// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2009 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // client-specific GPU code. Mostly GPU detection #include "cpp.h" #ifdef _WIN32 #include "boinc_win.h" #ifndef SIM #include #endif #else #ifdef __APPLE__ // Suppress obsolete warning when building for OS 10.3.9 #define DLOPEN_NO_WARN #endif #include "config.h" #include #include #include #endif #include "coproc.h" #include "str_util.h" #include "util.h" #include "client_state.h" #include "client_msgs.h" using std::string; using std::vector; //#define MEASURE_AVAILABLE_RAM static bool in_vector(int n, vector& v) { for (unsigned int i=0; i 1.4*c2.global_RAM) return 1; if (c1.global_RAM < .7* c2.global_RAM) return -1; return 0; } if (c1.global_RAM > c2.global_RAM) return 1; if (c1.global_RAM < c2.global_RAM) return -1; if (loose) { if (c1.local_RAM > 1.4*c2.local_RAM) return 1; if (c1.local_RAM < .7* c2.local_RAM) return -1; return 0; } if (c1.local_RAM > c2.local_RAM) return 1; if (c1.local_RAM < c2.local_RAM) return -1; if (c1.max_cores > c2.max_cores) return 1; if (c1.max_cores < c2.max_cores) return -1; if (c1.max_clock_freq > c2.max_clock_freq) return 1; if (c1.max_clock_freq < c2.max_clock_freq) return -1; return 0; } void COPROCS::get_opencl(bool use_all, vector&warnings) { cl_int ciErrNum; cl_platform_id platforms[MAX_OPENCL_PLATFORMS]; cl_uint num_platforms, platform_index, num_devices, device_index; cl_device_id devices[MAX_COPROC_INSTANCES]; OPENCL_DEVICE_PROP prop; vector nvidia_opencls; vector ati_opencls; unsigned int i; #ifdef _WIN32 opencl_lib = LoadLibrary("OpenCL.dll"); if (!opencl_lib) { warnings.push_back("No OpenCL library found"); return; } __clGetPlatformIDs = (CL_PLATFORMIDS)GetProcAddress( opencl_lib, "clGetPlatformIDs" ); __clGetPlatformInfo = (CL_PLATFORMINFO)( opencl_lib, "clGetPlatformInfo" ); __clGetDeviceIDs = (CL_DEVICEIDS)GetProcAddress( opencl_lib, "clGetDeviceIDs" ); __clGetDeviceInfo = (CL_INFO)GetProcAddress( opencl_lib, "clGetDeviceInfo" ); #else #ifdef __APPLE__ opencl_lib = dlopen("/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL", RTLD_NOW); #else // TODO: Is this correct? opencl_lib = dlopen("libOpenCL.so", RTLD_NOW); #endif if (!opencl_lib) { warnings.push_back("No OpenCL library found"); return; } __clGetPlatformIDs = (cl_int(*)(cl_uint, cl_platform_id*, cl_uint*)) dlsym( opencl_lib, "clGetPlatformIDs" ); __clGetPlatformInfo = (cl_int(*)(cl_platform_id, cl_platform_info, size_t, void*, size_t*)) dlsym( opencl_lib, "clGetPlatformInfo" ); __clGetDeviceIDs = (cl_int(*)(cl_platform_id, cl_device_type, cl_uint, cl_device_id*, cl_uint*)) dlsym( opencl_lib, "clGetDeviceIDs" ); __clGetDeviceInfo = (cl_int(*)(cl_device_id, cl_device_info, size_t, void*, size_t*)) dlsym( opencl_lib, "clGetDeviceInfo" ); #endif if (!__clGetPlatformIDs) { warnings.push_back("clGetPlatformIDs() missing from OpenCL library"); return; } if (!__clGetPlatformInfo) { warnings.push_back("clGetPlatformInfo() missing from OpenCL library"); return; } if (!__clGetDeviceIDs) { warnings.push_back("clGetDeviceIDs() missing from OpenCL library"); return; } if (!__clGetDeviceInfo) { warnings.push_back("clGetDeviceInfo() missing from OpenCL library"); return; } ciErrNum = (*__clGetPlatformIDs)(MAX_OPENCL_PLATFORMS, platforms, &num_platforms); if ((ciErrNum != CL_SUCCESS) || (num_platforms == 0)) { warnings.push_back("clGetPlatformIDs() failed to return any OpenCL platforms"); return; } for (platform_index=0; platform_index 0) { is_best = true; } if (is_best) { nvidia.opencl_prop = nvidia_opencls[i]; // fill in what info we have strcpy(nvidia.prop.name, nvidia_opencls[i].name); nvidia.prop.totalGlobalMem = nvidia_opencls[i].global_RAM; nvidia.prop.clockRate = nvidia_opencls[i].max_clock_freq * 1000; nvidia.have_opencl = true; } } // see which other instances are equivalent, // and set the "opencl_device_count" and "opencl_device_ids" fields // nvidia.opencl_device_count = 0; for (i=0; i 0) { is_best = true; } if (is_best) { ati.opencl_prop = ati_opencls[i]; // fill in what info we have strcpy(ati.name, ati_opencls[i].name); ati.attribs.localRAM = ati_opencls[i].local_RAM; ati.attribs.engineClock = ati_opencls[i].max_clock_freq; ati.have_opencl = true; } } // see which other instances are equivalent, // and set the "opencl_device_count" and "opencl_device_ids" fields // ati.opencl_device_count = 0; for (i=0; i&warnings ) { cl_int ciErrNum; char buf[256]; ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_NAME, sizeof(prop.name), prop.name, NULL); if ((ciErrNum != CL_SUCCESS) || (prop.name[0] == 0)) { sprintf(buf, "clGetDeviceInfo failed to get name for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_VENDOR, sizeof(prop.vendor), prop.vendor, NULL); if ((ciErrNum != CL_SUCCESS) || (prop.vendor[0] == 0)) { sprintf(buf, "clGetDeviceInfo failed to get vendor for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_VENDOR_ID, sizeof(prop.vendor_id), &prop.vendor_id, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get vendor ID for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_AVAILABLE, sizeof(prop.available), &prop.available, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get availability for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_HALF_FP_CONFIG, sizeof(prop.hp_fp_config), &prop.hp_fp_config, NULL); if (ciErrNum != CL_SUCCESS) { if ((ciErrNum == CL_INVALID_VALUE) || (ciErrNum == CL_INVALID_OPERATION)) { prop.hp_fp_config = 0; // Not supported by OpenCL 1.0 } else { sprintf(buf, "clGetDeviceInfo failed to get half-precision floating point capabilities for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_SINGLE_FP_CONFIG, sizeof(prop.sp_fp_config), &prop.sp_fp_config, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get single-precision floating point capabilities for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_DOUBLE_FP_CONFIG, sizeof(prop.dp_fp_config), &prop.dp_fp_config, NULL); if (ciErrNum != CL_SUCCESS) { if ((ciErrNum == CL_INVALID_VALUE) || (ciErrNum == CL_INVALID_OPERATION)) { prop.dp_fp_config = 0; // Not supported by OpenCL 1.0 } else { sprintf(buf, "clGetDeviceInfo failed to get double-precision floating point capabilities for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_ENDIAN_LITTLE, sizeof(prop.little_endian), &prop.little_endian, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get little or big endian for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_EXECUTION_CAPABILITIES, sizeof(prop.exec_capab), &prop.exec_capab, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get execution capabilities for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_EXTENSIONS, sizeof(prop.extensions), prop.extensions, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get device extensions for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(prop.global_RAM), &prop.global_RAM, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get global RAM size for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(prop.local_RAM), &prop.local_RAM, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get local RAM size for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(prop.max_clock_freq), &prop.max_clock_freq, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get max number of cores for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(prop.max_cores), &prop.max_cores, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get local RAM size for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_VERSION, sizeof(prop.openCL_device_version), prop.openCL_device_version, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get OpenCL version supported by GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DRIVER_VERSION, sizeof(prop.openCL_driver_version), prop.openCL_driver_version, NULL); if (ciErrNum != CL_SUCCESS) { sprintf(buf, "clGetDeviceInfo failed to get OpenCL driver version for GPU %d", (int)device_index); warnings.push_back(buf); return ciErrNum; } return CL_SUCCESS; } void COPROCS::get( bool use_all, vector&descs, vector&warnings, vector& ignore_nvidia_dev, vector& ignore_ati_dev ) { #ifdef _WIN32 try { nvidia.get(use_all, descs, warnings, ignore_nvidia_dev); } catch (...) { warnings.push_back("Caught SIGSEGV in NVIDIA GPU detection"); } try { ati.get(use_all, descs, warnings, ignore_ati_dev); } catch (...) { warnings.push_back("Caught SIGSEGV in ATI GPU detection"); } try { get_opencl(use_all, warnings); } catch (...) { warnings.push_back("Caught SIGSEGV in OpenCL detection"); } #else void (*old_sig)(int) = signal(SIGSEGV, segv_handler); if (setjmp(resume)) { warnings.push_back("Caught SIGSEGV in NVIDIA GPU detection"); } else { nvidia.get(use_all, descs, warnings, ignore_nvidia_dev); } #ifndef __APPLE__ // ATI does not yet support CAL on Macs if (setjmp(resume)) { warnings.push_back("Caught SIGSEGV in ATI GPU detection"); } else { ati.get(use_all, descs, warnings, ignore_ati_dev); } #endif if (setjmp(resume)) { warnings.push_back("Caught SIGSEGV in OpenCL detection"); } else { get_opencl(use_all, warnings); } signal(SIGSEGV, old_sig); #endif } ////////////////// NVIDIA STARTS HERE ///////////////// // // return 1/-1/0 if device 1 is more/less/same capable than device 2. // factors (decreasing priority): // - compute capability // - software version // - memory // - speed // // If "loose", ignore FLOPS and tolerate small memory diff // int nvidia_compare(COPROC_NVIDIA& c1, COPROC_NVIDIA& c2, bool loose) { if (c1.prop.major > c2.prop.major) return 1; if (c1.prop.major < c2.prop.major) return -1; if (c1.prop.minor > c2.prop.minor) return 1; if (c1.prop.minor < c2.prop.minor) return -1; if (c1.cuda_version > c2.cuda_version) return 1; if (c1.cuda_version < c2.cuda_version) return -1; if (loose) { if (c1.prop.totalGlobalMem > 1.4*c2.prop.totalGlobalMem) return 1; if (c1.prop.totalGlobalMem < .7* c2.prop.totalGlobalMem) return -1; return 0; } if (c1.prop.totalGlobalMem > c2.prop.totalGlobalMem) return 1; if (c1.prop.totalGlobalMem < c2.prop.totalGlobalMem) return -1; double s1 = c1.peak_flops; double s2 = c2.peak_flops; if (s1 > s2) return 1; if (s1 < s2) return -1; return 0; } enum CUdevice_attribute_enum { CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7, CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9, CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10, CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11, CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12, CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17, CU_DEVICE_ATTRIBUTE_INTEGRATED = 18, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20 }; #ifdef _WIN32 typedef int (__stdcall *CUDA_GDC)(int *count); typedef int (__stdcall *CUDA_GDV)(int* version); typedef int (__stdcall *CUDA_GDI)(int); typedef int (__stdcall *CUDA_GDG)(int*, int); typedef int (__stdcall *CUDA_GDA)(int*, int, int); typedef int (__stdcall *CUDA_GDN)(char*, int, int); typedef int (__stdcall *CUDA_GDM)(unsigned int*, int); typedef int (__stdcall *CUDA_GDCC)(int*, int*, int); typedef int (__stdcall *CUDA_CC)(unsigned int*, unsigned int, unsigned int); typedef int (__stdcall *CUDA_CD)(unsigned int); typedef int (__stdcall *CUDA_MA)(unsigned int*, unsigned int); typedef int (__stdcall *CUDA_MF)(unsigned int); typedef int (__stdcall *CUDA_MGI)(unsigned int*, unsigned int*); CUDA_GDC __cuDeviceGetCount = NULL; CUDA_GDV __cuDriverGetVersion = NULL; CUDA_GDI __cuInit = NULL; CUDA_GDG __cuDeviceGet = NULL; CUDA_GDA __cuDeviceGetAttribute = NULL; CUDA_GDN __cuDeviceGetName = NULL; CUDA_GDM __cuDeviceTotalMem = NULL; CUDA_GDCC __cuDeviceComputeCapability = NULL; CUDA_CC __cuCtxCreate = NULL; CUDA_CD __cuCtxDestroy = NULL; CUDA_MA __cuMemAlloc = NULL; CUDA_MF __cuMemFree = NULL; CUDA_MGI __cuMemGetInfo = NULL; #else void* cudalib; int (*__cuInit)(int); int (*__cuDeviceGetCount)(int*); int (*__cuDriverGetVersion)(int*); int (*__cuDeviceGet)(int*, int); int (*__cuDeviceGetAttribute)(int*, int, int); int (*__cuDeviceGetName)(char*, int, int); int (*__cuDeviceTotalMem)(unsigned int*, int); int (*__cuDeviceComputeCapability)(int*, int*, int); int (*__cuCtxCreate)(unsigned int*, unsigned int, unsigned int); int (*__cuCtxDestroy)(unsigned int); int (*__cuMemAlloc)(unsigned int*, unsigned int); int (*__cuMemFree)(unsigned int); int (*__cuMemGetInfo)(unsigned int*, unsigned int*); #endif // NVIDIA interfaces are documented here: // http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/index.html void COPROC_NVIDIA::get( bool use_all, // if false, use only those equivalent to most capable vector& descs, vector& warnings, vector& ignore_devs ) { int count, retval; char buf[256]; #ifdef _WIN32 HMODULE cudalib = LoadLibrary("nvcuda.dll"); if (!cudalib) { warnings.push_back("No NVIDIA library found"); return; } __cuDeviceGetCount = (CUDA_GDC)GetProcAddress( cudalib, "cuDeviceGetCount" ); __cuDriverGetVersion = (CUDA_GDV)GetProcAddress( cudalib, "cuDriverGetVersion" ); __cuInit = (CUDA_GDI)GetProcAddress( cudalib, "cuInit" ); __cuDeviceGet = (CUDA_GDG)GetProcAddress( cudalib, "cuDeviceGet" ); __cuDeviceGetAttribute = (CUDA_GDA)GetProcAddress( cudalib, "cuDeviceGetAttribute" ); __cuDeviceGetName = (CUDA_GDN)GetProcAddress( cudalib, "cuDeviceGetName" ); __cuDeviceTotalMem = (CUDA_GDM)GetProcAddress( cudalib, "cuDeviceTotalMem" ); __cuDeviceComputeCapability = (CUDA_GDCC)GetProcAddress( cudalib, "cuDeviceComputeCapability" ); __cuCtxCreate = (CUDA_CC)GetProcAddress( cudalib, "cuCtxCreate" ); __cuCtxDestroy = (CUDA_CD)GetProcAddress( cudalib, "cuCtxDestroy" ); __cuMemAlloc = (CUDA_MA)GetProcAddress( cudalib, "cuMemAlloc" ); __cuMemFree = (CUDA_MF)GetProcAddress( cudalib, "cuMemFree" ); __cuMemGetInfo = (CUDA_MGI)GetProcAddress( cudalib, "cuMemGetInfo" ); #ifndef SIM NvAPI_Status nvapiStatus; NvDisplayHandle hDisplay; NV_DISPLAY_DRIVER_VERSION Version; memset(&Version, 0, sizeof(Version)); Version.version = NV_DISPLAY_DRIVER_VERSION_VER; NvAPI_Initialize(); for (int i=0; ; i++) { nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay); if (nvapiStatus != NVAPI_OK) break; nvapiStatus = NvAPI_GetDisplayDriverVersion(hDisplay, &Version); if (nvapiStatus == NVAPI_OK) break; } #endif #else #ifdef __APPLE__ cudalib = dlopen("/usr/local/cuda/lib/libcuda.dylib", RTLD_NOW); #else cudalib = dlopen("libcuda.so", RTLD_NOW); #endif if (!cudalib) { warnings.push_back("No NVIDIA library found"); return; } __cuDeviceGetCount = (int(*)(int*)) dlsym(cudalib, "cuDeviceGetCount"); __cuDriverGetVersion = (int(*)(int*)) dlsym( cudalib, "cuDriverGetVersion" ); __cuInit = (int(*)(int)) dlsym( cudalib, "cuInit" ); __cuDeviceGet = (int(*)(int*, int)) dlsym( cudalib, "cuDeviceGet" ); __cuDeviceGetAttribute = (int(*)(int*, int, int)) dlsym( cudalib, "cuDeviceGetAttribute" ); __cuDeviceGetName = (int(*)(char*, int, int)) dlsym( cudalib, "cuDeviceGetName" ); __cuDeviceTotalMem = (int(*)(unsigned int*, int)) dlsym( cudalib, "cuDeviceTotalMem" ); __cuDeviceComputeCapability = (int(*)(int*, int*, int)) dlsym( cudalib, "cuDeviceComputeCapability" ); __cuCtxCreate = (int(*)(unsigned int*, unsigned int, unsigned int)) dlsym( cudalib, "cuCtxCreate" ); __cuCtxDestroy = (int(*)(unsigned int)) dlsym( cudalib, "cuCtxDestroy" ); __cuMemAlloc = (int(*)(unsigned int*, unsigned int)) dlsym( cudalib, "cuMemAlloc" ); __cuMemFree = (int(*)(unsigned int)) dlsym( cudalib, "cuMemFree" ); __cuMemGetInfo = (int(*)(unsigned int*, unsigned int*)) dlsym( cudalib, "cuMemGetInfo" ); #endif if (!__cuDriverGetVersion) { warnings.push_back("cuDriverGetVersion() missing from NVIDIA library"); return; } if (!__cuInit) { warnings.push_back("cuInit() missing from NVIDIA library"); return; } if (!__cuDeviceGetCount) { warnings.push_back("cuDeviceGetCount() missing from NVIDIA library"); return; } if (!__cuDeviceGet) { warnings.push_back("cuDeviceGet() missing from NVIDIA library"); return; } if (!__cuDeviceGetAttribute) { warnings.push_back("cuDeviceGetAttribute() missing from NVIDIA library"); return; } if (!__cuDeviceTotalMem) { warnings.push_back("cuDeviceTotalMem() missing from NVIDIA library"); return; } if (!__cuDeviceComputeCapability) { warnings.push_back("cuDeviceComputeCapability() missing from NVIDIA library"); return; } if (!__cuCtxCreate) { warnings.push_back("cuCtxCreate() missing from NVIDIA library"); return; } if (!__cuCtxDestroy) { warnings.push_back("cuCtxDestroy() missing from NVIDIA library"); return; } if (!__cuMemAlloc) { warnings.push_back("cuMemAlloc() missing from NVIDIA library"); return; } if (!__cuMemFree) { warnings.push_back("cuMemFree() missing from NVIDIA library"); return; } if (!__cuMemGetInfo) { warnings.push_back("cuMemGetInfo() missing from NVIDIA library"); return; } retval = (*__cuInit)(0); if (retval) { sprintf(buf, "NVIDIA drivers present but no GPUs found"); warnings.push_back(buf); return; } int cuda_version; retval = (*__cuDriverGetVersion)(&cuda_version); if (retval) { sprintf(buf, "cuDriverGetVersion() returned %d", retval); warnings.push_back(buf); return; } vector gpus; retval = (*__cuDeviceGetCount)(&count); if (retval) { sprintf(buf, "cuDeviceGetCount() returned %d", retval); warnings.push_back(buf); return; } sprintf(buf, "NVIDIA library reports %d GPU%s", count, (count==1)?"":"s"); warnings.push_back(buf); int j; unsigned int i; COPROC_NVIDIA cc; string s; for (j=0; j 100) continue; // e.g. 9999 is an error #if defined(_WIN32) && !defined(SIM) cc.display_driver_version = Version.drvVersion; #else cc.display_driver_version = 0; #endif cc.have_cuda = true; cc.cuda_version = cuda_version; cc.device_num = j; cc.set_peak_flops(); gpus.push_back(cc); } if (!gpus.size()) { warnings.push_back("No CUDA-capable NVIDIA GPUs found"); return; } // identify the most capable non-ignored instance // COPROC_NVIDIA best; bool first = true; for (i=0; i 0) { best = gpus[i]; } } // see which other instances are equivalent, // and set the "count" and "device_nums" fields // best.count = 0; for (i=0; i 1.4*c2.attribs.localRAM) return 1; if (c1.attribs.localRAM< .7* c2.attribs.localRAM) return -1; return 0; } if (c1.attribs.localRAM > c2.attribs.localRAM) return 1; if (c1.attribs.localRAM < c2.attribs.localRAM) return -1; double s1 = c1.peak_flops; double s2 = c2.peak_flops; if (s1 > s2) return 1; if (s1 < s2) return -1; return 0; } #ifdef _WIN32 typedef int (__stdcall *ATI_ATTRIBS) (CALdeviceattribs *attribs, CALuint ordinal); typedef int (__stdcall *ATI_CLOSE)(void); typedef int (__stdcall *ATI_GDC)(CALuint *numDevices); typedef int (__stdcall *ATI_GDI)(void); typedef int (__stdcall *ATI_INFO) (CALdeviceinfo *info, CALuint ordinal); typedef int (__stdcall *ATI_VER) (CALuint *cal_major, CALuint *cal_minor, CALuint *cal_imp); typedef int (__stdcall *ATI_STATUS) (CALdevicestatus*, CALdevice); typedef int (__stdcall *ATI_DEVICEOPEN) (CALdevice*, CALuint); typedef int (__stdcall *ATI_DEVICECLOSE) (CALdevice); ATI_ATTRIBS __calDeviceGetAttribs = NULL; ATI_CLOSE __calShutdown = NULL; ATI_GDC __calDeviceGetCount = NULL; ATI_GDI __calInit = NULL; ATI_INFO __calDeviceGetInfo = NULL; ATI_VER __calGetVersion = NULL; ATI_STATUS __calDeviceGetStatus = NULL; ATI_DEVICEOPEN __calDeviceOpen = NULL; ATI_DEVICECLOSE __calDeviceClose = NULL; #else int (*__calInit)(); int (*__calGetVersion)(CALuint*, CALuint*, CALuint*); int (*__calDeviceGetCount)(CALuint*); int (*__calDeviceGetAttribs)(CALdeviceattribs*, CALuint); int (*__calShutdown)(); int (*__calDeviceGetInfo)(CALdeviceinfo*, CALuint); int (*__calDeviceGetStatus)(CALdevicestatus*, CALdevice); int (*__calDeviceOpen)(CALdevice*, CALuint); int (*__calDeviceClose)(CALdevice); #endif void COPROC_ATI::get( bool use_all, vector& descs, vector& warnings, vector& ignore_devs ) { CALuint numDevices, cal_major, cal_minor, cal_imp; CALdevice device; CALdeviceinfo info; CALdeviceattribs attribs; char buf[256]; bool amdrt_detected = false; bool atirt_detected = false; int retval; unsigned int i; attribs.struct_size = sizeof(CALdeviceattribs); device = 0; numDevices =0; #ifdef _WIN32 #if defined _M_X64 const char* atilib_name = "aticalrt64.dll"; const char* amdlib_name = "amdcalrt64.dll"; #else const char* atilib_name = "aticalrt.dll"; const char* amdlib_name = "amdcalrt.dll"; #endif HINSTANCE callib = LoadLibrary(atilib_name); if (callib) { atirt_detected = true; } else { callib = LoadLibrary(amdlib_name); if (callib) { amdrt_detected = true; } } if (!callib) { warnings.push_back("No ATI library found."); return; } __calInit = (ATI_GDI)GetProcAddress(callib, "calInit" ); __calGetVersion = (ATI_VER)GetProcAddress(callib, "calGetVersion" ); __calDeviceGetCount = (ATI_GDC)GetProcAddress(callib, "calDeviceGetCount" ); __calDeviceGetAttribs =(ATI_ATTRIBS)GetProcAddress(callib, "calDeviceGetAttribs" ); __calShutdown = (ATI_CLOSE)GetProcAddress(callib, "calShutdown" ); __calDeviceGetInfo = (ATI_INFO)GetProcAddress(callib, "calDeviceGetInfo" ); __calDeviceGetStatus = (ATI_STATUS)GetProcAddress(callib, "calDeviceGetStatus" ); __calDeviceOpen = (ATI_DEVICEOPEN)GetProcAddress(callib, "calDeviceOpen" ); __calDeviceClose = (ATI_DEVICECLOSE)GetProcAddress(callib, "calDeviceClose" ); #else void* callib; callib = dlopen("libaticalrt.so", RTLD_NOW); if (!callib) { warnings.push_back("No ATI library found"); return; } atirt_detected = true; __calInit = (int(*)()) dlsym(callib, "calInit"); __calGetVersion = (int(*)(CALuint*, CALuint*, CALuint*)) dlsym(callib, "calGetVersion"); __calDeviceGetCount = (int(*)(CALuint*)) dlsym(callib, "calDeviceGetCount"); __calDeviceGetAttribs = (int(*)(CALdeviceattribs*, CALuint)) dlsym(callib, "calDeviceGetAttribs"); __calShutdown = (int(*)()) dlsym(callib, "calShutdown"); __calDeviceGetInfo = (int(*)(CALdeviceinfo*, CALuint)) dlsym(callib, "calDeviceGetInfo"); __calDeviceGetStatus = (int(*)(CALdevicestatus*, CALdevice)) dlsym(callib, "calDeviceGetStatus"); __calDeviceOpen = (int(*)(CALdevice*, CALuint)) dlsym(callib, "calDeviceOpen"); __calDeviceClose = (int(*)(CALdevice)) dlsym(callib, "calDeviceClose"); #endif if (!__calInit) { warnings.push_back("calInit() missing from CAL library"); return; } if (!__calGetVersion) { warnings.push_back("calGetVersion() missing from CAL library"); return; } if (!__calDeviceGetCount) { warnings.push_back("calDeviceGetCount() missing from CAL library"); return; } if (!__calDeviceGetAttribs) { warnings.push_back("calDeviceGetAttribs() missing from CAL library"); return; } if (!__calDeviceGetInfo) { warnings.push_back("calDeviceGetInfo() missing from CAL library"); return; } if (!__calDeviceGetStatus) { warnings.push_back("calDeviceGetStatus() missing from CAL library"); return; } if (!__calDeviceOpen) { warnings.push_back("calDeviceOpen() missing from CAL library"); return; } if (!__calDeviceClose) { warnings.push_back("calDeviceClose() missing from CAL library"); return; } retval = (*__calInit)(); if (retval != CAL_RESULT_OK) { sprintf(buf, "calInit() returned %d", retval); warnings.push_back(buf); return; } retval = (*__calDeviceGetCount)(&numDevices); if (retval != CAL_RESULT_OK) { sprintf(buf, "calDeviceGetCount() returned %d", retval); warnings.push_back(buf); return; } retval = (*__calGetVersion)(&cal_major, &cal_minor, &cal_imp); if (retval != CAL_RESULT_OK) { sprintf(buf, "calGetVersion() returned %d", retval); warnings.push_back(buf); return; } if (!numDevices) { warnings.push_back("No usable CAL devices found"); return; } COPROC_ATI cc, cc2; string s, gpu_name; vector gpus; for (CALuint i=0; i 0) { best = gpus[i]; } } best.count = 0; for (i=0; i