// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . #include "util.h" #include "client_types.h" #include "client_msgs.h" #ifdef SIM #include "sim.h" #else #include "client_state.h" #endif #include "work_fetch.h" using std::vector; RSC_WORK_FETCH cuda_work_fetch; RSC_WORK_FETCH cpu_work_fetch; WORK_FETCH work_fetch; #define MIN_BACKOFF_INTERVAL 60 #define MAX_BACKOFF_INTERVAL 86400 // if we ask a project for work for a resource and don't get it, // we do exponential backoff. // This constant is an upper bound for this. // E.g., if we need GPU work, we'll end up asking once a day, // so if the project develops a GPU app, // we'll find out about it within a day. static inline const char* rsc_name(int t) { switch (t) { case RSC_TYPE_CPU: return "CPU"; case RSC_TYPE_CUDA: return "CUDA"; } return "Unknown"; } RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) { switch(rsc_type) { case RSC_TYPE_CUDA: return p->cuda_pwf; default: return p->cpu_pwf; } } bool RSC_WORK_FETCH::may_have_work(PROJECT* p) { RSC_PROJECT_WORK_FETCH& w = project_state(p); return (w.backoff_time < gstate.now); } bool RSC_PROJECT_WORK_FETCH::compute_may_have_work() { return (backoff_time < gstate.now); } void RSC_PROJECT_WORK_FETCH::rr_init() { may_have_work = compute_may_have_work(); runnable_share = 0; fetchable_share = 0; has_runnable_jobs = false; sim_nused = 0; deadlines_missed = 0; } void RSC_WORK_FETCH::rr_init() { shortfall = 0; nidle_now = 0; sim_nused = 0; total_fetchable_share = 0; total_runnable_share = 0; deadline_missed_instances = 0; estimated_delay = 0; pending.clear(); } void WORK_FETCH::rr_init() { cpu_work_fetch.rr_init(); if (coproc_cuda) { cuda_work_fetch.rr_init(); } for (unsigned int i=0; ipwf.can_fetch_work = p->pwf.compute_can_fetch_work(p); p->pwf.has_runnable_jobs = false; p->cpu_pwf.rr_init(); if (coproc_cuda) { p->cuda_pwf.rr_init(); } } } bool PROJECT_WORK_FETCH::compute_can_fetch_work(PROJECT* p) { if (p->non_cpu_intensive) return false; if (p->suspended_via_gui) return false; if (p->master_url_fetch_pending) return false; if (p->min_rpc_time > gstate.now) return false; if (p->dont_request_more_work) return false; if (p->some_download_stalled()) return false; if (p->some_result_suspended()) return false; if (p->nuploading_results > 2*gstate.ncpus) return false; return true; } void PROJECT_WORK_FETCH::reset(PROJECT* p) { p->cpu_pwf.reset(); p->cuda_pwf.reset(); } void RSC_WORK_FETCH::accumulate_shortfall(double d_time) { double idle = ninstances - sim_nused; if (idle > 1e-6) { shortfall += idle*d_time; } #if 0 msg_printf(0, MSG_INFO, "accum shortf (%s): idle %f dt %f sf %f", rsc_name(rsc_type), idle, d_time, shortfall ); #endif } // "estimated delay" is the interval for which we expect the // resource to be saturated. // void RSC_WORK_FETCH::update_estimated_delay(double dt) { double idle = ninstances - sim_nused; if (idle < 1e-6) { estimated_delay = dt; } #if 0 msg_printf(0, MSG_INFO, "est delay (%s): used %e instances %d dt %f est delay %f", rsc_name(rsc_type), sim_nused, ninstances, dt, estimated_delay ); #endif } // see if the project's debt is beyond what would normally happen; // if so we conclude that it had a long job that ran in EDF mode; // avoid asking it for work unless absolutely necessary. // bool RSC_PROJECT_WORK_FETCH::overworked() { double x = gstate.work_buf_total() + gstate.global_prefs.cpu_scheduling_period(); if (x < 86400) x = 86400; return (debt < -x); } #define FETCH_IF_IDLE_INSTANCE 0 // If resource has an idle instance, // get work for it from the project with greatest LTD, // even if it's overworked. #define FETCH_IF_MAJOR_SHORTFALL 1 // If resource is saturated for less than work_buf_min(), // get work for it from the project with greatest LTD, // even if it's overworked. #define FETCH_IF_MINOR_SHORTFALL 2 // If resource is saturated for less than work_buf_total(), // get work for it from the non-overworked project with greatest LTD. #define FETCH_IF_PROJECT_STARVED 3 // If any project is not overworked and has no runnable jobs // (for any resource, not just this one) // get work from the one with greatest LTD. // Choose the best project to ask for work for this resource, // given the specific criterion // PROJECT* RSC_WORK_FETCH::choose_project(int criterion) { double req; PROJECT* pbest = NULL; switch (criterion) { case FETCH_IF_IDLE_INSTANCE: if (nidle_now == 0) return NULL; break; case FETCH_IF_MAJOR_SHORTFALL: if (estimated_delay > gstate.work_buf_min()) return NULL; break; case FETCH_IF_MINOR_SHORTFALL: if (estimated_delay > gstate.work_buf_total()) return NULL; break; case FETCH_IF_PROJECT_STARVED: if (deadline_missed_instances >= ninstances) return NULL; break; } for (unsigned i=0; ipwf.can_fetch_work) continue; if (!project_state(p).may_have_work) continue; RSC_PROJECT_WORK_FETCH& rpwf = project_state(p); switch (criterion) { case FETCH_IF_MINOR_SHORTFALL: if (rpwf.overworked()) continue; break; case FETCH_IF_PROJECT_STARVED: if (rpwf.overworked()) continue; if (p->pwf.has_runnable_jobs) continue; break; } if (pbest) { if (pbest->pwf.overall_debt > p->pwf.overall_debt) { continue; } } pbest = p; } if (!pbest) return NULL; // decide how much work to request from each resource // work_fetch.clear_request(); switch (criterion) { case FETCH_IF_IDLE_INSTANCE: if (log_flags.work_fetch_debug) { msg_printf(pbest, MSG_INFO, "chosen: %s idle instance", rsc_name(rsc_type) ); } req = share_request(pbest); if (req > shortfall) req = shortfall; set_request(pbest, req); break; case FETCH_IF_MAJOR_SHORTFALL: if (log_flags.work_fetch_debug) { msg_printf(pbest, MSG_INFO, "chosen: %s major shortfall", rsc_name(rsc_type) ); } req = share_request(pbest); if (req > shortfall) req = shortfall; set_request(pbest, req); break; case FETCH_IF_MINOR_SHORTFALL: if (log_flags.work_fetch_debug) { msg_printf(pbest, MSG_INFO, "chosen: %s minor shortfall", rsc_name(rsc_type) ); } work_fetch.set_shortfall_requests(pbest); break; case FETCH_IF_PROJECT_STARVED: if (log_flags.work_fetch_debug) { msg_printf(pbest, MSG_INFO, "chosen: %s starved", rsc_name(rsc_type) ); } req = share_request(pbest); set_request(pbest, req); break; } return pbest; } void WORK_FETCH::set_shortfall_requests(PROJECT* p) { cpu_work_fetch.set_shortfall_request(p); if (coproc_cuda) { cuda_work_fetch.set_shortfall_request(p); } } void RSC_WORK_FETCH::set_shortfall_request(PROJECT* p) { if (!shortfall) return; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (!w.may_have_work) return; if (w.overworked()) return; set_request(p, shortfall); } void WORK_FETCH::set_overall_debts() { for (unsigned i=0; ipwf.overall_debt = p->cpu_pwf.debt; if (coproc_cuda) { p->pwf.overall_debt += cuda_work_fetch.speed*p->cuda_pwf.debt; } } } void WORK_FETCH::zero_debts() { for (unsigned i=0; icpu_pwf.debt = 0; if (coproc_cuda) { p->cuda_pwf.debt = 0; } } } void RSC_WORK_FETCH::print_state(const char* name) { msg_printf(0, MSG_INFO, "[wfd] %s: shortfall %.2f nidle %.2f est. delay %.2f RS fetchable %.2f runnable %.2f", name, shortfall, nidle_now, estimated_delay, total_fetchable_share, total_runnable_share ); for (unsigned int i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& pwf = project_state(p); double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0; msg_printf(p, MSG_INFO, "[wfd] %s: fetch share %.2f debt %.2f backoff dt %.2f int %.2f%s%s%s%s%s", name, pwf.fetchable_share, pwf.debt, bt, pwf.backoff_interval, p->suspended_via_gui?" (susp via GUI)":"", p->master_url_fetch_pending?" (master fetch pending)":"", p->min_rpc_time > gstate.now?" (comm deferred)":"", p->dont_request_more_work?" (no new tasks)":"", pwf.overworked()?" (overworked)":"" ); } } void WORK_FETCH::print_state() { msg_printf(0, MSG_INFO, "[wfd] ------- start work fetch state -------"); msg_printf(0, MSG_INFO, "[wfd] target work buffer: %.2f + %.2f sec", gstate.work_buf_min(), gstate.work_buf_additional() ); cpu_work_fetch.print_state("CPU"); if (coproc_cuda) { cuda_work_fetch.print_state("CUDA"); } for (unsigned int i=0; inon_cpu_intensive) continue; msg_printf(p, MSG_INFO, "[wfd] overall_debt %.0f", p->pwf.overall_debt); } msg_printf(0, MSG_INFO, "[wfd] ------- end work fetch state -------"); } static void print_req(PROJECT* p) { msg_printf(p, MSG_INFO, "[wfd] request: CPU (%.2f sec, %d) CUDA (%.2f sec, %d)", cpu_work_fetch.req_secs, cpu_work_fetch.req_instances, cuda_work_fetch.req_secs, cuda_work_fetch.req_instances ); } void RSC_WORK_FETCH::clear_request() { req_secs = 0; req_instances = 0; } void WORK_FETCH::clear_request() { cpu_work_fetch.clear_request(); cuda_work_fetch.clear_request(); } // does the project have a downloading or runnable job? // static bool has_a_job(PROJECT* p) { for (unsigned int j=0; jproject != p) continue; if (rp->state() <= RESULT_FILES_DOWNLOADED) { return true; } } return false; } // we're going to contact this project reasons other than work fetch; // decide if we should piggy-back a work fetch request. // void WORK_FETCH::compute_work_request(PROJECT* p) { clear_request(); if (p->dont_request_more_work) return; if (p->non_cpu_intensive) { if (!has_a_job(p)) { cpu_work_fetch.req_secs = 1; } return; } // See if this is the project we'd ask for work anyway. // Temporarily clear resource backoffs, // since we're going to contact this project in any case. // double cpu_save = p->cpu_pwf.backoff_time; double cuda_save = p->cuda_pwf.backoff_time; p->cpu_pwf.backoff_time = 0; p->cuda_pwf.backoff_time = 0; PROJECT* pbest = choose_project(); p->cpu_pwf.backoff_time = cpu_save; p->cuda_pwf.backoff_time = cuda_save; if (p == pbest) return; // if not, don't request any work // clear_request(); } // see if there's a fetchable non-CPU-intensive project without work // PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() { for (unsigned int i=0; inon_cpu_intensive) continue; if (!p->can_request_work()) continue; if (p->cpu_pwf.backoff_time > gstate.now) continue; if (has_a_job(p)) continue; clear_request(); cpu_work_fetch.req_secs = 1; return p; } return 0; } // choose a project to fetch work from, // and set the request fields of resource objects // PROJECT* WORK_FETCH::choose_project() { PROJECT* p = 0; p = non_cpu_intensive_project_needing_work(); if (p) return p; gstate.compute_nuploading_results(); gstate.rr_simulation(); set_overall_debts(); if (coproc_cuda) { p = cuda_work_fetch.choose_project(FETCH_IF_IDLE_INSTANCE); } if (!p) { p = cpu_work_fetch.choose_project(FETCH_IF_IDLE_INSTANCE); } if (!p && coproc_cuda) { p = cuda_work_fetch.choose_project(FETCH_IF_MAJOR_SHORTFALL); } if (!p) { p = cpu_work_fetch.choose_project(FETCH_IF_MAJOR_SHORTFALL); } if (!p && coproc_cuda) { p = cuda_work_fetch.choose_project(FETCH_IF_MINOR_SHORTFALL); } if (!p) { p = cpu_work_fetch.choose_project(FETCH_IF_MINOR_SHORTFALL); } if (!p && coproc_cuda) { p = cuda_work_fetch.choose_project(FETCH_IF_PROJECT_STARVED); } if (!p) { p = cpu_work_fetch.choose_project(FETCH_IF_PROJECT_STARVED); } if (log_flags.work_fetch_debug) { print_state(); if (p) { print_req(p); } else { msg_printf(0, MSG_INFO, "[wfd] No project chosen for work fetch"); } } return p; } double RSC_WORK_FETCH::share_request(PROJECT* p) { double dcf = p->duration_correction_factor; if (dcf < 0.02 || dcf > 80.0) { // if project's DCF is too big or small, // its completion time estimates are useless; just ask for 1 second // return 1; } else { // otherwise ask for the project's share // RSC_PROJECT_WORK_FETCH& w = project_state(p); return gstate.work_buf_total()*w.fetchable_share; } } void RSC_WORK_FETCH::set_request(PROJECT* p, double r) { RSC_PROJECT_WORK_FETCH& w = project_state(p); req_secs = r; req_instances = (int)ceil(w.fetchable_share*nidle_now); } void WORK_FETCH::accumulate_inst_sec(ACTIVE_TASK* atp, double dt) { APP_VERSION* avp = atp->result->avp; PROJECT* p = atp->result->project; double x = dt*avp->avg_ncpus; p->cpu_pwf.secs_this_debt_interval += x; cpu_work_fetch.secs_this_debt_interval += x; if (coproc_cuda) { x = dt*avp->ncudas; p->cuda_pwf.secs_this_debt_interval += x; cuda_work_fetch.secs_this_debt_interval += x; } } // update long-term debts for a resource. // void RSC_WORK_FETCH::update_debts() { unsigned int i; int neligible = 0; double ders = 0; PROJECT* p; // find the total resource share of eligible projects // for (i=0; iresource_share; neligible++; } } if (!neligible) { if (log_flags.debt_debug) { msg_printf(0, MSG_INFO, "[debt] %s: no eligible projects", rsc_name(rsc_type) ); } return; } double max_debt=0; bool first = true; for (i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (w.debt_eligible(p, *this)) { double share_frac = p->resource_share/ders; // the change to a project's debt is: // (how much it's owed) - (how much it got) // double delta = share_frac*secs_this_debt_interval - w.secs_this_debt_interval; w.debt += delta; if (log_flags.debt_debug) { msg_printf(p, MSG_INFO, "[debt] %s debt %.2f delta %.2f share frac %.2f (%.2f/%.2f) secs %.2f rsc_secs %.2f", rsc_name(rsc_type), w.debt, delta, share_frac, p->resource_share, ders, secs_this_debt_interval, w.secs_this_debt_interval ); } if (first) { max_debt = w.debt; first = false; } else { if (w.debt > max_debt) { max_debt = w.debt; } } } else { if (log_flags.debt_debug) { msg_printf(p, MSG_INFO, "[debt] %s ineligible; debt %.2f", rsc_name(rsc_type), w.debt ); } } } // The net change may be // - positive if the resource wasn't fully utilized during the debt interval // - negative it was overcommitted (e.g., CPU) // We need to keep eligible projects from diverging from non-eligible ones; // also, if all the debts are large negative we need to gradually // shift them towards zero. // To do this, we add an offset as follows: // delta_limit is the largest rate at which any project's debt // could increase or decrease. // If the largest debt is close to zero (relative to delta_limit) // than add an offset that will bring it exactly to zero. // Otherwise add an offset of 2*delta_limit, // which will gradually bring all the debts towards zero // // The policy of keeping the max debt at zero is important; // it means that new projects will begin in parity with high-debt project, // and won't wait for months to get work. // double offset; double delta_limit = secs_this_debt_interval*ninstances; if (max_debt > -2*delta_limit) { offset = max_debt?-max_debt:0; // avoid -0 } else { offset = 2*delta_limit; } if (log_flags.debt_debug) { msg_printf(0, MSG_INFO, "[debt] %s debt: adding offset %.2f", rsc_name(rsc_type), offset ); } for (i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (w.debt_eligible(p, *this)) { w.debt += offset; } } } // find total and per-project resource shares for each resource // void WORK_FETCH::compute_shares() { unsigned int i; PROJECT* p; for (i=0; inon_cpu_intensive) continue; if (p->cpu_pwf.has_runnable_jobs) { cpu_work_fetch.total_runnable_share += p->resource_share; } if (p->cuda_pwf.has_runnable_jobs) { cuda_work_fetch.total_runnable_share += p->resource_share; } if (!p->pwf.can_fetch_work) continue; if (p->cpu_pwf.may_have_work) { cpu_work_fetch.total_fetchable_share += p->resource_share; } if (coproc_cuda && p->cuda_pwf.may_have_work) { cuda_work_fetch.total_fetchable_share += p->resource_share; } } for (i=0; inon_cpu_intensive) continue; if (p->cpu_pwf.has_runnable_jobs) { p->cpu_pwf.runnable_share = p->resource_share/cpu_work_fetch.total_runnable_share; } if (p->cuda_pwf.has_runnable_jobs) { p->cuda_pwf.runnable_share = p->resource_share/cuda_work_fetch.total_runnable_share; } if (!p->pwf.can_fetch_work) continue; if (p->cpu_pwf.may_have_work) { p->cpu_pwf.fetchable_share = p->resource_share/cpu_work_fetch.total_fetchable_share; } if (coproc_cuda && p->cuda_pwf.may_have_work) { p->cuda_pwf.fetchable_share = p->resource_share/cuda_work_fetch.total_fetchable_share; } } } // should this project be accumulating debt for this resource? // bool RSC_PROJECT_WORK_FETCH::debt_eligible(PROJECT* p, RSC_WORK_FETCH& rwf) { if (p->non_cpu_intensive) return false; if (p->suspended_via_gui) return false; if (p->dont_request_more_work) return false; if (has_runnable_jobs) return true; if (backoff_time > gstate.now) return false; // The last time we asked for work we didn't get any, // but it's been a while since we asked. // In this case, accumulate debt until we reach (around) zero, then stop. // if (backoff_interval == MAX_BACKOFF_INTERVAL) { if (debt > -rwf.ninstances*DEBT_ADJUST_PERIOD) { return false; } } if (p->min_rpc_time > gstate.now) return false; return true; } void WORK_FETCH::write_request(FILE* f) { fprintf(f, " %f\n" " %f\n" " %d\n" " %f\n", cpu_work_fetch.req_secs, cpu_work_fetch.req_secs, cpu_work_fetch.req_instances, cpu_work_fetch.req_secs?cpu_work_fetch.estimated_delay:0 ); } // we just got a scheduler reply with the given jobs; update backoffs // void WORK_FETCH::handle_reply(PROJECT* p, vector new_results) { unsigned int i; bool got_cpu = false, got_cuda = false; // if didn't get any jobs, back off on requested resource types // if (!new_results.size()) { // but not if RPC was requested by project // if (p->sched_rpc_pending != RPC_REASON_PROJECT_REQ) { if (cpu_work_fetch.req_secs) { p->cpu_pwf.backoff(p, "CPU"); } if (coproc_cuda && coproc_cuda->req_secs) { p->cuda_pwf.backoff(p, "CUDA"); } } return; } // if we did get jobs, clear backoff on resource types // for (i=0; iavp->ncudas) got_cuda = true; else got_cpu = true; } if (got_cpu) p->cpu_pwf.clear_backoff(); if (got_cuda) p->cuda_pwf.clear_backoff(); } // set up for initial RPC. // arrange to always get one job, even if we don't need it or can't handle it. // (this is probably what user wants) // void WORK_FETCH::set_initial_work_request() { cpu_work_fetch.req_secs = 1; cpu_work_fetch.req_instances = 0; cpu_work_fetch.estimated_delay = 0; if (coproc_cuda) { cuda_work_fetch.req_secs = 1; cuda_work_fetch.req_instances = 0; cuda_work_fetch.estimated_delay = 0; } } // called once, at client startup // void WORK_FETCH::init() { cpu_work_fetch.rsc_type = RSC_TYPE_CPU; cpu_work_fetch.ninstances = gstate.ncpus; if (coproc_cuda) { cuda_work_fetch.rsc_type = RSC_TYPE_CUDA; cuda_work_fetch.ninstances = coproc_cuda->count; cuda_work_fetch.speed = coproc_cuda->flops_estimate()/gstate.host_info.p_fpops; } if (config.zero_debts) { zero_debts(); } } void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, const char* name) { if (backoff_interval) { backoff_interval *= 2; if (backoff_interval > MAX_BACKOFF_INTERVAL) backoff_interval = MAX_BACKOFF_INTERVAL; } else { backoff_interval = MIN_BACKOFF_INTERVAL; } double x = drand()*backoff_interval; backoff_time = gstate.now + x; if (log_flags.work_fetch_debug) { msg_printf(p, MSG_INFO, "[wfd] backing off %s %.0f sec", name, x ); } } //////////////////////// void CLIENT_STATE::compute_nuploading_results() { unsigned int i; for (i=0; inuploading_results = 0; } for (i=0; istate() == RESULT_FILES_UPLOADING) { rp->project->nuploading_results++; } } } bool PROJECT::runnable() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->runnable()) return true; } return false; } bool PROJECT::downloading() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->downloading()) return true; } return false; } bool PROJECT::some_result_suspended() { unsigned int i; for (i=0; iproject != this) continue; if (rp->suspended_via_gui) return true; } return false; } bool PROJECT::can_request_work() { if (suspended_via_gui) return false; if (master_url_fetch_pending) return false; if (min_rpc_time > gstate.now) return false; if (dont_request_more_work) return false; if (gstate.in_abort_sequence) return false; return true; } bool PROJECT::potentially_runnable() { if (runnable()) return true; if (can_request_work()) return true; if (downloading()) return true; return false; } bool PROJECT::nearly_runnable() { if (runnable()) return true; if (downloading()) return true; return false; } bool RESULT::runnable() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() != RESULT_FILES_DOWNLOADED) return false; return true; } bool RESULT::nearly_runnable() { return runnable() || downloading(); } // Return true if the result is waiting for its files to download, // and nothing prevents this from happening soon // bool RESULT::downloading() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() > RESULT_FILES_DOWNLOADING) return false; return true; } double RESULT::estimated_duration_uncorrected() { return wup->rsc_fpops_est/avp->flops; } // estimate how long a result will take on this host // #ifdef SIM double RESULT::estimated_duration(bool for_work_fetch) { SIM_PROJECT* spp = (SIM_PROJECT*)project; if (dual_dcf && for_work_fetch && spp->completions_ratio_mean) { return estimated_duration_uncorrected()*spp->completions_ratio_mean; } return estimated_duration_uncorrected()*project->duration_correction_factor; } #else double RESULT::estimated_duration(bool) { return estimated_duration_uncorrected()*project->duration_correction_factor; } #endif double RESULT::estimated_time_remaining(bool for_work_fetch) { if (computing_done()) return 0; ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this); if (atp) { return atp->est_time_to_completion(for_work_fetch); } return estimated_duration(for_work_fetch); } // Returns the estimated CPU time to completion (in seconds) of this task. // Compute this as a weighted average of estimates based on // 1) the workunit's flops count // 2) the current reported CPU time and fraction done // double ACTIVE_TASK::est_time_to_completion(bool for_work_fetch) { if (fraction_done >= 1) return 0; double wu_est = result->estimated_duration(for_work_fetch); if (fraction_done <= 0) return wu_est; double frac_est = (elapsed_time / fraction_done) - elapsed_time; double fraction_left = 1-fraction_done; double wu_weight = fraction_left * fraction_left; double fd_weight = 1 - wu_weight; double x = fd_weight*frac_est + wu_weight*fraction_left*wu_est; return x; } // the fraction of time BOINC is processing // double CLIENT_STATE::overall_cpu_frac() { double running_frac = time_stats.on_frac * time_stats.active_frac; if (running_frac < 0.01) running_frac = 0.01; if (running_frac > 1) running_frac = 1; return running_frac; } // called when benchmarks change // void CLIENT_STATE::scale_duration_correction_factors(double factor) { if (factor <= 0) return; for (unsigned int i=0; iduration_correction_factor *= factor; } if (log_flags.dcf_debug) { msg_printf(NULL, MSG_INFO, "[dcf] scaling all duration correction factors by %f", factor ); } } // Choose a new host CPID. // If using account manager, do scheduler RPCs // to all acct-mgr-attached projects to propagate the CPID // void CLIENT_STATE::generate_new_host_cpid() { host_info.generate_host_cpid(); for (unsigned int i=0; iattached_via_acct_mgr) { projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ; projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID"); } } }