// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // The BOINC API and runtime system. // // Notes: // 1) Thread structure: // Sequential apps // Unix // getting CPU time and suspend/resume have to be done // in the worker thread, so we use a SIGALRM signal handler. // However, many library functions and system calls // are not "asynch signal safe": see, e.g. // http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03 // (e.g. sprintf() in a signal handler hangs Mac OS X) // so we do as little as possible in the signal handler, // and do the rest in a separate "timer thread". // Win // the timer thread does everything // Multi-thread apps: // Unix: // fork // original process runs timer loop: // handle suspend/resume/quit, heartbeat (use signals) // new process call boinc_init_options() with flags to // send status messages and handle checkpoint stuff, // and returns from boinc_init_parallel() // NOTE: THIS DOESN'T RESPECT CRITICAL SECTIONS. // NEED TO MASK SIGNALS IN CHILD DURING CRITICAL SECTIONS // Win: // like sequential case, except suspend/resume must enumerate // all threads (except timer) and suspend/resume them all // // 2) All variables that are accessed by two threads (i.e. worker and timer) // MUST be declared volatile. // // 3) For compatibility with C, we use int instead of bool various places // // 4) We must periodically check that the client is still alive and exit if not. // Originally this was done using heartbeat msgs from client. // This is unreliable, e.g. if the client is blocked for a long time. // As of Oct 11 2012 we use a different mechanism: // the client passes its PID and we periodically check whether it exists. // But we need to support the heartbeat mechanism also for compatibility. // // Terminology: // The processing of a result can be divided // into multiple "episodes" (executions of the app), // each of which resumes from the checkpointed state of the previous episode. // Unless otherwise noted, "CPU time" refers to the sum over all episodes // (not counting the part after the last checkpoint in an episode). #if defined(_WIN32) && !defined(__STDWX_H__) && !defined(_BOINC_WIN_) && !defined(_AFX_STDAFX_H_) #include "boinc_win.h" #endif #ifdef _WIN32 #include "version.h" #include "win_util.h" #else #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __EMX__ #include #endif #endif #include "app_ipc.h" #include "common_defs.h" #include "diagnostics.h" #include "error_numbers.h" #include "filesys.h" #include "mem_usage.h" #include "parse.h" #include "proc_control.h" #include "shmem.h" #include "str_replace.h" #include "str_util.h" #include "util.h" #include "boinc_api.h" using std::vector; //#define DEBUG_BOINC_API #ifdef __APPLE__ #include "mac_backtrace.h" #define GETRUSAGE_IN_TIMER_THREAD // call getrusage() in the timer thread, // rather than in the worker thread's signal handler // (which can cause crashes on Mac) // If you want, you can set this for Linux too: // CPPFLAGS=-DGETRUSAGE_IN_TIMER_THREAD #endif const char* api_version = "API_VERSION_" PACKAGE_VERSION; static APP_INIT_DATA aid; static FILE_LOCK file_lock; APP_CLIENT_SHM* app_client_shm = 0; static volatile int time_until_checkpoint; // time until enable checkpoint static volatile double fraction_done; static volatile double last_checkpoint_cpu_time; static volatile bool ready_to_checkpoint = false; static volatile int in_critical_section = 0; static volatile double last_wu_cpu_time; static volatile bool standalone = false; static volatile double initial_wu_cpu_time; static volatile bool have_new_trickle_up = false; static volatile bool have_trickle_down = true; // on first call, scan slot dir for msgs static volatile int heartbeat_giveup_count; // interrupt count value at which to give up on core client #ifdef _WIN32 static volatile int nrunning_ticks = 0; #endif static volatile int interrupt_count = 0; // number of timer interrupts // used to measure elapsed time in a way that's // not affected by user changing system clock, // and doesn't have big jump after hibernation static volatile int running_interrupt_count = 0; // number of timer interrupts while not suspended. // Used to compute elapsed time static volatile bool finishing; // used for worker/timer synch during boinc_finish(); static int want_network = 0; static int have_network = 1; static double bytes_sent = 0; static double bytes_received = 0; bool boinc_disable_timer_thread = false; // simulate unresponsive app by setting to true (debugging) static FUNC_PTR timer_callback = 0; char web_graphics_url[256]; bool send_web_graphics_url = false; char remote_desktop_addr[256]; bool send_remote_desktop_addr = false; int app_min_checkpoint_period = 0; // min checkpoint period requested by app #define TIMER_PERIOD 0.1 // Sleep interval for timer thread; // determines max rate of handling messages from client. // Unix: period of worker-thread timer interrupts. #define TIMERS_PER_SEC 10 // reciprocal of TIMER_PERIOD // This determines the resolution of fraction done and CPU time reporting // to the client, and of checkpoint enabling. #define HEARTBEAT_GIVEUP_SECS 30 #define HEARTBEAT_GIVEUP_COUNT ((int)(HEARTBEAT_GIVEUP_SECS/TIMER_PERIOD)) // quit if no heartbeat from core in this #interrupts #define LOCKFILE_TIMEOUT_PERIOD 35 // quit if we cannot aquire slot lock file in this #secs after startup #ifdef _WIN32 static HANDLE hSharedMem; HANDLE worker_thread_handle; // used to suspend worker thread, and to measure its CPU time DWORD timer_thread_id; #else static volatile bool worker_thread_exit_flag = false; static volatile int worker_thread_exit_status; // the above are used by the timer thread to tell // the worker thread to exit static pthread_t worker_thread_handle; static pthread_t timer_thread_handle; #ifndef GETRUSAGE_IN_TIMER_THREAD static struct rusage worker_thread_ru; #endif #endif static BOINC_OPTIONS options; volatile BOINC_STATUS boinc_status; // vars related to intermediate file upload struct UPLOAD_FILE_STATUS { std::string name; int status; }; static bool have_new_upload_file; static std::vector upload_file_status; static int resume_activities(); static void boinc_exit(int); static void block_sigalrm(); static int start_worker_signals(); char* boinc_msg_prefix(char* sbuf, int len) { char buf[256]; struct tm tm; struct tm *tmp = &tm; int n; time_t x = time(0); if (x == -1) { strlcpy(sbuf, "time() failed", len); return sbuf; } #ifdef _WIN32 #ifdef __MINGW32__ if ((tmp = localtime(&x)) == NULL) { #else if (localtime_s(&tm, &x) == EINVAL) { #endif #else if (localtime_r(&x, &tm) == NULL) { #endif strlcpy(sbuf, "localtime() failed", len); return sbuf; } if (strftime(buf, sizeof(buf)-1, "%H:%M:%S", tmp) == 0) { strlcpy(sbuf, "strftime() failed", len); return sbuf; } #ifdef _WIN32 n = _snprintf(sbuf, len, "%s (%d):", buf, GetCurrentProcessId()); #else n = snprintf(sbuf, len, "%s (%d):", buf, getpid()); #endif if (n < 0) { strlcpy(sbuf, "sprintf() failed", len); return sbuf; } sbuf[len-1] = 0; // just in case return sbuf; } static int setup_shared_mem() { char buf[256]; if (standalone) { fprintf(stderr, "%s Standalone mode, so not using shared memory.\n", boinc_msg_prefix(buf, sizeof(buf)) ); return 0; } app_client_shm = new APP_CLIENT_SHM; #ifdef _WIN32 sprintf(buf, "%s%s", SHM_PREFIX, aid.shmem_seg_name); hSharedMem = attach_shmem(buf, (void**)&app_client_shm->shm); if (hSharedMem == NULL) { delete app_client_shm; app_client_shm = NULL; } #else #ifdef __EMX__ if (attach_shmem(aid.shmem_seg_name, (void**)&app_client_shm->shm)) { delete app_client_shm; app_client_shm = NULL; } #else if (aid.shmem_seg_name == -1) { // Version 6 Unix/Linux/Mac client if (attach_shmem_mmap(MMAPPED_FILE_NAME, (void**)&app_client_shm->shm)) { delete app_client_shm; app_client_shm = NULL; } } else { // version 5 Unix/Linux/Mac client if (attach_shmem(aid.shmem_seg_name, (void**)&app_client_shm->shm)) { delete app_client_shm; app_client_shm = NULL; } } #endif #endif // ! _WIN32 if (app_client_shm == NULL) return -1; return 0; } // a mutex for data structures shared between time and worker threads // #ifdef _WIN32 static HANDLE mutex; static void init_mutex() { mutex = CreateMutex(NULL, FALSE, NULL); } static inline void acquire_mutex() { WaitForSingleObject(mutex, INFINITE); } static inline void release_mutex() { ReleaseMutex(mutex); } #else pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static void init_mutex() {} static inline void acquire_mutex() { #ifdef DEBUG_BOINC_API char buf[256]; fprintf(stderr, "%s acquiring mutex\n", boinc_msg_prefix(buf, sizeof(buf)) ); #endif pthread_mutex_lock(&mutex); } static inline void release_mutex() { #ifdef DEBUG_BOINC_API char buf[256]; fprintf(stderr, "%s releasing mutex\n", boinc_msg_prefix(buf, sizeof(buf)) ); #endif pthread_mutex_unlock(&mutex); } #endif // Return CPU time of process. // double boinc_worker_thread_cpu_time() { double cpu; #ifdef _WIN32 int retval; retval = boinc_process_cpu_time(GetCurrentProcess(), cpu); if (retval) { cpu = nrunning_ticks * TIMER_PERIOD; // for Win9x } #else #ifdef GETRUSAGE_IN_TIMER_THREAD struct rusage worker_thread_ru; getrusage(RUSAGE_SELF, &worker_thread_ru); #endif cpu = (double)worker_thread_ru.ru_utime.tv_sec + (((double)worker_thread_ru.ru_utime.tv_usec)/1000000.0); cpu += (double)worker_thread_ru.ru_stime.tv_sec + (((double)worker_thread_ru.ru_stime.tv_usec)/1000000.0); #endif return cpu; } // Communicate to the core client (via shared mem) // the current CPU time and fraction done. // NOTE: various bugs could cause some of these FP numbers to be enormous, // possibly overflowing the buffer. // So use strlcat() instead of strcat() // // This is called only from the timer thread (so no need for synch) // static bool update_app_progress(double cpu_t, double cp_cpu_t) { char msg_buf[MSG_CHANNEL_SIZE], buf[256]; if (standalone) return true; sprintf(msg_buf, "%e\n" "%e\n", cpu_t, cp_cpu_t ); if (want_network) { strlcat(msg_buf, "1\n", sizeof(msg_buf)); } if (fraction_done >= 0) { double range = aid.fraction_done_end - aid.fraction_done_start; double fdone = aid.fraction_done_start + fraction_done*range; sprintf(buf, "%e\n", fdone); strlcat(msg_buf, buf, sizeof(msg_buf)); } if (bytes_sent) { sprintf(buf, "%f\n", bytes_sent); strlcat(msg_buf, buf, sizeof(msg_buf)); } if (bytes_received) { sprintf(buf, "%f\n", bytes_received); strlcat(msg_buf, buf, sizeof(msg_buf)); } return app_client_shm->shm->app_status.send_msg(msg_buf); } static void handle_heartbeat_msg() { char buf[MSG_CHANNEL_SIZE]; double dtemp; bool btemp; if (app_client_shm->shm->heartbeat.get_msg(buf)) { boinc_status.network_suspended = false; if (match_tag(buf, "")) { heartbeat_giveup_count = interrupt_count + HEARTBEAT_GIVEUP_COUNT; } if (parse_double(buf, "", dtemp)) { boinc_status.working_set_size = dtemp; } if (parse_double(buf, "", dtemp)) { boinc_status.max_working_set_size = dtemp; } if (parse_bool(buf, "suspend_network", btemp)) { boinc_status.network_suspended = btemp; } } } static bool client_dead() { char buf[256]; bool dead; if (aid.client_pid) { // check every 10 sec // if (interrupt_count%(TIMERS_PER_SEC*10)) return false; #ifdef _WIN32 HANDLE h = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, aid.client_pid); // If the process exists but is running under a different user account (boinc_master) // then the handle returned is NULL and GetLastError() returns ERROR_ACCESS_DENIED. // if ((h == NULL) && (GetLastError() != ERROR_ACCESS_DENIED)) { dead = true; } else { if (h) CloseHandle(h); dead = false; } #else int retval = kill(aid.client_pid, 0); dead = (retval == -1 && errno == ESRCH); #endif } else { dead = (interrupt_count > heartbeat_giveup_count); } if (dead) { boinc_msg_prefix(buf, sizeof(buf)); fputs(buf, stderr); // don't use fprintf() here if (aid.client_pid) { fputs(" BOINC client no longer exists - exiting\n", stderr); } else { fputs(" No heartbeat from client for 30 sec - exiting\n", stderr); } return true; } return false; } #ifndef _WIN32 // For multithread apps on Unix, the main process executes the following. // static void parallel_master(int child_pid) { char buf[MSG_CHANNEL_SIZE]; int exit_status; while (1) { boinc_sleep(TIMER_PERIOD); interrupt_count++; if (app_client_shm) { handle_heartbeat_msg(); if (app_client_shm->shm->process_control_request.get_msg(buf)) { if (match_tag(buf, "")) { kill(child_pid, SIGSTOP); } else if (match_tag(buf, "")) { kill(child_pid, SIGCONT); } else if (match_tag(buf, "")) { kill(child_pid, SIGKILL); exit(0); } else if (match_tag(buf, "")) { kill(child_pid, SIGKILL); exit(EXIT_ABORTED_BY_CLIENT); } } if (client_dead()) { kill(child_pid, SIGKILL); exit(0); } } if (interrupt_count % TIMERS_PER_SEC) continue; if (waitpid(child_pid, &exit_status, WNOHANG) == child_pid) break; } boinc_finish(exit_status); } #endif int boinc_init() { int retval; if (!diagnostics_is_initialized()) { retval = boinc_init_diagnostics(BOINC_DIAG_DEFAULTS); if (retval) return retval; } boinc_options_defaults(options); return boinc_init_options(&options); } int boinc_init_options(BOINC_OPTIONS* opt) { int retval; #ifndef _WIN32 if (options.multi_thread) { int child_pid = fork(); if (child_pid) { // original process - master // options.send_status_msgs = false; retval = boinc_init_options_general(options); if (retval) { kill(child_pid, SIGKILL); return retval; } parallel_master(child_pid); } // new process - slave // options.main_program = false; options.check_heartbeat = false; options.handle_process_control = false; options.multi_thread = false; options.multi_process = false; return boinc_init_options(&options); } #endif retval = boinc_init_options_general(*opt); if (retval) return retval; retval = start_timer_thread(); if (retval) return retval; #ifndef _WIN32 retval = start_worker_signals(); if (retval) return retval; #endif return 0; } int boinc_init_parallel() { BOINC_OPTIONS _options; boinc_options_defaults(_options); _options.multi_thread = true; return boinc_init_options(&_options); } static int min_checkpoint_period() { int x = (int)aid.checkpoint_period; if (app_min_checkpoint_period > x) { x = app_min_checkpoint_period; } if (x == 0) x = DEFAULT_CHECKPOINT_PERIOD; return x; } int boinc_set_min_checkpoint_period(int x) { app_min_checkpoint_period = x; if (x > time_until_checkpoint) { time_until_checkpoint = x; } return 0; } int boinc_init_options_general(BOINC_OPTIONS& opt) { int retval; char buf[256]; options = opt; if (!diagnostics_is_initialized()) { retval = boinc_init_diagnostics(BOINC_DIAG_DEFAULTS); if (retval) return retval; } boinc_status.no_heartbeat = false; boinc_status.suspended = false; boinc_status.quit_request = false; boinc_status.abort_request = false; if (options.main_program) { // make sure we're the only app running in this slot // retval = file_lock.lock(LOCKFILE); if (retval) { // give any previous occupant a chance to timeout and exit // fprintf(stderr, "%s Can't acquire lockfile (%d) - waiting %ds\n", boinc_msg_prefix(buf, sizeof(buf)), retval, LOCKFILE_TIMEOUT_PERIOD ); boinc_sleep(LOCKFILE_TIMEOUT_PERIOD); retval = file_lock.lock(LOCKFILE); } if (retval) { fprintf(stderr, "%s Can't acquire lockfile (%d) - exiting\n", boinc_msg_prefix(buf, sizeof(buf)), retval ); #ifdef _WIN32 char buf2[256]; windows_format_error_string(GetLastError(), buf2, 256); fprintf(stderr, "%s Error: %s\n", boinc_msg_prefix(buf, sizeof(buf)), buf2); #endif // if we can't acquire the lock file there must be // another app instance running in this slot. // If we exit(0), the client will keep restarting us. // Instead, tell the client not to restart us for 10 min. // boinc_temporary_exit(600, "Waiting to acquire lock"); } } retval = boinc_parse_init_data_file(); if (retval) { standalone = true; } else { retval = setup_shared_mem(); if (retval) { fprintf(stderr, "%s Can't set up shared mem: %d. Will run in standalone mode.\n", boinc_msg_prefix(buf, sizeof(buf)), retval ); standalone = true; } } // copy the WU CPU time to a separate var, // since we may reread the structure again later. // initial_wu_cpu_time = aid.wu_cpu_time; fraction_done = -1; time_until_checkpoint = min_checkpoint_period(); last_checkpoint_cpu_time = aid.wu_cpu_time; last_wu_cpu_time = aid.wu_cpu_time; if (standalone) { options.check_heartbeat = false; } heartbeat_giveup_count = interrupt_count + HEARTBEAT_GIVEUP_COUNT; init_mutex(); return 0; } int boinc_get_status(BOINC_STATUS *s) { s->no_heartbeat = boinc_status.no_heartbeat; s->suspended = boinc_status.suspended; s->quit_request = boinc_status.quit_request; s->reread_init_data_file = boinc_status.reread_init_data_file; s->abort_request = boinc_status.abort_request; s->working_set_size = boinc_status.working_set_size; s->max_working_set_size = boinc_status.max_working_set_size; s->network_suspended = boinc_status.network_suspended; return 0; } // if we have any new trickle-ups or file upload requests, // send a message describing them // static void send_trickle_up_msg() { char buf[MSG_CHANNEL_SIZE]; BOINCINFO("Sending Trickle Up Message"); if (standalone) return; strcpy(buf, ""); if (have_new_trickle_up) { strcat(buf, "\n"); } if (have_new_upload_file) { strcat(buf, "\n"); } if (strlen(buf)) { if (app_client_shm->shm->trickle_up.send_msg(buf)) { have_new_trickle_up = false; have_new_upload_file = false; } } } // NOTE: a non-zero status tells the core client that we're exiting with // an "unrecoverable error", which will be reported back to server. // A zero exit-status tells the client we've successfully finished the result. // int boinc_finish(int status) { char buf[256]; fraction_done = 1; fprintf(stderr, "%s called boinc_finish\n", boinc_msg_prefix(buf, sizeof(buf)) ); finishing = true; boinc_sleep(2.0); // let the timer thread send final messages boinc_disable_timer_thread = true; // then disable it if (options.main_program && status==0) { FILE* f = fopen(BOINC_FINISH_CALLED_FILE, "w"); if (f) fclose(f); } boinc_exit(status); return 0; // never reached } int boinc_temporary_exit(int delay, const char* reason) { FILE* f = fopen(TEMPORARY_EXIT_FILE, "w"); if (!f) { return ERR_FOPEN; } fprintf(f, "%d\n", delay); if (reason) { fprintf(f, "%s\n", reason); } fclose(f); boinc_exit(0); return 0; } // unlock the lockfile and call the appropriate exit function // Unix: called only from the worker thread. // Win: called from the worker or timer thread. // // make static eventually // void boinc_exit(int status) { int retval; char buf[256]; if (options.main_program && file_lock.locked) { retval = file_lock.unlock(LOCKFILE); if (retval) { #ifdef _WIN32 windows_format_error_string(GetLastError(), buf, 256); fprintf(stderr, "%s Can't unlock lockfile (%d): %s\n", boinc_msg_prefix(buf, sizeof(buf)), retval, buf ); #else fprintf(stderr, "%s Can't unlock lockfile (%d)\n", boinc_msg_prefix(buf, sizeof(buf)), retval ); perror("file unlock failed"); #endif } } // kill any processes the app may have created // if (options.multi_process) { kill_descendants(); } boinc_finish_diag(); // various platforms have problems shutting down a process // while other threads are still executing, // or triggering endless exit()/atexit() loops. // BOINCINFO("Exit Status: %d", status); fflush(NULL); #if defined(_WIN32) // Halt all the threads and clean up. TerminateProcess(GetCurrentProcess(), status); // note: the above CAN return! Sleep(1000); DebugBreak(); #elif defined(__APPLE_CC__) // stops endless exit()/atexit() loops. _exit(status); #else // arrange to exit with given status even if errors happen // in atexit() functions // set_signal_exit_code(status); exit(status); #endif } void boinc_network_usage(double sent, double received) { bytes_sent = sent; bytes_received = received; } int boinc_is_standalone() { if (standalone) return 1; return 0; } static void exit_from_timer_thread(int status) { #ifdef DEBUG_BOINC_API char buf[256]; fprintf(stderr, "%s exit_from_timer_thread(%d) called\n", boinc_msg_prefix(buf, sizeof(buf)), status ); #endif #ifdef _WIN32 // TerminateProcess() doesn't work if there are suspended threads? if (boinc_status.suspended) { resume_activities(); } // this seems to work OK on Windows // boinc_exit(status); #else // but on Unix there are synchronization problems; // set a flag telling the worker thread to exit // worker_thread_exit_status = status; worker_thread_exit_flag = true; pthread_exit(NULL); #endif } // parse the init data file. // This is done at startup, and also if a "reread prefs" message is received // int boinc_parse_init_data_file() { FILE* f; int retval; char buf[256]; if (aid.project_preferences) { free(aid.project_preferences); aid.project_preferences = NULL; } aid.clear(); aid.checkpoint_period = DEFAULT_CHECKPOINT_PERIOD; if (!boinc_file_exists(INIT_DATA_FILE)) { fprintf(stderr, "%s Can't open init data file - running in standalone mode\n", boinc_msg_prefix(buf, sizeof(buf)) ); return ERR_FOPEN; } f = boinc_fopen(INIT_DATA_FILE, "r"); retval = parse_init_data_file(f, aid); fclose(f); if (retval) { fprintf(stderr, "%s Can't parse init data file - running in standalone mode\n", boinc_msg_prefix(buf, sizeof(buf)) ); return retval; } return 0; } int boinc_report_app_status_aux( double cpu_time, double checkpoint_cpu_time, double _fraction_done, int other_pid, double _bytes_sent, double _bytes_received ) { char msg_buf[MSG_CHANNEL_SIZE], buf[1024]; if (standalone) return 0; sprintf(msg_buf, "%e\n" "%e\n" "%e\n", cpu_time, checkpoint_cpu_time, _fraction_done ); if (other_pid) { sprintf(buf, "%d\n", other_pid); strcat(msg_buf, buf); } if (_bytes_sent) { sprintf(buf, "%f\n", _bytes_sent); strcat(msg_buf, buf); } if (_bytes_received) { sprintf(buf, "%f\n", _bytes_received); strcat(msg_buf, buf); } if (app_client_shm->shm->app_status.send_msg(msg_buf)) { return 0; } return ERR_WRITE; } int boinc_report_app_status( double cpu_time, double checkpoint_cpu_time, double _fraction_done ){ return boinc_report_app_status_aux( cpu_time, checkpoint_cpu_time, _fraction_done, 0, 0, 0 ); } int boinc_get_init_data_p(APP_INIT_DATA* app_init_data) { *app_init_data = aid; return 0; } int boinc_get_init_data(APP_INIT_DATA& app_init_data) { app_init_data = aid; return 0; } int boinc_wu_cpu_time(double& cpu_t) { cpu_t = last_wu_cpu_time; return 0; } // Suspend this job. // Can be called from either timer or worker thread. // static int suspend_activities(bool called_from_worker) { #ifdef DEBUG_BOINC_API char log_buf[256]; fprintf(stderr, "%s suspend_activities() called from %s\n", boinc_msg_prefix(log_buf, sizeof(log_buf)), called_from_worker?"worker thread":"timer thread" ); #endif #ifdef _WIN32 static vector pids; if (options.multi_thread) { if (pids.size() == 0) { pids.push_back(GetCurrentProcessId()); } suspend_or_resume_threads(pids, timer_thread_id, false, true); } else { SuspendThread(worker_thread_handle); } #else if (options.multi_process) { suspend_or_resume_descendants(false); } // if called from worker thread, sleep until suspension is over // if called from time thread, don't need to do anything; // suspension is done by signal handler in worker thread // if (called_from_worker) { while (boinc_status.suspended) { sleep(1); } } #endif return 0; } int resume_activities() { #ifdef DEBUG_BOINC_API char log_buf[256]; fprintf(stderr, "%s resume_activities()\n", boinc_msg_prefix(log_buf, sizeof(log_buf)) ); #endif #ifdef _WIN32 static vector pids; if (options.multi_thread) { if (pids.size() == 0) pids.push_back(GetCurrentProcessId()); suspend_or_resume_threads(pids, timer_thread_id, true, true); } else { ResumeThread(worker_thread_handle); } #else if (options.multi_process) { suspend_or_resume_descendants(true); } #endif return 0; } static void handle_upload_file_status() { char path[MAXPATHLEN], buf[256], log_name[256], *p, log_buf[256]; std::string filename; int status; relative_to_absolute("", path); DirScanner dirscan(path); while (dirscan.scan(filename)) { strlcpy(buf, filename.c_str(), sizeof(buf)); if (strstr(buf, UPLOAD_FILE_STATUS_PREFIX) != buf) continue; strlcpy(log_name, buf+strlen(UPLOAD_FILE_STATUS_PREFIX), sizeof(log_name)); FILE* f = boinc_fopen(filename.c_str(), "r"); if (!f) { fprintf(stderr, "%s handle_file_upload_status: can't open %s\n", boinc_msg_prefix(buf, sizeof(buf)), filename.c_str() ); continue; } p = fgets(buf, sizeof(buf), f); fclose(f); if (p && parse_int(buf, "", status)) { UPLOAD_FILE_STATUS uf; uf.name = std::string(log_name); uf.status = status; upload_file_status.push_back(uf); } else { fprintf(stderr, "%s handle_upload_file_status: can't parse %s\n", boinc_msg_prefix(log_buf, sizeof(log_buf)), buf ); } } } // handle trickle and file upload messages // static void handle_trickle_down_msg() { char buf[MSG_CHANNEL_SIZE]; if (app_client_shm->shm->trickle_down.get_msg(buf)) { BOINCINFO("Received Trickle Down Message"); if (match_tag(buf, "")) { have_trickle_down = true; } if (match_tag(buf, "")) { handle_upload_file_status(); } } } // This flag is set of we get a suspend request while in a critical section, // and options.direct_process_action is set. // As soon as we're not in the critical section we'll do the suspend. // static bool suspend_request = false; // runs in timer thread // static void handle_process_control_msg() { char buf[MSG_CHANNEL_SIZE]; if (app_client_shm->shm->process_control_request.get_msg(buf)) { acquire_mutex(); #ifdef DEBUG_BOINC_API char log_buf[256]; fprintf(stderr, "%s got process control msg %s\n", boinc_msg_prefix(log_buf, sizeof(log_buf)), buf ); #endif if (match_tag(buf, "")) { BOINCINFO("Received suspend message"); if (options.direct_process_action) { if (in_critical_section) { suspend_request = true; } else { boinc_status.suspended = true; suspend_request = false; suspend_activities(false); } } else { boinc_status.suspended = true; } } if (match_tag(buf, "")) { BOINCINFO("Received resume message"); if (options.direct_process_action) { if (boinc_status.suspended) { resume_activities(); } else if (suspend_request) { suspend_request = false; } } boinc_status.suspended = false; } if (boinc_status.quit_request || match_tag(buf, "")) { BOINCINFO("Received quit message"); boinc_status.quit_request = true; if (!in_critical_section && options.direct_process_action) { exit_from_timer_thread(0); } } if (boinc_status.abort_request || match_tag(buf, "")) { BOINCINFO("Received abort message"); boinc_status.abort_request = true; if (!in_critical_section && options.direct_process_action) { diagnostics_set_aborted_via_gui(); #if defined(_WIN32) // Cause a controlled assert and dump the callstacks. DebugBreak(); #elif defined(__APPLE__) PrintBacktrace(); #endif release_mutex(); exit_from_timer_thread(EXIT_ABORTED_BY_CLIENT); } } if (match_tag(buf, "")) { boinc_status.reread_init_data_file = true; } if (match_tag(buf, "")) { have_network = 1; } release_mutex(); } } // timer handler; runs in the timer thread // static void timer_handler() { char buf[512]; #ifdef DEBUG_BOINC_API fprintf(stderr, "%s timer handler: disabled %s; in critical section %s; finishing %s\n", boinc_msg_prefix(buf, sizeof(buf)), boinc_disable_timer_thread?"yes":"no", in_critical_section?"yes":"no", finishing?"yes":"no" ); #endif if (boinc_disable_timer_thread) { return; } if (finishing) { double cur_cpu = boinc_worker_thread_cpu_time(); last_wu_cpu_time = cur_cpu + initial_wu_cpu_time; update_app_progress(last_wu_cpu_time, last_checkpoint_cpu_time); boinc_disable_timer_thread = true; return; } interrupt_count++; if (!boinc_status.suspended) { running_interrupt_count++; } // handle messages from the core client // if (app_client_shm) { if (options.check_heartbeat) { handle_heartbeat_msg(); } if (options.handle_trickle_downs) { handle_trickle_down_msg(); } if (options.handle_process_control) { handle_process_control_msg(); } } if (interrupt_count % TIMERS_PER_SEC) return; #ifdef DEBUG_BOINC_API fprintf(stderr, "%s 1 sec elapsed - doing slow actions\n", boinc_msg_prefix(buf, sizeof(buf))); #endif // here if we're at a one-second boundary; do slow stuff // if (!ready_to_checkpoint) { time_until_checkpoint -= 1; if (time_until_checkpoint <= 0) { ready_to_checkpoint = true; } } // see if the core client has died, which means we need to die too // (unless we're in a critical section) // if (in_critical_section==0 && options.check_heartbeat) { if (client_dead()) { fprintf(stderr, "%s timer handler: client dead, exiting\n", boinc_msg_prefix(buf, sizeof(buf)) ); if (options.direct_process_action) { exit_from_timer_thread(0); } else { boinc_status.no_heartbeat = true; } } } // don't bother reporting CPU time etc. if we're suspended // if (options.send_status_msgs && !boinc_status.suspended) { double cur_cpu = boinc_worker_thread_cpu_time(); last_wu_cpu_time = cur_cpu + initial_wu_cpu_time; update_app_progress(last_wu_cpu_time, last_checkpoint_cpu_time); } if (options.handle_trickle_ups) { send_trickle_up_msg(); } if (timer_callback) { timer_callback(); } // send graphics-related messages // if (send_web_graphics_url && !app_client_shm->shm->graphics_reply.has_msg()) { sprintf(buf, "%s", web_graphics_url ); app_client_shm->shm->graphics_reply.send_msg(buf); send_web_graphics_url = false; } if (send_remote_desktop_addr && !app_client_shm->shm->graphics_reply.has_msg()) { sprintf(buf, "%s", remote_desktop_addr ); app_client_shm->shm->graphics_reply.send_msg(buf); send_remote_desktop_addr = false; } } #ifdef _WIN32 DWORD WINAPI timer_thread(void *) { while (1) { Sleep((int)(TIMER_PERIOD*1000)); timer_handler(); // poor man's CPU time accounting for Win9x // if (!boinc_status.suspended) { nrunning_ticks++; } } return 0; } #else static void* timer_thread(void*) { block_sigalrm(); while(1) { boinc_sleep(TIMER_PERIOD); timer_handler(); } return 0; } // This SIGALRM handler gets handled only by the worker thread. // It gets CPU time and implements sleeping. // It must call only signal-safe functions, and must not do FP math // static void worker_signal_handler(int) { #ifndef GETRUSAGE_IN_TIMER_THREAD getrusage(RUSAGE_SELF, &worker_thread_ru); #endif if (worker_thread_exit_flag) { boinc_exit(worker_thread_exit_status); } if (options.direct_process_action) { while (boinc_status.suspended && in_critical_section==0) { #ifdef ANDROID // per-thread signal masking doesn't work // on old (pre-4.1) versions of Android. // If we're handling this signal in the timer thread, // send signal explicitly to worker thread. // if (pthread_self() == timer_thread_handle) { pthread_kill(worker_thread_handle, SIGALRM); return; } #endif sleep(1); // don't use boinc_sleep() because it does FP math } } } #endif // Called from the worker thread; create the timer thread // int start_timer_thread() { char buf[256]; #ifdef _WIN32 // get the worker thread handle // DuplicateHandle( GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &worker_thread_handle, 0, FALSE, DUPLICATE_SAME_ACCESS ); // Create the timer thread // if (!CreateThread(NULL, 0, timer_thread, 0, 0, &timer_thread_id)) { fprintf(stderr, "%s start_timer_thread(): CreateThread() failed, errno %d\n", boinc_msg_prefix(buf, sizeof(buf)), errno ); return errno; } if (!options.normal_thread_priority) { // lower our (worker thread) priority // SetThreadPriority(worker_thread_handle, THREAD_PRIORITY_IDLE); } #else worker_thread_handle = pthread_self(); pthread_attr_t thread_attrs; pthread_attr_init(&thread_attrs); pthread_attr_setstacksize(&thread_attrs, 32768); int retval = pthread_create(&timer_thread_handle, &thread_attrs, timer_thread, NULL); if (retval) { fprintf(stderr, "%s start_timer_thread(): pthread_create(): %d", boinc_msg_prefix(buf, sizeof(buf)), retval ); return retval; } #endif return 0; } #ifndef _WIN32 // set up a periodic SIGALRM, to be handled by the worker thread // static int start_worker_signals() { int retval; struct sigaction sa; itimerval value; sa.sa_handler = worker_signal_handler; sa.sa_flags = SA_RESTART; sigemptyset(&sa.sa_mask); retval = sigaction(SIGALRM, &sa, NULL); if (retval) { perror("boinc start_timer_thread() sigaction"); return retval; } value.it_value.tv_sec = 0; value.it_value.tv_usec = (int)(TIMER_PERIOD*1e6); value.it_interval = value.it_value; retval = setitimer(ITIMER_REAL, &value, NULL); if (retval) { perror("boinc start_timer_thread() setitimer"); return retval; } return 0; } #endif int boinc_send_trickle_up(char* variety, char* p) { if (!options.handle_trickle_ups) return ERR_NO_OPTION; FILE* f = boinc_fopen(TRICKLE_UP_FILENAME, "wb"); if (!f) return ERR_FOPEN; fprintf(f, "%s\n", variety); size_t n = fwrite(p, strlen(p), 1, f); fclose(f); if (n != 1) return ERR_WRITE; have_new_trickle_up = true; return 0; } int boinc_time_to_checkpoint() { if (ready_to_checkpoint) { boinc_begin_critical_section(); return 1; } return 0; } int boinc_checkpoint_completed() { double cur_cpu; cur_cpu = boinc_worker_thread_cpu_time(); last_wu_cpu_time = cur_cpu + aid.wu_cpu_time; last_checkpoint_cpu_time = last_wu_cpu_time; time_until_checkpoint = min_checkpoint_period(); boinc_end_critical_section(); ready_to_checkpoint = false; return 0; } void boinc_begin_critical_section() { #ifdef DEBUG_BOINC_API char buf[256]; fprintf(stderr, "%s begin_critical_section\n", boinc_msg_prefix(buf, sizeof(buf)) ); #endif in_critical_section++; } void boinc_end_critical_section() { #ifdef DEBUG_BOINC_API char buf[256]; fprintf(stderr, "%s end_critical_section\n", boinc_msg_prefix(buf, sizeof(buf)) ); #endif in_critical_section--; if (in_critical_section < 0) { in_critical_section = 0; // just in case } if (in_critical_section) return; // We're out of the critical section. // See if we got suspend/quit/abort while in critical section, // and handle them here. // if (boinc_status.quit_request) { boinc_exit(0); } if (boinc_status.abort_request) { boinc_exit(EXIT_ABORTED_BY_CLIENT); } if (options.direct_process_action) { acquire_mutex(); if (suspend_request) { suspend_request = false; boinc_status.suspended = true; release_mutex(); suspend_activities(true); } else { release_mutex(); } } } int boinc_fraction_done(double x) { fraction_done = x; return 0; } int boinc_receive_trickle_down(char* buf, int len) { std::string filename; char path[MAXPATHLEN]; if (!options.handle_trickle_downs) return false; if (have_trickle_down) { relative_to_absolute("", path); DirScanner dirscan(path); while (dirscan.scan(filename)) { if (strstr(filename.c_str(), "trickle_down")) { strncpy(buf, filename.c_str(), len); return true; } } have_trickle_down = false; } return false; } int boinc_upload_file(std::string& name) { char buf[256]; std::string pname; int retval; retval = boinc_resolve_filename_s(name.c_str(), pname); if (retval) return retval; sprintf(buf, "%s%s", UPLOAD_FILE_REQ_PREFIX, name.c_str()); FILE* f = boinc_fopen(buf, "w"); if (!f) return ERR_FOPEN; have_new_upload_file = true; fclose(f); return 0; } int boinc_upload_status(std::string& name) { for (unsigned int i=0; i