_result.result; wu = wu_result.workunit; log_messages.printf( SchedMessages::NORMAL, "[%s] declaring result as unsendable; infeasible count %d\n", result.name, wu_result.infeasible_count ); result.server_state = RESULT_SERVER_STATE_OVER; result.outcome = RESULT_OUTCOME_COULDNT_SEND; retval = result.update(); if (retval) { log_messages.printf( SchedMessages::CRITICAL, "[%s]: can't update: %d\n", result.name, retval ); return retval; } wu.transition_time = time(0); retval = wu.update(); if (retval) { log_messages.printf( SchedMessages::CRITICAL, "[%s]: can't update: %d\n", wu.name, retval ); return retval; } return 0; } static void scan_work_array( DB_RESULT& result, char* clause, int& nadditions, int& ncollisions, int& ninfeasible, bool& no_wus ) { int i, j, retval; DB_WORKUNIT wu; bool collision, restarted_enum = false; for (i=0; inwu_results; i++) { WU_RESULT& wu_result = ssp->wu_results[i]; if (wu_result.present) { if (wu_result.infeasible_count > MAX_INFEASIBLE_COUNT) { remove_infeasible(i); } else if (wu_result.infeasible_count > 0) { ninfeasible++; } } else { try_again: retval = result.enumerate(clause); if (retval) { // if we already restarted the enum on this array scan, // there's no point in doing it again. // if (restarted_enum) { log_messages.printf(SchedMessages::DEBUG, "already restarted enum on this array scan\n" ); break; } // restart the enumeration // restarted_enum = true; retval = result.enumerate(clause); log_messages.printf(SchedMessages::DEBUG, "restarting enumeration\n" ); if (retval) { log_messages.printf(SchedMessages::DEBUG, "enumeration restart returned nothing\n" ); no_wus = true; break; } } // there's a chance this result was sent out // after the enumeration started. // So read it from the DB again // retval = result.lookup_id(result.id); if (retval) { log_messages.printf(SchedMessages::NORMAL, "[%s] can't reread result: %d\n", result.name, retval ); goto try_again; } if (result.server_state != RESULT_SERVER_STATE_UNSENT) { log_messages.printf( SchedMessages::NORMAL, "[%s] RESULT STATE CHANGED\n", result.name ); goto try_again; } collision = false; for (j=0; jnwu_results; j++) { if (ssp->wu_results[j].present && ssp->wu_results[j].result.id == result.id ) { ncollisions++; collision = true; break; } } if (!collision) { log_messages.printf( SchedMessages::NORMAL, "[%s] adding result in slot %d\n", result.name, i ); retval = wu.lookup_id(result.workunitid); if (retval) { log_messages.printf( SchedMessages::CRITICAL, "[%s] can't read workunit #%d: %d\n", result.name, result.workunitid, retval ); continue; } wu_result.result = result; wu_result.workunit = wu; wu_result.present = true; wu_result.infeasible_count = 0; nadditions++; } } } } static int remove_most_infeasible() { int i, max, imax=-1; max = 0; for (i=0; inwu_results; i++) { WU_RESULT& wu_result = ssp->wu_results[i]; if (wu_result.present && wu_result.infeasible_count > max) { imax = i; max = wu_result.infeasible_count; } } if (max == 0) return -1; // nothing is infeasible return remove_infeasible(imax); } void feeder_loop() { int i, n, retval, nadditions, ncollisions, ninfeasible; DB_RESULT result; bool no_wus; char clause[256]; sprintf(clause, "where server_state=%d order by random", RESULT_SERVER_STATE_UNSENT ); while (1) { nadditions = 0; ncollisions = 0; ninfeasible = 0; no_wus = false; scan_work_array( result, clause, nadditions, ncollisions, ninfeasible, no_wus ); ssp->ready = true; if (ninfeasible > MAX_INFEASIBLE) { n = ninfeasible - MAX_INFEASIBLE; for (i=0; iinit(); atexit(cleanup_shmem); install_sigint_handler(); retval = boinc_db.open(config.db_name, config.db_passwd); if (retval) { log_messages.printf(SchedMessages::CRITICAL, "boinc_db.open: %d\n", retval); exit(1); } ssp->scan_tables(); log_messages.printf( SchedMessages::NORMAL, "feeder: read " "%d platforms, " "%d apps, " "%d app_versions\n", ssp->nplatforms, ssp->napps, ssp->napp_versions ); feeder_loop(); }