// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . #include "cpp.h" #ifdef _WIN32 #include "boinc_win.h" #else #include "config.h" #endif #include "util.h" #include "client_state.h" #include "client_msgs.h" #include "scheduler_op.h" #include "work_fetch.h" using std::vector; bool use_rec = true; bool use_hyst_fetch = true; RSC_WORK_FETCH rsc_work_fetch[MAX_RSC]; WORK_FETCH work_fetch; #define FETCH_IF_IDLE_INSTANCE 0 // If resource has an idle instance, // get work for it from the project with greatest LTD, // even if it's overworked. #define FETCH_IF_MAJOR_SHORTFALL 1 // If resource is saturated for less than work_buf_min(), // get work for it from the project with greatest LTD, // even if it's overworked. #define FETCH_IF_MINOR_SHORTFALL 2 // If resource is saturated for less than work_buf_total(), // get work for it from the non-overworked project with greatest LTD. #define FETCH_IF_PROJECT_STARVED 3 // If any project is not overworked and has too few jobs // to use its instance share, // get work from the one with greatest LTD. static const char* criterion_name(int criterion) { switch (criterion) { case FETCH_IF_IDLE_INSTANCE: return "idle instance"; case FETCH_IF_MAJOR_SHORTFALL: return "major shortfall"; case FETCH_IF_MINOR_SHORTFALL: return "minor shortfall"; case FETCH_IF_PROJECT_STARVED: return "starved"; } return "unknown"; } inline bool dont_fetch(PROJECT* p, int rsc_type) { if (p->no_rsc_pref[rsc_type]) return true; if (p->no_rsc_config[rsc_type]) return true; if (p->no_rsc_apps[rsc_type]) return true; if (p->no_rsc_ams[rsc_type]) return true; return false; } // if the configuration file disallows the use of a GPU type // for a project, set a flag to that effect // void set_no_rsc_config() { for (unsigned int i=0; iproject != p) continue; if (rp->state() <= RESULT_FILES_DOWNLOADED) { return true; } } return false; } inline bool has_coproc_app(PROJECT* p, int rsc_type) { unsigned int i; for (i=0; iproject != p) continue; if (avp->gpu_usage.rsc_type == rsc_type) return true; } return false; } /////////////// RSC_PROJECT_WORK_FETCH /////////////// bool RSC_PROJECT_WORK_FETCH::compute_may_have_work(PROJECT* p, int rsc_type) { if (dont_fetch(p, rsc_type)) return false; if (p->rsc_defer_sched[rsc_type]) return false; return (backoff_time < gstate.now); } void RSC_PROJECT_WORK_FETCH::rr_init(PROJECT* p, int rsc_type) { may_have_work = compute_may_have_work(p, rsc_type); runnable_share = 0; fetchable_share = 0; has_runnable_jobs = false; sim_nused = 0; nused_total = 0; deadlines_missed = 0; } //#ifndef USE_REC // see if the project's debt is beyond what would normally happen; // if so we conclude that it had a long job that ran in EDF mode; // avoid asking it for work unless absolutely necessary. // bool RSC_PROJECT_WORK_FETCH::overworked() { double x = gstate.work_buf_total() + gstate.global_prefs.cpu_scheduling_period(); if (x < 86400) x = 86400; return (long_term_debt < -x); } // should this project be accumulating LTD for this resource? // bool RSC_PROJECT_WORK_FETCH::debt_eligible(PROJECT* p, RSC_WORK_FETCH& rwf) { if (p->non_cpu_intensive) return false; if (p->suspended_via_gui) return false; if (p->some_result_suspended()) return false; if (has_runnable_jobs) return true; // must precede the done_request_more_work check if (p->dont_request_more_work) return false; if (backoff_time > gstate.now) return false; if (dont_fetch(p, rwf.rsc_type)) return false; // NOTE: it's critical that all conditions that might prevent // us from asking the project for work of this type // be included in the above list. // Otherwise we might get in a state where debt accumulates, // pushing other projects into overworked state // The last time we asked for work we didn't get any, // but it's been a while since we asked. // In this case, accumulate debt until we reach (around) zero, then stop. // if (backoff_interval == WF_MAX_BACKOFF_INTERVAL) { if (long_term_debt > -DEBT_ADJUST_PERIOD) { return false; } } if (p->min_rpc_time > gstate.now) return false; return true; } //#endif void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, const char* name) { if (backoff_interval) { backoff_interval *= 2; if (backoff_interval > WF_MAX_BACKOFF_INTERVAL) backoff_interval = WF_MAX_BACKOFF_INTERVAL; } else { backoff_interval = WF_MIN_BACKOFF_INTERVAL; } double x = (.5 + drand())*backoff_interval; backoff_time = gstate.now + x; if (log_flags.work_fetch_debug) { msg_printf(p, MSG_INFO, "[work_fetch] backing off %s %.0f sec", name, x ); } } /////////////// RSC_WORK_FETCH /////////////// RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) { return p->rsc_pwf[rsc_type]; } bool RSC_WORK_FETCH::may_have_work(PROJECT* p) { if (dont_fetch(p, rsc_type)) return false; RSC_PROJECT_WORK_FETCH& w = project_state(p); return (w.backoff_time < gstate.now); } void RSC_WORK_FETCH::rr_init() { shortfall = 0; nidle_now = 0; sim_nused = 0; total_fetchable_share = 0; total_runnable_share = 0; deadline_missed_instances = 0; saturated_time = 0; pending.clear(); busy_time_estimator.reset(); } void RSC_WORK_FETCH::accumulate_shortfall(double d_time) { double idle = ninstances - sim_nused; if (idle > 1e-6) { //msg_printf(0, MSG_INFO, "adding shortfall %d %f", rsc_type, idle*d_time); shortfall += idle*d_time; } #if 0 msg_printf(0, MSG_INFO, "accum shortf (%s): idle %f dt %f sf %f", rsc_name(rsc_type), idle, d_time, shortfall ); #endif } void RSC_WORK_FETCH::update_saturated_time(double dt) { double idle = ninstances - sim_nused; if (idle < 1e-6) { saturated_time = dt; } } void RSC_WORK_FETCH::update_busy_time(double dur, double nused) { busy_time_estimator.update(dur, nused); } static bool wacky_dcf(PROJECT* p) { double dcf = p->duration_correction_factor; return (dcf < 0.02 || dcf > 80.0); } PROJECT* RSC_WORK_FETCH::choose_project_hyst() { PROJECT* pbest = NULL; if (saturated_time > gstate.work_buf_min()) return NULL; for (unsigned i=0; ipwf.can_fetch_work) continue; if (!project_state(p).may_have_work) continue; RSC_PROJECT_WORK_FETCH& rpwf = project_state(p); if (rpwf.anon_skip) continue; if (pbest) { if (use_rec) { if (project_priority(pbest) > project_priority(p)) { continue; } } else { if (pbest->pwf.overall_debt > p->pwf.overall_debt) { continue; } } } pbest = p; } if (!pbest) return NULL; work_fetch.clear_request(); work_fetch.set_all_requests_hyst(pbest, rsc_type); return pbest; } // Choose the best project to ask for work for this resource, // given the specific criterion // PROJECT* RSC_WORK_FETCH::choose_project(int criterion) { PROJECT* pbest = NULL; switch (criterion) { case FETCH_IF_IDLE_INSTANCE: if (nidle_now == 0) return NULL; break; case FETCH_IF_MAJOR_SHORTFALL: if (saturated_time > gstate.work_buf_min()) return NULL; break; case FETCH_IF_MINOR_SHORTFALL: if (saturated_time > gstate.work_buf_total()) return NULL; break; case FETCH_IF_PROJECT_STARVED: if (deadline_missed_instances >= ninstances) return NULL; break; } for (unsigned i=0; ipwf.can_fetch_work) continue; if (!project_state(p).may_have_work) continue; RSC_PROJECT_WORK_FETCH& rpwf = project_state(p); if (rpwf.anon_skip) continue; switch (criterion) { case FETCH_IF_MINOR_SHORTFALL: if (!use_rec) { if (rpwf.overworked()) continue; } if (wacky_dcf(p)) continue; if (!p->resource_share) continue; break; case FETCH_IF_MAJOR_SHORTFALL: if (wacky_dcf(p)) continue; if (!p->resource_share) continue; break; case FETCH_IF_PROJECT_STARVED: if (!use_rec) { if (rpwf.overworked()) continue; if (rpwf.nused_total >= ninstances*rpwf.fetchable_share) continue; } else { if (project_priority(p) < 0) continue; if (rpwf.nused_total >= ninstances) continue; } if (!p->resource_share) continue; break; } if (pbest) { if (!p->resource_share) { continue; } if (use_rec) { if (project_priority(pbest) > project_priority(p)) { continue; } } else { if (pbest->pwf.overall_debt > p->pwf.overall_debt) { continue; } } } pbest = p; } if (!pbest) return NULL; // decide how much work to request from each resource // work_fetch.clear_request(); switch (criterion) { case FETCH_IF_IDLE_INSTANCE: case FETCH_IF_MAJOR_SHORTFALL: set_request(pbest, true); break; case FETCH_IF_PROJECT_STARVED: set_request(pbest, false); break; case FETCH_IF_MINOR_SHORTFALL: // in this case, potentially request work for all resources // if (use_rec && (project_priority(pbest) < 0)) { set_request(pbest, true); } else { work_fetch.set_all_requests(pbest); } break; } // in principle there should be a nonzero request. // check, just in case // if (!req_secs && !req_instances) { if (log_flags.work_fetch_debug) { msg_printf(pbest, MSG_INFO, "[work_fetch] error: project chosen but zero request" ); } return 0; } if (log_flags.work_fetch_debug) { msg_printf(pbest, MSG_INFO, "[work_fetch] chosen: %s %s: %.2f inst, %.2f sec", criterion_name(criterion), rsc_name(rsc_type), req_instances, req_secs ); } return pbest; } // request this project's share of shortfall and instances. // don't request anything if project is overworked or backed off. // void RSC_WORK_FETCH::set_request(PROJECT* p, bool allow_overworked) { if (dont_fetch(p, rsc_type)) return; // if backup project, fetch 1 job per idle instance // if (p->resource_share == 0) { req_instances = nidle_now; req_secs = 1; return; } if (config.fetch_minimal_work) { req_instances = ninstances; req_secs = 1; return; } RSC_PROJECT_WORK_FETCH& w = project_state(p); if (!w.may_have_work) return; if (w.anon_skip) return; if (!use_rec) { if (!allow_overworked && w.overworked()) return; } if (shortfall) { if (wacky_dcf(p)) { // if project's DCF is too big or small, // its completion time estimates are useless; just ask for 1 second // req_secs = 1; } else { if (use_rec) { req_secs = shortfall; } else { req_secs = shortfall * w.fetchable_share; } } } // the number of additional instances needed to have our share // double x1; if (use_rec) { x1 = ninstances - w.nused_total; } else { x1 = (ninstances * w.fetchable_share) - w.nused_total; } // our share of the idle instances // double x2 = nidle_now * w.fetchable_share; req_instances = std::max(x1, x2); if (req_instances && !req_secs) { req_secs = 1; } } void RSC_WORK_FETCH::print_state(const char* name) { msg_printf(0, MSG_INFO, "[work_fetch] %s: shortfall %.2f nidle %.2f saturated %.2f busy %.2f RS fetchable %.2f runnable %.2f", name, shortfall, nidle_now, saturated_time, busy_time_estimator.get_busy_time(), total_fetchable_share, total_runnable_share ); for (unsigned int i=0; inon_cpu_intensive) continue; RSC_PROJECT_WORK_FETCH& pwf = project_state(p); bool no_rsc_pref = p->no_rsc_pref[rsc_type]; bool no_rsc_config = p->no_rsc_config[rsc_type]; bool no_rsc_apps = p->no_rsc_apps[rsc_type]; bool no_rsc_ams = p->no_rsc_ams[rsc_type]; double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0; if (use_rec) { msg_printf(p, MSG_INFO, "[work_fetch] %s: fetch share %.2f rec %.5f prio %.5f backoff dt %.2f int %.2f%s%s%s%s%s%s%s%s%s", name, pwf.fetchable_share, p->pwf.rec, project_priority(p), bt, pwf.backoff_interval, p->suspended_via_gui?" (susp via GUI)":"", p->master_url_fetch_pending?" (master fetch pending)":"", p->min_rpc_time > gstate.now?" (comm deferred)":"", p->dont_request_more_work?" (no new tasks)":"", p->too_many_uploading_results?" (too many uploads)":"", no_rsc_pref?" (blocked by prefs)":"", no_rsc_apps?" (no apps)":"", no_rsc_ams?" (blocked by account manager)":"", no_rsc_config?" (blocked by configuration file)":"" ); } else { msg_printf(p, MSG_INFO, "[work_fetch] %s: fetch share %.2f LTD %.2f backoff dt %.2f int %.2f%s%s%s%s%s%s%s%s", name, pwf.fetchable_share, pwf.long_term_debt, bt, pwf.backoff_interval, p->suspended_via_gui?" (susp via GUI)":"", p->master_url_fetch_pending?" (master fetch pending)":"", p->min_rpc_time > gstate.now?" (comm deferred)":"", p->dont_request_more_work?" (no new tasks)":"", pwf.overworked()?" (overworked)":"", p->too_many_uploading_results?" (too many uploads)":"", no_rsc_pref?" (blocked by prefs)":"", no_rsc_config?" (blocked by configuration file)":"" ); } } } void RSC_WORK_FETCH::clear_request() { req_secs = 0; req_instances = 0; } //#ifndef USE_REC // update long-term debts for a resource. // void RSC_WORK_FETCH::update_long_term_debts() { unsigned int i; int neligible = 0; double ders = 0; PROJECT* p; // find the total resource share of eligible projects // for (i=0; iresource_share; neligible++; } } if (!neligible) { if (log_flags.debt_debug) { msg_printf(0, MSG_INFO, "[debt] %s: no eligible projects", rsc_name(rsc_type) ); } return; } double max_debt=0; bool first = true; for (i=0; inon_cpu_intensive) continue; if (!p->resource_share) continue; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (w.debt_eligible(p, *this)) { double share_frac = p->resource_share/ders; // the change to a project's debt is: // (how much it's owed) - (how much it got) // double delta = share_frac*secs_this_debt_interval - w.secs_this_debt_interval; delta /= ninstances; w.long_term_debt += delta; if (log_flags.debt_debug) { msg_printf(p, MSG_INFO, "[debt] %s LTD %.2f delta %.2f (%.2f*%.2f - %.2f)/%d", rsc_name(rsc_type), w.long_term_debt, delta, share_frac, secs_this_debt_interval, w.secs_this_debt_interval, ninstances ); } if (first) { max_debt = w.long_term_debt; first = false; } else { if (w.long_term_debt > max_debt) { max_debt = w.long_term_debt; } } } else { if (log_flags.debt_debug) { msg_printf(p, MSG_INFO, "[debt] %s ineligible; LTD %.2f", rsc_name(rsc_type), w.long_term_debt ); } } } // The net change may be // - positive if the resource wasn't fully utilized during the debt interval // - negative it was overcommitted (e.g., CPU) // We need to keep eligible projects from diverging from non-eligible ones; // also, if all the debts are large negative we need to gradually // shift them towards zero. // To do this, we add an offset as follows: // delta_limit is the largest rate at which any project's debt // could increase or decrease. // If the largest debt is close to zero (relative to delta_limit) // than add an offset that will bring it exactly to zero. // Otherwise add an offset of 2*delta_limit, // which will gradually bring all the debts towards zero // // The policy of keeping the max debt at zero is important; // it means that new projects will begin in parity with high-debt project, // and won't wait for months to get work. // double offset; double delta_limit = secs_this_debt_interval; if (max_debt > -2*delta_limit) { if (fabs(max_debt) < 1e-6) max_debt = 0; offset = max_debt?-max_debt:0; // avoid -0 } else { offset = 2*delta_limit; } if (log_flags.debt_debug) { msg_printf(0, MSG_INFO, "[debt] %s LTD: adding offset %f", rsc_name(rsc_type), offset ); } for (i=0; inon_cpu_intensive) continue; if (!p->resource_share) continue; RSC_PROJECT_WORK_FETCH& w = project_state(p); if (w.debt_eligible(p, *this)) { w.long_term_debt += offset; } else { if (offset > 0) { w.long_term_debt += offset; } } if (w.long_term_debt > 0) w.long_term_debt = 0; } } // update short-term debts for a resource. // void RSC_WORK_FETCH::update_short_term_debts() { unsigned int i; PROJECT* p; int nprojects=0, nrprojects=0; double share_frac; double total_short_term_debt = 0; double rrs = gstate.runnable_resource_share(rsc_type); // for projects with no runnable jobs, // STD decays by a factor of e every day // double decay_factor = exp(-secs_this_debt_interval/86400); for (i=0; inon_cpu_intensive) continue; if (!p->resource_share) continue; RSC_PROJECT_WORK_FETCH& rpwf = project_state(p); nprojects++; if (p->runnable(rsc_type)) { nrprojects++; share_frac = p->resource_share/rrs; delta = share_frac*secs_this_debt_interval - rpwf.secs_this_debt_interval; delta /= ninstances; if (log_flags.std_debug) { msg_printf(p, MSG_INFO, "[std] %s STD delta %.2f (%.2f*%.2f - %.2f)/%d", rsc_name(rsc_type), delta, share_frac, secs_this_debt_interval, rpwf.secs_this_debt_interval, ninstances ); } rpwf.short_term_debt += delta; } else { rpwf.short_term_debt *= decay_factor; } total_short_term_debt += rpwf.short_term_debt; } // normalize so mean is zero, and limit abs value to MAX_STD // if (nrprojects) { double avg_short_term_debt = total_short_term_debt / nprojects; for (i=0; inon_cpu_intensive) continue; if (!p->resource_share) continue; if (p->runnable(rsc_type)) { RSC_PROJECT_WORK_FETCH& rpwf = project_state(p); rpwf.short_term_debt -= avg_short_term_debt; if (rpwf.short_term_debt > MAX_STD) { rpwf.short_term_debt = MAX_STD; } if (rpwf.short_term_debt < -MAX_STD) { rpwf.short_term_debt = -MAX_STD; } if (log_flags.std_debug) { msg_printf(p, MSG_INFO, "[std] %s STD %.2f", rsc_name(rsc_type), rpwf.short_term_debt ); } } } } } //#endif /////////////// PROJECT_WORK_FETCH /////////////// bool PROJECT_WORK_FETCH::compute_can_fetch_work(PROJECT* p) { if (p->non_cpu_intensive) return false; if (p->suspended_via_gui) return false; if (p->master_url_fetch_pending) return false; if (p->min_rpc_time > gstate.now) return false; if (p->dont_request_more_work) return false; if (p->some_download_stalled()) return false; if (p->some_result_suspended()) return false; if (p->too_many_uploading_results) return false; return true; } void PROJECT_WORK_FETCH::reset(PROJECT* p) { for (int i=0; irsc_pwf[i].reset(); } } /////////////// WORK_FETCH /////////////// void WORK_FETCH::rr_init() { for (int i=0; ipwf.can_fetch_work = p->pwf.compute_can_fetch_work(p); p->pwf.has_runnable_jobs = false; for (int j=0; jrsc_pwf[j].rr_init(p, j); } } } // if the given project is highest-priority among the projects // eligible for the resource, set request fields // void RSC_WORK_FETCH::supplement(PROJECT* pp) { double x = project_priority(pp); for (unsigned i=0; ipwf.can_fetch_work) continue; if (!project_state(p).may_have_work) continue; RSC_PROJECT_WORK_FETCH& rpwf = project_state(p); if (rpwf.anon_skip) continue; if (project_priority(p) > x) { return; } } // didn't find a better project; ask for work set_request(pp, true); } void WORK_FETCH::set_all_requests_hyst(PROJECT* p, int rsc_type) { for (int i=0; irsc_pwf[j].queue_est = 0; } } for (i=0; iproject; if (!rp->nearly_runnable()) continue; if (p->non_cpu_intensive) continue; double dt = rp->estimated_time_remaining(); avp = rp->avp; p->rsc_pwf[0].queue_est += dt*avp->avg_ncpus; int rt = avp->gpu_usage.rsc_type; if (rt) { p->rsc_pwf[rt].queue_est += dt*avp->gpu_usage.usage; } } for (i=0; irsc_pwf[0].queue_est/gstate.ncpus; p->pwf.overall_debt = p->rsc_pwf[0].long_term_debt - queue_debt; for (int j=1; jpwf.overall_debt += rsc_work_fetch[j].relative_speed* (p->rsc_pwf[j].long_term_debt - p->rsc_pwf[j].queue_est/coprocs.coprocs[j].count); } } } void WORK_FETCH::zero_debts() { for (unsigned i=0; irsc_pwf[j].zero_debt(); } } } //#endif void WORK_FETCH::print_state() { msg_printf(0, MSG_INFO, "[work_fetch] ------- start work fetch state -------"); msg_printf(0, MSG_INFO, "[work_fetch] target work buffer: %.2f + %.2f sec", gstate.work_buf_min(), gstate.work_buf_additional() ); for (int i=0; inon_cpu_intensive) continue; if (use_rec) { msg_printf(p, MSG_INFO, "[work_fetch] REC %f", p->pwf.rec); } else { msg_printf(p, MSG_INFO, "[work_fetch] overall LTD %.2f", p->pwf.overall_debt ); } } msg_printf(0, MSG_INFO, "[work_fetch] ------- end work fetch state -------"); } void WORK_FETCH::clear_request() { for (int i=0; idont_request_more_work) return; if (p->non_cpu_intensive) { if (!has_a_job(p)) { rsc_work_fetch[0].req_secs = 1; } return; } // See if this is the project we'd ask for work anyway. // Temporarily clear resource backoffs, // since we're going to contact this project in any case. // double backoff_save[MAX_RSC]; for (int i=0; irsc_pwf[i].backoff_time; p->rsc_pwf[i].backoff_time = 0; } PROJECT* pbest = choose_project(); for (int i=0; irsc_pwf[i].backoff_time = backoff_save[i]; } if (p == pbest) { // Ask for work for all devices w/ a shortfall. // Otherwise we can have a situation where a CPU is idle, // we ask only for GPU work, and the project never has any // work_fetch.set_all_requests(pbest); return; } // if not, don't request any work // clear_request(); } // see if there's a fetchable non-CPU-intensive project without work // PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() { for (unsigned int i=0; inon_cpu_intensive) continue; if (!p->can_request_work()) continue; if (p->rsc_pwf[0].backoff_time > gstate.now) continue; if (has_a_job(p)) continue; clear_request(); rsc_work_fetch[0].req_secs = 1; return p; } return 0; } // choose a project to fetch work from, // and set the request fields of resource objects // PROJECT* WORK_FETCH::choose_project() { PROJECT* p = 0; if (log_flags.work_fetch_debug) { msg_printf(0, MSG_INFO, "[work_fetch] work fetch start"); } p = non_cpu_intensive_project_needing_work(); if (p) return p; gstate.compute_nuploading_results(); gstate.rr_simulation(); compute_shares(); if (use_rec) { project_priority_init(); for (unsigned int i=0; iresult->avp; PROJECT* p = atp->result->project; double x = dt*avp->avg_ncpus; p->rsc_pwf[0].secs_this_debt_interval += x; rsc_work_fetch[0].secs_this_debt_interval += x; int rt = avp->gpu_usage.rsc_type; if (rt) { x = dt*avp->gpu_usage.usage; p->rsc_pwf[rt].secs_this_debt_interval += x; rsc_work_fetch[rt].secs_this_debt_interval += x; } } // find total and per-project resource shares for each resource // void WORK_FETCH::compute_shares() { unsigned int i; PROJECT* p; for (i=0; inon_cpu_intensive) continue; for (int j=0; jrsc_pwf[j].has_runnable_jobs) { rsc_work_fetch[j].total_runnable_share += p->resource_share; } } if (!p->pwf.can_fetch_work) continue; for (int j=0; jrsc_pwf[j].may_have_work) { rsc_work_fetch[j].total_fetchable_share += p->resource_share; } } } for (i=0; inon_cpu_intensive) continue; for (int j=0; jrsc_pwf[j].has_runnable_jobs) { p->rsc_pwf[j].runnable_share = p->resource_share/rsc_work_fetch[j].total_runnable_share; } } if (!p->pwf.can_fetch_work) continue; for (int j=0; jrsc_pwf[j].may_have_work) { p->rsc_pwf[j].fetchable_share = rsc_work_fetch[j].total_fetchable_share?p->resource_share/rsc_work_fetch[j].total_fetchable_share:1; } } } } void WORK_FETCH::request_string(char* buf) { char buf2[256]; sprintf(buf, "[work_fetch] request: CPU (%.2f sec, %.2f inst)", rsc_work_fetch[0].req_secs, rsc_work_fetch[0].req_instances ); for (int i=1; ianonymous_platform) { for (int i=1; i work_req) { work_req = rsc_work_fetch[i].req_secs; } } } } fprintf(f, " %f\n" " %f\n" " %f\n" " %f\n", work_req, rsc_work_fetch[0].req_secs, rsc_work_fetch[0].req_instances, rsc_work_fetch[0].req_secs?rsc_work_fetch[0].busy_time_estimator.get_busy_time():0 ); if (log_flags.work_fetch_debug) { char buf[256]; request_string(buf); msg_printf(p, MSG_INFO, buf); } } // we just got a scheduler reply with the given jobs; update backoffs // void WORK_FETCH::handle_reply( PROJECT* p, SCHEDULER_REPLY*, vector new_results ) { bool got_rsc[MAX_RSC]; for (int i=0; isched_rpc_pending != RPC_REASON_PROJECT_REQ) { for (int i=0; irsc_pwf[i].backoff(p, rsc_name(i)); } } } return; } // if we did get jobs, clear backoff on resource types // for (unsigned int i=0; iavp->gpu_usage.rsc_type] = true; } for (int i=0; irsc_pwf[i].clear_backoff(); } } // set up for initial RPC. // arrange to always get one job, even if we don't need it or can't handle it. // (this is probably what user wants) // void WORK_FETCH::set_initial_work_request() { for (int i=0; ianonymous_platform) continue; for (int k=0; krsc_pwf[k].anon_skip = true; } for (j=0; jproject != p) continue; p->rsc_pwf[avp->gpu_usage.rsc_type].anon_skip = false; } } } // clear backoff for app's resource // void WORK_FETCH::clear_backoffs(APP_VERSION& av) { av.project->rsc_pwf[av.gpu_usage.rsc_type].clear_backoff(); } //////////////////////// void CLIENT_STATE::compute_nuploading_results() { unsigned int i; for (i=0; inuploading_results = 0; projects[i]->too_many_uploading_results = false; } for (i=0; istate() == RESULT_FILES_UPLOADING) { rp->project->nuploading_results++; } } int n = gstate.ncpus; for (int j=1; j n) { n = coprocs.coprocs[j].count; } } n *= 2; for (i=0; inuploading_results > n) { projects[i]->too_many_uploading_results = true; } } } bool PROJECT::runnable(int rsc_type) { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rsc_type != RSC_TYPE_ANY) { if (rp->avp->gpu_usage.rsc_type != rsc_type) { continue; } } if (rp->runnable()) return true; } return false; } bool PROJECT::uploading() { for (unsigned int i=0; ifile_xfers.size(); i++) { FILE_XFER& fx = *gstate.file_xfers->file_xfers[i]; if (fx.fip->project == this && fx.is_upload) { return true; } } return false; } bool PROJECT::downloading() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->downloading()) return true; } return false; } bool PROJECT::some_result_suspended() { unsigned int i; for (i=0; iproject != this) continue; if (rp->suspended_via_gui) return true; } return false; } bool PROJECT::can_request_work() { if (suspended_via_gui) return false; if (master_url_fetch_pending) return false; if (min_rpc_time > gstate.now) return false; if (dont_request_more_work) return false; if (gstate.in_abort_sequence) return false; return true; } bool PROJECT::potentially_runnable() { if (runnable(RSC_TYPE_ANY)) return true; if (can_request_work()) return true; if (downloading()) return true; return false; } bool PROJECT::nearly_runnable() { if (runnable(RSC_TYPE_ANY)) return true; if (downloading()) return true; return false; } // whether this task can be run right now // bool RESULT::runnable() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() != RESULT_FILES_DOWNLOADED) return false; if (coproc_missing) return false; if (schedule_backoff > gstate.now) return false; return true; } // whether this task should be included in RR simulation // Like runnable, except downloading backoff is OK // Schedule-backoff is not OK; // we should be able to get GPU jobs from project A // even if project B has backed-off jobs. // bool RESULT::nearly_runnable() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; switch (state()) { case RESULT_FILES_DOWNLOADED: case RESULT_FILES_DOWNLOADING: break; default: return false; } if (coproc_missing) return false; if (schedule_backoff > gstate.now) return false; return true; } // Return true if the result is waiting for its files to download, // and nothing prevents this from happening soon // bool RESULT::downloading() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() > RESULT_FILES_DOWNLOADING) return false; if (some_download_stalled()) return false; return true; } double RESULT::estimated_duration_uncorrected() { return wup->rsc_fpops_est/avp->flops; } // estimate how long a result will take on this host // double RESULT::estimated_duration() { return estimated_duration_uncorrected()*project->duration_correction_factor; } double RESULT::estimated_time_remaining() { if (computing_done()) return 0; ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this); if (atp) { return atp->est_dur() - atp->elapsed_time; } return estimated_duration(); } // Returns the estimated total elapsed time of this task. // Compute this as a weighted average of estimates based on // 1) the workunit's flops count (static estimate) // 2) the current elapsed time and fraction done (dynamic estimate) // double ACTIVE_TASK::est_dur() { if (fraction_done >= 1) return elapsed_time; double wu_est = result->estimated_duration(); if (fraction_done <= 0) return wu_est; if (wu_est < elapsed_time) wu_est = elapsed_time; double frac_est = fraction_done_elapsed_time / fraction_done; double fraction_left = 1-fraction_done; double wu_weight = fraction_left * fraction_left * fraction_left; double fd_weight = 1 - wu_weight; double x = fd_weight*frac_est + wu_weight*wu_est; #if 0 if (log_flags.rr_simulation) { msg_printf(result->project, MSG_INFO, "[rr_sim] %s frac_est %f = %f/%f", result->name, frac_est, fraction_done_elapsed_time, fraction_done ); msg_printf(result->project, MSG_INFO, "[rr_sim] %s dur: %.2f = %.3f*%.2f + %.3f*%.2f", result->name, x, fd_weight, frac_est, wu_weight, wu_est ); } #endif return x; } // the fraction of time BOINC is processing // double CLIENT_STATE::overall_cpu_frac() { double x = time_stats.on_frac * time_stats.active_frac; if (x < 0.01) x = 0.01; if (x > 1) x = 1; return x; } double CLIENT_STATE::overall_gpu_frac() { double x = time_stats.on_frac * time_stats.gpu_active_frac; if (x < 0.01) x = 0.01; if (x > 1) x = 1; return x; } // called when benchmarks change // void CLIENT_STATE::scale_duration_correction_factors(double factor) { if (factor <= 0) return; for (unsigned int i=0; iduration_correction_factor *= factor; } if (log_flags.dcf_debug) { msg_printf(NULL, MSG_INFO, "[dcf] scaling all duration correction factors by %f", factor ); } } // Choose a new host CPID. // If using account manager, do scheduler RPCs // to all acct-mgr-attached projects to propagate the CPID // void CLIENT_STATE::generate_new_host_cpid() { host_info.generate_host_cpid(); for (unsigned int i=0; iattached_via_acct_mgr) { projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ; projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID"); } } }