// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . #include "client_types.h" #include "client_msgs.h" #ifdef SIM #include "sim.h" #else #include "client_state.h" #endif #include "work_fetch.h" using std::vector; RSC_WORK_FETCH cuda_work_fetch; RSC_WORK_FETCH cpu_work_fetch; WORK_FETCH work_fetch; #define MAX_BACKOFF_INTERVAL 86400 // if we ask a project for work for a resource and don't get it, // we do exponential backoff. // This constant is an upper bound for this. // E.g., if we need GPU work, we'll end up asking once a day, // so if the project develops a GPU app, // we'll find out about it within a day. static inline char* rsc_name(int t) { switch (t) { case RSC_TYPE_CPU: return "CPU"; case RSC_TYPE_CUDA: return "CUDA"; } return "Unknown"; } RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) { switch(rsc_type) { case RSC_TYPE_CUDA: return p->cuda_pwf; default: return p->cpu_pwf; } } bool RSC_WORK_FETCH::may_have_work(PROJECT* p) { RSC_PROJECT_WORK_FETCH& w = project_state(p); return (w.backoff_time < gstate.now); } bool RSC_PROJECT_WORK_FETCH::compute_may_have_work() { return (backoff_time < gstate.now); } void RSC_PROJECT_WORK_FETCH::rr_init() { may_have_work = compute_may_have_work(); } void RSC_WORK_FETCH::rr_init() { shortfall = 0; nidle_now = 0; total_fetchable_share = 0; total_runnable_share = 0; estimated_delay = 0; } void WORK_FETCH::rr_init() { cpu_work_fetch.rr_init(); if (coproc_cuda) { cuda_work_fetch.rr_init(); } for (unsigned int i=0; ipwf.can_fetch_work = p->pwf.compute_can_fetch_work(p); p->cpu_pwf.rr_init(); if (coproc_cuda) { p->cuda_pwf.rr_init(); } } } bool PROJECT_WORK_FETCH::compute_can_fetch_work(PROJECT* p) { if (p->non_cpu_intensive) return false; if (p->suspended_via_gui) return false; if (p->master_url_fetch_pending) return false; if (p->min_rpc_time > gstate.now) return false; if (p->dont_request_more_work) return false; if (p->some_download_stalled()) return false; if (p->some_result_suspended()) return false; if (p->nuploading_results > 2*gstate.ncpus) return false; return true; } void PROJECT_WORK_FETCH::reset(PROJECT* p) { p->cpu_pwf.reset(); p->cuda_pwf.reset(); } void RSC_WORK_FETCH::accumulate_shortfall(double d_time, double nused) { double idle = ninstances - nused; if (idle > 0) { shortfall += idle*d_time; } } // "estimated delay" is the interval for which we expect the // resource to be saturated. // void RSC_WORK_FETCH::update_estimated_delay(double dt, double nused) { if (nused >= ninstances) { estimated_delay = dt; } } bool RSC_PROJECT_WORK_FETCH::overworked() { return (debt < -2*gstate.global_prefs.cpu_scheduling_period()); } // choose the best project to ask for work for this resource. // If not urgent, don't choose an overworked project. // PROJECT* RSC_WORK_FETCH::choose_project(bool urgent) { PROJECT* pbest = NULL; for (unsigned i=0; ipwf.can_fetch_work) continue; if (!project_state(p).may_have_work) continue; if (!urgent && project_state(p).overworked()) { continue; } if (pbest) { if (pbest->pwf.overall_debt > p->pwf.overall_debt) { continue; } } pbest = p; } return pbest; } void WORK_FETCH::set_overall_debts() { for (unsigned i=0; ipwf.overall_debt = p->cpu_pwf.debt; if (coproc_cuda) { p->pwf.overall_debt += cuda_work_fetch.speed*p->cuda_pwf.debt; } } } void RSC_WORK_FETCH::print_state(char* name) { msg_printf(0, MSG_INFO, "[wfd] %s: shortfall %.2f nidle %.2f est. delay %.2f RS fetchable %.2f runnable %.2f", name, shortfall, nidle_now, estimated_delay, total_fetchable_share, total_runnable_share ); for (unsigned int i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& pwf = project_state(p); double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0; msg_printf(p, MSG_INFO, "[wfd] %s: runshare %.2f debt %.2f backoff dt %.2f int %.2f", name, pwf.runnable_share, pwf.debt, bt, pwf.backoff_interval ); } } void WORK_FETCH::print_state() { msg_printf(0, MSG_INFO, "[wfd] ------- start work fetch state -------"); cpu_work_fetch.print_state("CPU"); if (coproc_cuda) { cuda_work_fetch.print_state("CUDA"); } for (unsigned int i=0; inon_cpu_intensive) continue; msg_printf(p, MSG_INFO, "[wfd] overall_debt %f", p->pwf.overall_debt); } msg_printf(0, MSG_INFO, "[wfd] ------- end work fetch state -------"); } static void print_req(PROJECT* p) { msg_printf(p, MSG_INFO, "[wfd] request: CPU (%.2f sec, %d) CUDA (%.2f sec, %d)", cpu_work_fetch.req_secs, cpu_work_fetch.req_instances, cuda_work_fetch.req_secs, cuda_work_fetch.req_instances ); } void RSC_WORK_FETCH::clear_request() { req_secs = 0; req_instances = 0; } void WORK_FETCH::clear_request() { cpu_work_fetch.clear_request(); cuda_work_fetch.clear_request(); } // does the project have a downloading or runnable job? // static bool has_a_job(PROJECT* p) { for (unsigned int j=0; jproject != p) continue; if (rp->state() <= RESULT_FILES_DOWNLOADED) { return true; } } return false; } // we're going to contact this project; decide how much work to request // void WORK_FETCH::compute_work_request(PROJECT* p) { if (p->non_cpu_intensive) { clear_request(); if (!p->dont_request_more_work && !has_a_job(p)) { cpu_work_fetch.req_secs = 1; } return; } // check if this is the project we'd ask for work anyway // PROJECT* pbest = choose_project(); if (p == pbest) return; // if not, don't request any work // clear_request(); } // see if there's a fetchable non-CPU-intensive project without work // PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() { for (unsigned int i=0; inon_cpu_intensive) continue; if (!p->can_request_work()) continue; if (p->cpu_pwf.backoff_time > gstate.now) continue; if (has_a_job(p)) continue; clear_request(); cpu_work_fetch.req_secs = 1; return p; } return 0; } // choose a project to fetch work from, // and set the request fields of resource objects // PROJECT* WORK_FETCH::choose_project() { PROJECT* p = 0; p = non_cpu_intensive_project_needing_work(); if (p) return p; gstate.adjust_debts(); gstate.compute_nuploading_results(); gstate.rr_simulation(); set_overall_debts(); bool request_cpu = true; bool request_cuda = (coproc_cuda != NULL); // if a resource is currently idle, get work for it; // give GPU priority over CPU // if (coproc_cuda && cuda_work_fetch.nidle_now) { p = cuda_work_fetch.choose_project(true); if (p) { request_cpu = false; } } if (!p && cpu_work_fetch.nidle_now) { p = cpu_work_fetch.choose_project(true); if (p) { request_cuda = false; } } // if a resource has a shortfall, get work for it. // if (!p && coproc_cuda && cuda_work_fetch.shortfall) { p = cuda_work_fetch.choose_project(false); } if (!p && cpu_work_fetch.shortfall) { p = cpu_work_fetch.choose_project(false); } // decide how much work to request for each resource // clear_request(); if (p) { if (request_cpu) { cpu_work_fetch.set_request(p); } if (request_cuda) { cuda_work_fetch.set_request(p); } } if (coproc_cuda) { coproc_cuda->req_secs = cuda_work_fetch.req_secs; coproc_cuda->req_instances = cuda_work_fetch.req_instances; coproc_cuda->estimated_delay = cuda_work_fetch.estimated_delay; } if (log_flags.work_fetch_debug) { print_state(); if (p) { print_req(p); } else { msg_printf(0, MSG_INFO, "No project chosen for work fetch"); } } return p; } void RSC_WORK_FETCH::set_request(PROJECT* p) { if (!shortfall) return; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (p->duration_correction_factor < 0.02 || p->duration_correction_factor > 80.0) { // if project's DCF is too big or small, // its completion time estimates are useless; just ask for 1 second // req_secs = 1; } else { // otherwise ask for the max of the project's share and the shortfall // req_secs = gstate.work_buf_total()*w.fetchable_share; if (req_secs > shortfall) req_secs = shortfall; } req_instances = (int)ceil(w.fetchable_share*nidle_now); } void WORK_FETCH::accumulate_inst_sec(ACTIVE_TASK* atp, double dt) { APP_VERSION* avp = atp->result->avp; PROJECT* p = atp->result->project; double x = dt*avp->avg_ncpus; p->cpu_pwf.secs_this_debt_interval += x; cpu_work_fetch.secs_this_debt_interval += x; if (coproc_cuda) { x = dt*avp->ncudas; p->cuda_pwf.secs_this_debt_interval += x; cuda_work_fetch.secs_this_debt_interval += x; } } // update long-term debts for a resource. // void RSC_WORK_FETCH::update_debts() { unsigned int i; int neligible = 0; double ders = 0; PROJECT* p; // find the total resource share of eligible projects // for (i=0; iresource_share; neligible++; } } if (!neligible) { return; } double delta_sum = 0; for (i=0; iresource_share/ders; // the change to a project's debt is: // (how much it's owed) - (how much it got) // double delta = share_frac*secs_this_debt_interval - w.secs_this_debt_interval; w.debt += delta; delta_sum += delta; if (log_flags.debt_debug) { msg_printf(p, MSG_INFO, "[debt] %s debt %.2f delta %.2f share frac %.2f (%.2f/%.2f) secs %.2f rsc_secs %.2f", rsc_name(rsc_type), w.debt, delta, share_frac, p->resource_share, ders, secs_this_debt_interval, w.secs_this_debt_interval ); } } } // The sum of changes may be nonzero if // - the resource wasn't fully utilized during the debt interval // - it was overcommitted (e.g., CPU) // Add an offset so that the sum of changes is zero; // this keeps eligible projects from diverging from non-eligible ones. // double offset = delta_sum/neligible; if (log_flags.debt_debug) { msg_printf(0, MSG_INFO, "[debt] subtract %f for zero total change", offset); } double max_debt = 0; for (i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (w.debt_eligible(p)) { w.debt -= offset; } if (i) { if (w.debt > max_debt) max_debt = w.debt; } else { max_debt = w.debt; } } // Add an offset so max debt is zero across all projects. // This ensures that new projects start out debt-free. // if (log_flags.debt_debug) { msg_printf(0, MSG_INFO, "[debt] subtract %f for zero max debt", max_debt); } for (i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& w = project_state(p); w.debt -= max_debt; } } // find total and per-project resource shares for each resource // void WORK_FETCH::compute_shares() { unsigned int i; PROJECT* p; for (i=0; inon_cpu_intensive) continue; if (p->rr_sim_status.has_cpu_jobs) { cpu_work_fetch.total_runnable_share += p->resource_share; } if (p->rr_sim_status.has_cuda_jobs) { cuda_work_fetch.total_runnable_share += p->resource_share; } if (!p->pwf.can_fetch_work) continue; if (p->cpu_pwf.may_have_work) { cpu_work_fetch.total_fetchable_share += p->resource_share; } if (coproc_cuda && p->cuda_pwf.may_have_work) { cuda_work_fetch.total_fetchable_share += p->resource_share; } } for (i=0; inon_cpu_intensive) continue; if (p->rr_sim_status.has_cpu_jobs) { p->cpu_pwf.runnable_share = p->resource_share/cpu_work_fetch.total_runnable_share; } if (p->rr_sim_status.has_cuda_jobs) { p->cuda_pwf.runnable_share = p->resource_share/cuda_work_fetch.total_runnable_share; } if (!p->pwf.can_fetch_work) continue; if (p->cpu_pwf.may_have_work) { p->cpu_pwf.fetchable_share = p->resource_share/cpu_work_fetch.total_fetchable_share; } if (coproc_cuda && p->cuda_pwf.may_have_work) { p->cuda_pwf.fetchable_share = p->resource_share/cuda_work_fetch.total_fetchable_share; } } } // should this project be accumulating debt for this resource? // bool RSC_PROJECT_WORK_FETCH::debt_eligible(PROJECT* p) { if (p->non_cpu_intensive) return false; if (backoff_time > gstate.now) return false; if (backoff_interval == MAX_BACKOFF_INTERVAL) return false; if (p->suspended_via_gui) return false; if (p->dont_request_more_work) return false; return true; } void WORK_FETCH::write_request(FILE* f) { fprintf(f, " %f\n" " %f\n" " %d\n", cpu_work_fetch.req_secs, cpu_work_fetch.req_secs, cpu_work_fetch.req_instances ); } // we just got a scheduler reply with the given jobs; update backoffs // void WORK_FETCH::handle_reply(PROJECT* p, vector new_results) { unsigned int i; bool got_cpu = false, got_cuda = false; // if didn't get any jobs, back off on requested resource types // if (!new_results.size()) { if (cpu_work_fetch.req_secs) { p->cpu_pwf.backoff(p, "CPU"); } if (coproc_cuda && coproc_cuda->req_secs) { p->cuda_pwf.backoff(p, "CUDA"); } return; } // if we did get jobs, clear backoff on resource types // for (i=0; iavp->ncudas) got_cuda = true; else got_cpu = true; } if (got_cpu) p->cpu_pwf.clear_backoff(); if (got_cuda) p->cuda_pwf.clear_backoff(); } void WORK_FETCH::set_initial_work_request() { cpu_work_fetch.req_secs = 1; if (coproc_cuda) { coproc_cuda->req_secs = 1; } } // called once, at client startup // void WORK_FETCH::init() { cpu_work_fetch.rsc_type = RSC_TYPE_CPU; cpu_work_fetch.ninstances = gstate.ncpus; if (coproc_cuda) { cuda_work_fetch.rsc_type = RSC_TYPE_CUDA; cuda_work_fetch.ninstances = coproc_cuda->count; cuda_work_fetch.speed = coproc_cuda->flops_estimate()/gstate.host_info.p_fpops; } } void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, char* name) { if (backoff_interval) { backoff_interval *= 2; if (backoff_interval > MAX_BACKOFF_INTERVAL) backoff_interval = MAX_BACKOFF_INTERVAL; } else { backoff_interval = 60; } backoff_time = gstate.now + backoff_interval; if (log_flags.work_fetch_debug) { msg_printf(p, MSG_INFO, "[wfd] backing off %s %f", name, backoff_interval ); } } //////////////////////// void CLIENT_STATE::compute_nuploading_results() { unsigned int i; for (i=0; inuploading_results = 0; } for (i=0; istate() == RESULT_FILES_UPLOADING) { rp->project->nuploading_results++; } } } bool PROJECT::runnable() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->runnable()) return true; } return false; } bool PROJECT::downloading() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->downloading()) return true; } return false; } bool PROJECT::some_result_suspended() { unsigned int i; for (i=0; iproject != this) continue; if (rp->suspended_via_gui) return true; } return false; } bool PROJECT::can_request_work() { if (suspended_via_gui) return false; if (master_url_fetch_pending) return false; if (min_rpc_time > gstate.now) return false; if (dont_request_more_work) return false; return true; } bool PROJECT::potentially_runnable() { if (runnable()) return true; if (can_request_work()) return true; if (downloading()) return true; return false; } bool PROJECT::nearly_runnable() { if (runnable()) return true; if (downloading()) return true; return false; } bool RESULT::runnable() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() != RESULT_FILES_DOWNLOADED) return false; return true; } bool RESULT::nearly_runnable() { return runnable() || downloading(); } // Return true if the result is waiting for its files to download, // and nothing prevents this from happening soon // bool RESULT::downloading() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() > RESULT_FILES_DOWNLOADING) return false; return true; } double RESULT::estimated_duration_uncorrected() { return wup->rsc_fpops_est/avp->flops; } // estimate how long a result will take on this host // #ifdef SIM double RESULT::estimated_duration(bool for_work_fetch) { SIM_PROJECT* spp = (SIM_PROJECT*)project; if (dual_dcf && for_work_fetch && spp->completions_ratio_mean) { return estimated_duration_uncorrected()*spp->completions_ratio_mean; } return estimated_duration_uncorrected()*project->duration_correction_factor; } #else double RESULT::estimated_duration(bool) { return estimated_duration_uncorrected()*project->duration_correction_factor; } #endif double RESULT::estimated_time_remaining(bool for_work_fetch) { if (computing_done()) return 0; ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this); if (atp) { return atp->est_time_to_completion(for_work_fetch); } return estimated_duration(for_work_fetch); } // Returns the estimated CPU time to completion (in seconds) of this task. // Compute this as a weighted average of estimates based on // 1) the workunit's flops count // 2) the current reported CPU time and fraction done // double ACTIVE_TASK::est_time_to_completion(bool for_work_fetch) { if (fraction_done >= 1) return 0; double wu_est = result->estimated_duration(for_work_fetch); if (fraction_done <= 0) return wu_est; double frac_est = (elapsed_time / fraction_done) - elapsed_time; double fraction_left = 1-fraction_done; double wu_weight = fraction_left * fraction_left; double fd_weight = 1 - wu_weight; double x = fd_weight*frac_est + wu_weight*fraction_left*wu_est; return x; } // the fraction of time a given CPU is working for BOINC // double CLIENT_STATE::overall_cpu_frac() { double running_frac = time_stats.on_frac * time_stats.active_frac; if (running_frac < 0.01) running_frac = 0.01; if (running_frac > 1) running_frac = 1; return running_frac; } // called when benchmarks change // void CLIENT_STATE::scale_duration_correction_factors(double factor) { if (factor <= 0) return; for (unsigned int i=0; iduration_correction_factor *= factor; } if (log_flags.cpu_sched_debug) { msg_printf(NULL, MSG_INFO, "[cpu_sched_debug] scaling duration correction factors by %f", factor ); } } // Choose a new host CPID. // If using account manager, do scheduler RPCs // to all acct-mgr-attached projects to propagate the CPID // void CLIENT_STATE::generate_new_host_cpid() { host_info.generate_host_cpid(); for (unsigned int i=0; iattached_via_acct_mgr) { projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ; projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID"); } } }