// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2020 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
#include
#ifdef _WIN32
#include "diagnostics.h"
#include "boinc_win.h"
#include "win_util.h"
#else
#include "config.h"
#include
#include
#include
#include
#include
#if HAVE_CSIGNAL
#include
#elif HAVE_SYS_SIGNAL_H
#include
#elif HAVE_SIGNAL_H
#include
#endif
#endif
#include "common_defs.h"
#include "procinfo.h"
#include "str_util.h"
#include "util.h"
#include "proc_control.h"
using std::vector;
//#define DEBUG
#ifdef DEBUG
#include
#endif
static void get_descendants_aux(PROC_MAP& pm, int pid, vector& pids) {
PROC_MAP::iterator i = pm.find(pid);
if (i == pm.end()) return;
PROCINFO& p = i->second;
if (p.scanned) return; // avoid infinite recursion
p.scanned = true;
for (unsigned int j=0; j& pids) {
int retval;
PROC_MAP pm;
pids.clear();
retval = procinfo_setup(pm);
if (retval) return;
get_descendants_aux(pm, pid, pids);
#ifdef DEBUG
fprintf(stderr, "descendants of %d:\n", pid);
for (unsigned int i=0; ipids, DWORD calling_thread_id, bool resume, bool check_exempt
) {
HANDLE threads, thread;
THREADENTRY32 te = {0};
int retval = 0;
DWORD n;
static vector suspended_threads;
#ifdef DEBUG
fprintf(stderr, "start: check_exempt %d %s\n", check_exempt, precision_time_to_string(dtime()));
fprintf(stderr, "%s processes", resume?"resume":"suspend");
for (unsigned int i=0; i& pids) {
int status;
for (unsigned int i=0; i= 0) {
return true;
}
}
return false;
}
#endif
void kill_all(vector& pids) {
for (unsigned int i=0; i descendants;
// on Win, kill descendants directly
//
get_descendants(GetCurrentProcessId(), descendants);
kill_all(descendants);
}
#else
// Same, but if child_pid is nonzero,
// give it a chance to exit gracefully on Unix
//
void kill_descendants(int child_pid) {
vector descendants;
// on Unix, ask main process nicely.
// it descendants still exist after 10 sec, use the nuclear option
//
get_descendants(getpid(), descendants);
if (child_pid) {
::kill(child_pid, SIGTERM);
for (int i=0; i<10; i++) {
if (!any_process_exists(descendants)) {
return;
}
boinc_sleep(1);
}
kill_all(descendants);
// kill any processes that might have been created
// in the last 10 secs
get_descendants(getpid(), descendants);
}
kill_all(descendants);
}
#endif
// suspend/resume the descendants of the calling process.
// Unix version lets you choose the stop signal:
// SIGSTOP (the default) can't be caught.
// SIGTSTP can be caught, but it has no effect for processes without a TTY.
// So it's useful only for programs that are wrappers of some sort;
// they must catch and handle it.
//
#ifdef _WIN32
void suspend_or_resume_descendants(bool resume) {
vector descendants;
int pid = GetCurrentProcessId();
get_descendants(pid, descendants);
suspend_or_resume_threads(descendants, 0, resume, false);
}
#else
void suspend_or_resume_descendants(bool resume, bool use_tstp) {
vector descendants;
int pid = getpid();
get_descendants(pid, descendants);
for (unsigned int i=0; i pids;
pids.push_back(pid);
suspend_or_resume_threads(pids, 0, resume, false);
}
#else
void suspend_or_resume_process(int pid, bool resume, bool use_tstp) {
::kill(pid, resume?SIGCONT:(use_tstp?SIGTSTP:SIGSTOP));
}
#endif
// return OS-specific value associated with priority code
//
int process_priority_value(int priority) {
#ifdef _WIN32
switch (priority) {
case PROCESS_PRIORITY_LOWEST: return IDLE_PRIORITY_CLASS;
case PROCESS_PRIORITY_LOW: return BELOW_NORMAL_PRIORITY_CLASS;
case PROCESS_PRIORITY_NORMAL: return NORMAL_PRIORITY_CLASS;
case PROCESS_PRIORITY_HIGH: return ABOVE_NORMAL_PRIORITY_CLASS;
case PROCESS_PRIORITY_HIGHEST: return HIGH_PRIORITY_CLASS;
}
return 0;
#else
switch (priority) {
case PROCESS_PRIORITY_LOWEST: return PROCESS_IDLE_PRIORITY;
case PROCESS_PRIORITY_LOW: return PROCESS_MEDIUM_PRIORITY;
case PROCESS_PRIORITY_NORMAL: return PROCESS_NORMAL_PRIORITY;
case PROCESS_PRIORITY_HIGH: return PROCESS_ABOVE_NORMAL_PRIORITY;
case PROCESS_PRIORITY_HIGHEST: return PROCESS_HIGH_PRIORITY;
}
return 0;
#endif
}