// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#else
#include "config.h"
#endif
#include "util.h"
#include "client_state.h"
#include "client_msgs.h"
#include "scheduler_op.h"
#include "work_fetch.h"
using std::vector;
bool use_rec = true;
bool use_hyst_fetch = true;
RSC_WORK_FETCH rsc_work_fetch[MAX_RSC];
WORK_FETCH work_fetch;
#define FETCH_IF_IDLE_INSTANCE 0
// If resource has an idle instance,
// get work for it from the project with greatest LTD,
// even if it's overworked.
#define FETCH_IF_MAJOR_SHORTFALL 1
// If resource is saturated for less than work_buf_min(),
// get work for it from the project with greatest LTD,
// even if it's overworked.
#define FETCH_IF_MINOR_SHORTFALL 2
// If resource is saturated for less than work_buf_total(),
// get work for it from the non-overworked project with greatest LTD.
#define FETCH_IF_PROJECT_STARVED 3
// If any project is not overworked and has too few jobs
// to use its instance share,
// get work from the one with greatest LTD.
static const char* criterion_name(int criterion) {
switch (criterion) {
case FETCH_IF_IDLE_INSTANCE: return "idle instance";
case FETCH_IF_MAJOR_SHORTFALL: return "major shortfall";
case FETCH_IF_MINOR_SHORTFALL: return "minor shortfall";
case FETCH_IF_PROJECT_STARVED: return "starved";
}
return "unknown";
}
inline bool dont_fetch(PROJECT* p, int rsc_type) {
if (p->no_rsc_pref[rsc_type]) return true;
if (p->no_rsc_config[rsc_type]) return true;
if (p->no_rsc_apps[rsc_type]) return true;
if (p->no_rsc_ams[rsc_type]) return true;
return false;
}
// if the configuration file disallows the use of a GPU type
// for a project, set a flag to that effect
//
void set_no_rsc_config() {
for (unsigned int i=0; iproject != p) continue;
if (rp->state() <= RESULT_FILES_DOWNLOADED) {
return true;
}
}
return false;
}
inline bool has_coproc_app(PROJECT* p, int rsc_type) {
unsigned int i;
for (i=0; iproject != p) continue;
if (avp->gpu_usage.rsc_type == rsc_type) return true;
}
return false;
}
/////////////// RSC_PROJECT_WORK_FETCH ///////////////
bool RSC_PROJECT_WORK_FETCH::compute_may_have_work(PROJECT* p, int rsc_type) {
if (dont_fetch(p, rsc_type)) return false;
if (p->rsc_defer_sched[rsc_type]) return false;
return (backoff_time < gstate.now);
}
void RSC_PROJECT_WORK_FETCH::rr_init(PROJECT* p, int rsc_type) {
may_have_work = compute_may_have_work(p, rsc_type);
runnable_share = 0;
fetchable_share = 0;
has_runnable_jobs = false;
sim_nused = 0;
nused_total = 0;
deadlines_missed = 0;
}
//#ifndef USE_REC
// see if the project's debt is beyond what would normally happen;
// if so we conclude that it had a long job that ran in EDF mode;
// avoid asking it for work unless absolutely necessary.
//
bool RSC_PROJECT_WORK_FETCH::overworked() {
double x = gstate.work_buf_total() + gstate.global_prefs.cpu_scheduling_period();
if (x < 86400) x = 86400;
return (long_term_debt < -x);
}
// should this project be accumulating LTD for this resource?
//
bool RSC_PROJECT_WORK_FETCH::debt_eligible(PROJECT* p, RSC_WORK_FETCH& rwf) {
if (p->non_cpu_intensive) return false;
if (p->suspended_via_gui) return false;
if (p->some_result_suspended()) return false;
if (has_runnable_jobs) return true;
// must precede the done_request_more_work check
if (p->dont_request_more_work) return false;
if (backoff_time > gstate.now) return false;
if (dont_fetch(p, rwf.rsc_type)) return false;
// NOTE: it's critical that all conditions that might prevent
// us from asking the project for work of this type
// be included in the above list.
// Otherwise we might get in a state where debt accumulates,
// pushing other projects into overworked state
// The last time we asked for work we didn't get any,
// but it's been a while since we asked.
// In this case, accumulate debt until we reach (around) zero, then stop.
//
if (backoff_interval == WF_MAX_BACKOFF_INTERVAL) {
if (long_term_debt > -DEBT_ADJUST_PERIOD) {
return false;
}
}
if (p->min_rpc_time > gstate.now) return false;
return true;
}
//#endif
void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, const char* name) {
if (backoff_interval) {
backoff_interval *= 2;
if (backoff_interval > WF_MAX_BACKOFF_INTERVAL) backoff_interval = WF_MAX_BACKOFF_INTERVAL;
} else {
backoff_interval = WF_MIN_BACKOFF_INTERVAL;
}
double x = (.5 + drand())*backoff_interval;
backoff_time = gstate.now + x;
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO,
"[work_fetch] backing off %s %.0f sec", name, x
);
}
}
/////////////// RSC_WORK_FETCH ///////////////
RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) {
return p->rsc_pwf[rsc_type];
}
bool RSC_WORK_FETCH::may_have_work(PROJECT* p) {
if (dont_fetch(p, rsc_type)) return false;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
return (w.backoff_time < gstate.now);
}
void RSC_WORK_FETCH::rr_init() {
shortfall = 0;
nidle_now = 0;
sim_nused = 0;
total_fetchable_share = 0;
total_runnable_share = 0;
deadline_missed_instances = 0;
saturated_time = 0;
pending.clear();
busy_time_estimator.reset();
}
void RSC_WORK_FETCH::accumulate_shortfall(double d_time) {
double idle = ninstances - sim_nused;
if (idle > 1e-6) {
//msg_printf(0, MSG_INFO, "adding shortfall %d %f", rsc_type, idle*d_time);
shortfall += idle*d_time;
}
#if 0
msg_printf(0, MSG_INFO, "accum shortf (%s): idle %f dt %f sf %f",
rsc_name(rsc_type), idle, d_time, shortfall
);
#endif
}
void RSC_WORK_FETCH::update_saturated_time(double dt) {
double idle = ninstances - sim_nused;
if (idle < 1e-6) {
saturated_time = dt;
}
}
void RSC_WORK_FETCH::update_busy_time(double dur, double nused) {
busy_time_estimator.update(dur, nused);
}
static bool wacky_dcf(PROJECT* p) {
double dcf = p->duration_correction_factor;
return (dcf < 0.02 || dcf > 80.0);
}
PROJECT* RSC_WORK_FETCH::choose_project_hyst() {
PROJECT* pbest = NULL;
if (saturated_time > gstate.work_buf_min()) return NULL;
for (unsigned i=0; ipwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
if (pbest) {
if (use_rec) {
if (project_priority(pbest) > project_priority(p)) {
continue;
}
} else {
if (pbest->pwf.overall_debt > p->pwf.overall_debt) {
continue;
}
}
}
pbest = p;
}
if (!pbest) return NULL;
work_fetch.clear_request();
work_fetch.set_all_requests_hyst(pbest, rsc_type);
return pbest;
}
// Choose the best project to ask for work for this resource,
// given the specific criterion
//
PROJECT* RSC_WORK_FETCH::choose_project(int criterion) {
PROJECT* pbest = NULL;
switch (criterion) {
case FETCH_IF_IDLE_INSTANCE:
if (nidle_now == 0) return NULL;
break;
case FETCH_IF_MAJOR_SHORTFALL:
if (saturated_time > gstate.work_buf_min()) return NULL;
break;
case FETCH_IF_MINOR_SHORTFALL:
if (saturated_time > gstate.work_buf_total()) return NULL;
break;
case FETCH_IF_PROJECT_STARVED:
if (deadline_missed_instances >= ninstances) return NULL;
break;
}
for (unsigned i=0; ipwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
switch (criterion) {
case FETCH_IF_MINOR_SHORTFALL:
if (!use_rec) {
if (rpwf.overworked()) continue;
}
if (wacky_dcf(p)) continue;
if (!p->resource_share) continue;
break;
case FETCH_IF_MAJOR_SHORTFALL:
if (wacky_dcf(p)) continue;
if (!p->resource_share) continue;
break;
case FETCH_IF_PROJECT_STARVED:
if (!use_rec) {
if (rpwf.overworked()) continue;
if (rpwf.nused_total >= ninstances*rpwf.fetchable_share) continue;
} else {
if (project_priority(p) < 0) continue;
if (rpwf.nused_total >= ninstances) continue;
}
if (!p->resource_share) continue;
break;
}
if (pbest) {
if (!p->resource_share) {
continue;
}
if (use_rec) {
if (project_priority(pbest) > project_priority(p)) {
continue;
}
} else {
if (pbest->pwf.overall_debt > p->pwf.overall_debt) {
continue;
}
}
}
pbest = p;
}
if (!pbest) return NULL;
// decide how much work to request from each resource
//
work_fetch.clear_request();
switch (criterion) {
case FETCH_IF_IDLE_INSTANCE:
case FETCH_IF_MAJOR_SHORTFALL:
set_request(pbest, true);
break;
case FETCH_IF_PROJECT_STARVED:
set_request(pbest, false);
break;
case FETCH_IF_MINOR_SHORTFALL:
// in this case, potentially request work for all resources
//
if (use_rec && (project_priority(pbest) < 0)) {
set_request(pbest, true);
} else {
work_fetch.set_all_requests(pbest);
}
break;
}
// in principle there should be a nonzero request.
// check, just in case
//
if (!req_secs && !req_instances) {
if (log_flags.work_fetch_debug) {
msg_printf(pbest, MSG_INFO,
"[work_fetch] error: project chosen but zero request"
);
}
return 0;
}
if (log_flags.work_fetch_debug) {
msg_printf(pbest, MSG_INFO,
"[work_fetch] chosen: %s %s: %.2f inst, %.2f sec",
criterion_name(criterion), rsc_name(rsc_type),
req_instances, req_secs
);
}
return pbest;
}
// request this project's share of shortfall and instances.
// don't request anything if project is overworked or backed off.
//
void RSC_WORK_FETCH::set_request(PROJECT* p, bool allow_overworked) {
if (dont_fetch(p, rsc_type)) return;
// if backup project, fetch 1 job per idle instance
//
if (p->resource_share == 0) {
req_instances = nidle_now;
req_secs = 1;
return;
}
if (config.fetch_minimal_work) {
req_instances = ninstances;
req_secs = 1;
return;
}
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (!w.may_have_work) return;
if (w.anon_skip) return;
if (!use_rec) {
if (!allow_overworked && w.overworked()) return;
}
if (shortfall) {
if (wacky_dcf(p)) {
// if project's DCF is too big or small,
// its completion time estimates are useless; just ask for 1 second
//
req_secs = 1;
} else {
if (use_rec) {
req_secs = shortfall;
} else {
req_secs = shortfall * w.fetchable_share;
}
}
}
// the number of additional instances needed to have our share
//
double x1;
if (use_rec) {
x1 = ninstances - w.nused_total;
} else {
x1 = (ninstances * w.fetchable_share) - w.nused_total;
}
// our share of the idle instances
//
double x2 = nidle_now * w.fetchable_share;
req_instances = std::max(x1, x2);
if (req_instances && !req_secs) {
req_secs = 1;
}
}
void RSC_WORK_FETCH::print_state(const char* name) {
msg_printf(0, MSG_INFO,
"[work_fetch] %s: shortfall %.2f nidle %.2f saturated %.2f busy %.2f RS fetchable %.2f runnable %.2f",
name,
shortfall, nidle_now, saturated_time, busy_time_estimator.get_busy_time(),
total_fetchable_share, total_runnable_share
);
for (unsigned int i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& pwf = project_state(p);
bool no_rsc_pref = p->no_rsc_pref[rsc_type];
bool no_rsc_config = p->no_rsc_config[rsc_type];
bool no_rsc_apps = p->no_rsc_apps[rsc_type];
bool no_rsc_ams = p->no_rsc_ams[rsc_type];
double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0;
if (use_rec) {
msg_printf(p, MSG_INFO,
"[work_fetch] %s: fetch share %.2f rec %.5f prio %.5f backoff dt %.2f int %.2f%s%s%s%s%s%s%s%s%s",
name,
pwf.fetchable_share, p->pwf.rec, project_priority(p), bt, pwf.backoff_interval,
p->suspended_via_gui?" (susp via GUI)":"",
p->master_url_fetch_pending?" (master fetch pending)":"",
p->min_rpc_time > gstate.now?" (comm deferred)":"",
p->dont_request_more_work?" (no new tasks)":"",
p->too_many_uploading_results?" (too many uploads)":"",
no_rsc_pref?" (blocked by prefs)":"",
no_rsc_apps?" (no apps)":"",
no_rsc_ams?" (blocked by account manager)":"",
no_rsc_config?" (blocked by configuration file)":""
);
} else {
msg_printf(p, MSG_INFO,
"[work_fetch] %s: fetch share %.2f LTD %.2f backoff dt %.2f int %.2f%s%s%s%s%s%s%s%s",
name,
pwf.fetchable_share, pwf.long_term_debt, bt, pwf.backoff_interval,
p->suspended_via_gui?" (susp via GUI)":"",
p->master_url_fetch_pending?" (master fetch pending)":"",
p->min_rpc_time > gstate.now?" (comm deferred)":"",
p->dont_request_more_work?" (no new tasks)":"",
pwf.overworked()?" (overworked)":"",
p->too_many_uploading_results?" (too many uploads)":"",
no_rsc_pref?" (blocked by prefs)":"",
no_rsc_config?" (blocked by configuration file)":""
);
}
}
}
void RSC_WORK_FETCH::clear_request() {
req_secs = 0;
req_instances = 0;
}
//#ifndef USE_REC
// update long-term debts for a resource.
//
void RSC_WORK_FETCH::update_long_term_debts() {
unsigned int i;
int neligible = 0;
double ders = 0;
PROJECT* p;
// find the total resource share of eligible projects
//
for (i=0; iresource_share;
neligible++;
}
}
if (!neligible) {
if (log_flags.debt_debug) {
msg_printf(0, MSG_INFO,
"[debt] %s: no eligible projects", rsc_name(rsc_type)
);
}
return;
}
double max_debt=0;
bool first = true;
for (i=0; inon_cpu_intensive) continue;
if (!p->resource_share) continue;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (w.debt_eligible(p, *this)) {
double share_frac = p->resource_share/ders;
// the change to a project's debt is:
// (how much it's owed) - (how much it got)
//
double delta = share_frac*secs_this_debt_interval - w.secs_this_debt_interval;
delta /= ninstances;
w.long_term_debt += delta;
if (log_flags.debt_debug) {
msg_printf(p, MSG_INFO,
"[debt] %s LTD %.2f delta %.2f (%.2f*%.2f - %.2f)/%d",
rsc_name(rsc_type),
w.long_term_debt, delta, share_frac,
secs_this_debt_interval,
w.secs_this_debt_interval,
ninstances
);
}
if (first) {
max_debt = w.long_term_debt;
first = false;
} else {
if (w.long_term_debt > max_debt) {
max_debt = w.long_term_debt;
}
}
} else {
if (log_flags.debt_debug) {
msg_printf(p, MSG_INFO,
"[debt] %s ineligible; LTD %.2f",
rsc_name(rsc_type), w.long_term_debt
);
}
}
}
// The net change may be
// - positive if the resource wasn't fully utilized during the debt interval
// - negative it was overcommitted (e.g., CPU)
// We need to keep eligible projects from diverging from non-eligible ones;
// also, if all the debts are large negative we need to gradually
// shift them towards zero.
// To do this, we add an offset as follows:
// delta_limit is the largest rate at which any project's debt
// could increase or decrease.
// If the largest debt is close to zero (relative to delta_limit)
// than add an offset that will bring it exactly to zero.
// Otherwise add an offset of 2*delta_limit,
// which will gradually bring all the debts towards zero
//
// The policy of keeping the max debt at zero is important;
// it means that new projects will begin in parity with high-debt project,
// and won't wait for months to get work.
//
double offset;
double delta_limit = secs_this_debt_interval;
if (max_debt > -2*delta_limit) {
if (fabs(max_debt) < 1e-6) max_debt = 0;
offset = max_debt?-max_debt:0; // avoid -0
} else {
offset = 2*delta_limit;
}
if (log_flags.debt_debug) {
msg_printf(0, MSG_INFO, "[debt] %s LTD: adding offset %f",
rsc_name(rsc_type), offset
);
}
for (i=0; inon_cpu_intensive) continue;
if (!p->resource_share) continue;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (w.debt_eligible(p, *this)) {
w.long_term_debt += offset;
} else {
if (offset > 0) {
w.long_term_debt += offset;
}
}
if (w.long_term_debt > 0) w.long_term_debt = 0;
}
}
// update short-term debts for a resource.
//
void RSC_WORK_FETCH::update_short_term_debts() {
unsigned int i;
PROJECT* p;
int nprojects=0, nrprojects=0;
double share_frac;
double total_short_term_debt = 0;
double rrs = gstate.runnable_resource_share(rsc_type);
// for projects with no runnable jobs,
// STD decays by a factor of e every day
//
double decay_factor = exp(-secs_this_debt_interval/86400);
for (i=0; inon_cpu_intensive) continue;
if (!p->resource_share) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
nprojects++;
if (p->runnable(rsc_type)) {
nrprojects++;
share_frac = p->resource_share/rrs;
delta = share_frac*secs_this_debt_interval
- rpwf.secs_this_debt_interval;
delta /= ninstances;
if (log_flags.std_debug) {
msg_printf(p, MSG_INFO,
"[std] %s STD delta %.2f (%.2f*%.2f - %.2f)/%d",
rsc_name(rsc_type),
delta,
share_frac,
secs_this_debt_interval,
rpwf.secs_this_debt_interval,
ninstances
);
}
rpwf.short_term_debt += delta;
} else {
rpwf.short_term_debt *= decay_factor;
}
total_short_term_debt += rpwf.short_term_debt;
}
// normalize so mean is zero, and limit abs value to MAX_STD
//
if (nrprojects) {
double avg_short_term_debt = total_short_term_debt / nprojects;
for (i=0; inon_cpu_intensive) continue;
if (!p->resource_share) continue;
if (p->runnable(rsc_type)) {
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
rpwf.short_term_debt -= avg_short_term_debt;
if (rpwf.short_term_debt > MAX_STD) {
rpwf.short_term_debt = MAX_STD;
}
if (rpwf.short_term_debt < -MAX_STD) {
rpwf.short_term_debt = -MAX_STD;
}
if (log_flags.std_debug) {
msg_printf(p, MSG_INFO,
"[std] %s STD %.2f",
rsc_name(rsc_type), rpwf.short_term_debt
);
}
}
}
}
}
//#endif
/////////////// PROJECT_WORK_FETCH ///////////////
bool PROJECT_WORK_FETCH::compute_can_fetch_work(PROJECT* p) {
if (p->non_cpu_intensive) return false;
if (p->suspended_via_gui) return false;
if (p->master_url_fetch_pending) return false;
if (p->min_rpc_time > gstate.now) return false;
if (p->dont_request_more_work) return false;
if (p->some_download_stalled()) return false;
if (p->some_result_suspended()) return false;
if (p->too_many_uploading_results) return false;
return true;
}
void PROJECT_WORK_FETCH::reset(PROJECT* p) {
for (int i=0; irsc_pwf[i].reset();
}
}
/////////////// WORK_FETCH ///////////////
void WORK_FETCH::rr_init() {
for (int i=0; ipwf.can_fetch_work = p->pwf.compute_can_fetch_work(p);
p->pwf.has_runnable_jobs = false;
for (int j=0; jrsc_pwf[j].rr_init(p, j);
}
}
}
// if the given project is highest-priority among the projects
// eligible for the resource, set request fields
//
void RSC_WORK_FETCH::supplement(PROJECT* pp) {
double x = project_priority(pp);
for (unsigned i=0; ipwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
if (project_priority(p) > x) {
return;
}
}
// didn't find a better project; ask for work
set_request(pp, true);
}
void WORK_FETCH::set_all_requests_hyst(PROJECT* p, int rsc_type) {
for (int i=0; irsc_pwf[j].queue_est = 0;
}
}
for (i=0; iproject;
if (!rp->nearly_runnable()) continue;
if (p->non_cpu_intensive) continue;
double dt = rp->estimated_time_remaining();
avp = rp->avp;
p->rsc_pwf[0].queue_est += dt*avp->avg_ncpus;
int rt = avp->gpu_usage.rsc_type;
if (rt) {
p->rsc_pwf[rt].queue_est += dt*avp->gpu_usage.usage;
}
}
for (i=0; irsc_pwf[0].queue_est/gstate.ncpus;
p->pwf.overall_debt = p->rsc_pwf[0].long_term_debt - queue_debt;
for (int j=1; jpwf.overall_debt += rsc_work_fetch[j].relative_speed*
(p->rsc_pwf[j].long_term_debt - p->rsc_pwf[j].queue_est/coprocs.coprocs[j].count);
}
}
}
void WORK_FETCH::zero_debts() {
for (unsigned i=0; irsc_pwf[j].zero_debt();
}
}
}
//#endif
void WORK_FETCH::print_state() {
msg_printf(0, MSG_INFO, "[work_fetch] ------- start work fetch state -------");
msg_printf(0, MSG_INFO, "[work_fetch] target work buffer: %.2f + %.2f sec",
gstate.work_buf_min(), gstate.work_buf_additional()
);
for (int i=0; inon_cpu_intensive) continue;
if (use_rec) {
msg_printf(p, MSG_INFO, "[work_fetch] REC %f", p->pwf.rec);
} else {
msg_printf(p, MSG_INFO, "[work_fetch] overall LTD %.2f",
p->pwf.overall_debt
);
}
}
msg_printf(0, MSG_INFO, "[work_fetch] ------- end work fetch state -------");
}
void WORK_FETCH::clear_request() {
for (int i=0; idont_request_more_work) return;
if (p->non_cpu_intensive) {
if (!has_a_job(p)) {
rsc_work_fetch[0].req_secs = 1;
}
return;
}
// See if this is the project we'd ask for work anyway.
// Temporarily clear resource backoffs,
// since we're going to contact this project in any case.
//
double backoff_save[MAX_RSC];
for (int i=0; irsc_pwf[i].backoff_time;
p->rsc_pwf[i].backoff_time = 0;
}
PROJECT* pbest = choose_project();
for (int i=0; irsc_pwf[i].backoff_time = backoff_save[i];
}
if (p == pbest) {
// Ask for work for all devices w/ a shortfall.
// Otherwise we can have a situation where a CPU is idle,
// we ask only for GPU work, and the project never has any
//
work_fetch.set_all_requests(pbest);
return;
}
// if not, don't request any work
//
clear_request();
}
// see if there's a fetchable non-CPU-intensive project without work
//
PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() {
for (unsigned int i=0; inon_cpu_intensive) continue;
if (!p->can_request_work()) continue;
if (p->rsc_pwf[0].backoff_time > gstate.now) continue;
if (has_a_job(p)) continue;
clear_request();
rsc_work_fetch[0].req_secs = 1;
return p;
}
return 0;
}
// choose a project to fetch work from,
// and set the request fields of resource objects
//
PROJECT* WORK_FETCH::choose_project() {
PROJECT* p = 0;
if (log_flags.work_fetch_debug) {
msg_printf(0, MSG_INFO, "[work_fetch] work fetch start");
}
p = non_cpu_intensive_project_needing_work();
if (p) return p;
gstate.compute_nuploading_results();
gstate.rr_simulation();
compute_shares();
if (use_rec) {
project_priority_init();
for (unsigned int i=0; iresult->avp;
PROJECT* p = atp->result->project;
double x = dt*avp->avg_ncpus;
p->rsc_pwf[0].secs_this_debt_interval += x;
rsc_work_fetch[0].secs_this_debt_interval += x;
int rt = avp->gpu_usage.rsc_type;
if (rt) {
x = dt*avp->gpu_usage.usage;
p->rsc_pwf[rt].secs_this_debt_interval += x;
rsc_work_fetch[rt].secs_this_debt_interval += x;
}
}
// find total and per-project resource shares for each resource
//
void WORK_FETCH::compute_shares() {
unsigned int i;
PROJECT* p;
for (i=0; inon_cpu_intensive) continue;
for (int j=0; jrsc_pwf[j].has_runnable_jobs) {
rsc_work_fetch[j].total_runnable_share += p->resource_share;
}
}
if (!p->pwf.can_fetch_work) continue;
for (int j=0; jrsc_pwf[j].may_have_work) {
rsc_work_fetch[j].total_fetchable_share += p->resource_share;
}
}
}
for (i=0; inon_cpu_intensive) continue;
for (int j=0; jrsc_pwf[j].has_runnable_jobs) {
p->rsc_pwf[j].runnable_share = p->resource_share/rsc_work_fetch[j].total_runnable_share;
}
}
if (!p->pwf.can_fetch_work) continue;
for (int j=0; jrsc_pwf[j].may_have_work) {
p->rsc_pwf[j].fetchable_share = rsc_work_fetch[j].total_fetchable_share?p->resource_share/rsc_work_fetch[j].total_fetchable_share:1;
}
}
}
}
void WORK_FETCH::request_string(char* buf) {
char buf2[256];
sprintf(buf,
"[work_fetch] request: CPU (%.2f sec, %.2f inst)",
rsc_work_fetch[0].req_secs, rsc_work_fetch[0].req_instances
);
for (int i=1; ianonymous_platform) {
for (int i=1; i work_req) {
work_req = rsc_work_fetch[i].req_secs;
}
}
}
}
fprintf(f,
" %f\n"
" %f\n"
" %f\n"
" %f\n",
work_req,
rsc_work_fetch[0].req_secs,
rsc_work_fetch[0].req_instances,
rsc_work_fetch[0].req_secs?rsc_work_fetch[0].busy_time_estimator.get_busy_time():0
);
if (log_flags.work_fetch_debug) {
char buf[256];
request_string(buf);
msg_printf(p, MSG_INFO, buf);
}
}
// we just got a scheduler reply with the given jobs; update backoffs
//
void WORK_FETCH::handle_reply(
PROJECT* p, SCHEDULER_REPLY*, vector new_results
) {
bool got_rsc[MAX_RSC];
for (int i=0; isched_rpc_pending != RPC_REASON_PROJECT_REQ) {
for (int i=0; irsc_pwf[i].backoff(p, rsc_name(i));
}
}
}
return;
}
// if we did get jobs, clear backoff on resource types
//
for (unsigned int i=0; iavp->gpu_usage.rsc_type] = true;
}
for (int i=0; irsc_pwf[i].clear_backoff();
}
}
// set up for initial RPC.
// arrange to always get one job, even if we don't need it or can't handle it.
// (this is probably what user wants)
//
void WORK_FETCH::set_initial_work_request() {
for (int i=0; ianonymous_platform) continue;
for (int k=0; krsc_pwf[k].anon_skip = true;
}
for (j=0; jproject != p) continue;
p->rsc_pwf[avp->gpu_usage.rsc_type].anon_skip = false;
}
}
}
// clear backoff for app's resource
//
void WORK_FETCH::clear_backoffs(APP_VERSION& av) {
av.project->rsc_pwf[av.gpu_usage.rsc_type].clear_backoff();
}
////////////////////////
void CLIENT_STATE::compute_nuploading_results() {
unsigned int i;
for (i=0; inuploading_results = 0;
projects[i]->too_many_uploading_results = false;
}
for (i=0; istate() == RESULT_FILES_UPLOADING) {
rp->project->nuploading_results++;
}
}
int n = gstate.ncpus;
for (int j=1; j n) {
n = coprocs.coprocs[j].count;
}
}
n *= 2;
for (i=0; inuploading_results > n) {
projects[i]->too_many_uploading_results = true;
}
}
}
bool PROJECT::runnable(int rsc_type) {
if (suspended_via_gui) return false;
for (unsigned int i=0; iproject != this) continue;
if (rsc_type != RSC_TYPE_ANY) {
if (rp->avp->gpu_usage.rsc_type != rsc_type) {
continue;
}
}
if (rp->runnable()) return true;
}
return false;
}
bool PROJECT::uploading() {
for (unsigned int i=0; ifile_xfers.size(); i++) {
FILE_XFER& fx = *gstate.file_xfers->file_xfers[i];
if (fx.fip->project == this && fx.is_upload) {
return true;
}
}
return false;
}
bool PROJECT::downloading() {
if (suspended_via_gui) return false;
for (unsigned int i=0; iproject != this) continue;
if (rp->downloading()) return true;
}
return false;
}
bool PROJECT::some_result_suspended() {
unsigned int i;
for (i=0; iproject != this) continue;
if (rp->suspended_via_gui) return true;
}
return false;
}
bool PROJECT::can_request_work() {
if (suspended_via_gui) return false;
if (master_url_fetch_pending) return false;
if (min_rpc_time > gstate.now) return false;
if (dont_request_more_work) return false;
if (gstate.in_abort_sequence) return false;
return true;
}
bool PROJECT::potentially_runnable() {
if (runnable(RSC_TYPE_ANY)) return true;
if (can_request_work()) return true;
if (downloading()) return true;
return false;
}
bool PROJECT::nearly_runnable() {
if (runnable(RSC_TYPE_ANY)) return true;
if (downloading()) return true;
return false;
}
// whether this task can be run right now
//
bool RESULT::runnable() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
if (state() != RESULT_FILES_DOWNLOADED) return false;
if (coproc_missing) return false;
if (schedule_backoff > gstate.now) return false;
return true;
}
// whether this task should be included in RR simulation
// Like runnable, except downloading backoff is OK
// Schedule-backoff is not OK;
// we should be able to get GPU jobs from project A
// even if project B has backed-off jobs.
//
bool RESULT::nearly_runnable() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
switch (state()) {
case RESULT_FILES_DOWNLOADED:
case RESULT_FILES_DOWNLOADING:
break;
default:
return false;
}
if (coproc_missing) return false;
if (schedule_backoff > gstate.now) return false;
return true;
}
// Return true if the result is waiting for its files to download,
// and nothing prevents this from happening soon
//
bool RESULT::downloading() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
if (state() > RESULT_FILES_DOWNLOADING) return false;
if (some_download_stalled()) return false;
return true;
}
double RESULT::estimated_duration_uncorrected() {
return wup->rsc_fpops_est/avp->flops;
}
// estimate how long a result will take on this host
//
double RESULT::estimated_duration() {
return estimated_duration_uncorrected()*project->duration_correction_factor;
}
double RESULT::estimated_time_remaining() {
if (computing_done()) return 0;
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this);
if (atp) {
return atp->est_dur() - atp->elapsed_time;
}
return estimated_duration();
}
// Returns the estimated total elapsed time of this task.
// Compute this as a weighted average of estimates based on
// 1) the workunit's flops count (static estimate)
// 2) the current elapsed time and fraction done (dynamic estimate)
//
double ACTIVE_TASK::est_dur() {
if (fraction_done >= 1) return elapsed_time;
double wu_est = result->estimated_duration();
if (fraction_done <= 0) return wu_est;
if (wu_est < elapsed_time) wu_est = elapsed_time;
double frac_est = fraction_done_elapsed_time / fraction_done;
double fraction_left = 1-fraction_done;
double wu_weight = fraction_left * fraction_left * fraction_left;
double fd_weight = 1 - wu_weight;
double x = fd_weight*frac_est + wu_weight*wu_est;
#if 0
if (log_flags.rr_simulation) {
msg_printf(result->project, MSG_INFO,
"[rr_sim] %s frac_est %f = %f/%f",
result->name, frac_est, fraction_done_elapsed_time, fraction_done
);
msg_printf(result->project, MSG_INFO,
"[rr_sim] %s dur: %.2f = %.3f*%.2f + %.3f*%.2f",
result->name, x, fd_weight, frac_est, wu_weight, wu_est
);
}
#endif
return x;
}
// the fraction of time BOINC is processing
//
double CLIENT_STATE::overall_cpu_frac() {
double x = time_stats.on_frac * time_stats.active_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
double CLIENT_STATE::overall_gpu_frac() {
double x = time_stats.on_frac * time_stats.gpu_active_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
// called when benchmarks change
//
void CLIENT_STATE::scale_duration_correction_factors(double factor) {
if (factor <= 0) return;
for (unsigned int i=0; iduration_correction_factor *= factor;
}
if (log_flags.dcf_debug) {
msg_printf(NULL, MSG_INFO,
"[dcf] scaling all duration correction factors by %f",
factor
);
}
}
// Choose a new host CPID.
// If using account manager, do scheduler RPCs
// to all acct-mgr-attached projects to propagate the CPID
//
void CLIENT_STATE::generate_new_host_cpid() {
host_info.generate_host_cpid();
for (unsigned int i=0; iattached_via_acct_mgr) {
projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ;
projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID");
}
}
}